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ABSTRACT Decentralized identifiers (DID) has shown great potential for sharing user identities across
different domains and services without compromising user privacy. DID is designed to enable the minimum
disclosure of the proof from a user’s credentials on a need-to-know basis with a contextualized delegation.
At first glance, DID appears to be well-suited for this purpose. However, the overall security of DID has
not been thoroughly examined. In this paper, we systemically explore key components of DID systems and
analyze their possible vulnerabilities when deployed. First, we analyze the data flow between DID system
components and analyze possible security threats. Next, we carefully identify potential security threats over
seven different DID functional domains, ranging from user wallet to universal resolver. Lastly, we discuss
the possible countermeasures against the security threats we identified.

INDEX TERMS DID, decentralized key management system (DKMS), universal resolver, blockchain, data

exfiltration, blockchain redaction, attack surface.

I. INTRODUCTION
DID is a new paradigm, where users can securely control
their own identity (ID) and sovereignty without relying on
any single central authority or third-party entities for manag-
ing users’ credentials [1]. The decentralized autonomy and
capability to control his/her own identity enable the DID ID
management system to be a fully working Self-Sovereign
Identity (SSI) model [2], [3] compared to other identity man-
agement schemes. For the principles of SSI, users can control
and manage their ID by themselves with minimum disclosure
of their personal information and claims, providing consistent
usability across different contexts.

To realize SSI, the DID system has been pro-
posed, leveraging state-of-the-art technologies such as
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DKMS, verifiable credentials (VC), universal resolver,
microservice architecture (MSA), and blockchain. More
specifically, DID is a pairwise relationship-oriented iden-
tifier, which is contextualized over different relationships.
DID uses the delegated entities called edge agents or cloud
agents by authorizing them to access the user’s credentials,
where the access level is controlled by the authorization
policy in the public ledger per each agent. Each agent,
belonging to the same identity subject but used in different
devices or domains, uses a special type of key (a link secret).
Thereby, each agent can act as if it is all from one logically
unified identity. Detailed information about the DID, such as
public key verification information, service endpoints, and
specific authentication methods, is encapsulated in the DID
document. If a user is requested by a certain DID to assert
specific claims (e.g., the capability of operating a vehicle),
the agent of the user’s DID uses the VC, which contains the
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required official attestation information (e.g., driver license)
from an issuer. Therefore, it is securely verified through the
presentation of VCs with DID to prove the requested claims.

On the other hand, the detailed DID resolution to the
corresponding DID document varies across different DID
methods such as Sovrin [4], UPort [5], Jolocom [6], etc.
Therefore, a universal resolver is needed to provide the uni-
fied DID resolution between different DID methods. Both the
universal resolver and drivers for individual DID methods are
orchestrated by the microservice-deploying platforms such as
Kubernetes from Google! or Docker-Compose.”

However, due to the paramount complexity of leveraging
many different security services and new system building
blocks, we hypothesize that DID can introduce additional
security risks and vulnerabilities during deployment. Prior
research [7], [8] has examined the specific attacks on service
endpoints in a DID document and DID authentication in IoT
context. However, the research on the security analysis of
the entire DID system has not been systematically studied.
In this paper, we first analyze the data flow between DID
components using Microsoft’s threat modeling tool [9] to
characterize the interactions and information flow in an entire
DID system. For analysis, we use W3C’s DID core standard
[10] and VC data model [11], the open-source wallet plat-
form developed by Hyperfabric Aries [12], DKMS [13], DID
communication protocol [14] and the universal resolver [15].
In particular, we categorize the entire DID system into the
following DID main component entities based on their func-
tionalities: 1) DID Subject (User), 2) DID, 3) DID Document
(DDO), 4) Identity Wallet Software, 5) Universal Resolver
(UR), 6) DID method, and 7) Verifiable Data Registry (VDR).

Next, we investigate the underlying security threats for
the above seven DID system component categories and
analyze detailed attack surfaces. In particular, we identify
the following seven attack domains as shown in Figure 2:
1) Wallet System Attack, 2) Phishing/Impersonation Attack,
3) Cache Poisoning/Pollution Attack, 4) Microservice
Attack, 5) DDO forgery Attack, 6) VDR Partitioning/
Information-Centric Networking (ICN) Attack, and 7) Social
Recovery Attack. Lastly, we discuss the possible countermea-
sures for those attacks. In summary, we make the following
contributions in this paper:

o We propose a holistic view of the DID system to provide
a comprehensive understanding of different building
blocks and their interactions with the state-of-the-art
DID system components.

« We identify the underlying seven major security attack
domains by exploring vulnerabilities in the entire DID
system on the path, starting from a user’s query to the
actual acquisition of the target DID document and its
use.

1 https://github.com/kubernetes/kubernetes
2https://docs.docker.com/compose/
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o« We also present the possible countermeasures and
defenses to each of the security attack vectors in the DID
system, providing directions for future research.

The organization of this paper is as follows. In Section II,
we show the related work on the background of SSI with DID
system and their security issues in using DID. In Section III,
we present an overview of the DID system. In Section IV,
we present a holistic view of the entire DID system and
describe the interactions among individual DID components.
In Section V, we examine the DID system’s attack sur-
face and identify the DID system’s possible security threats.
In Section VI, we walk through different countermeasures per
each security threat identified and discuss the future work of
our research. Finally, we offer our conclusion in Section VII.
For the terms and abbreviations in this paper, the reader is
referred to the nomenclature in Appendix.

Il. RELATED WORK

In this section, we present the prior research related to the
background of the emergence of SSI, DID systems to enable
SSI, and their security issues.

A. DECENTRALIZED ID MANAGEMENT

Over the past few decades, centralized identity management
(CIM) systems have been popularly used for web and network
applications. However, the centralized approach would have
a single point of failure and generally does not scale well.
Therefore, federated identity management (FIM) scheme has
emerged to address the above issues, which allows the fed-
eration across multiple organizations by bridging different
identity providers and thereby achieving cross-organizational
access to each service provider.

To further help users control their own identity informa-
tion and enable the minimized exposure of their personal
data, user-centric identity management (UIM) schemes are
needed to verify and manage user’s ID in a more user-
controllable and privacy-respecting manner. The concept of
the SSI [2], [3] management scheme has been proposed to
further achieve these goals. SSI allows users to generate and
manage their own identity data in a decentralized way. SSI is
expected to leverage the state-of-the-art decentralized iden-
tity technologies, providing the DID as the fundamental layer
for machine-verifiable unique identifiers. And VC provides
secure, privacy-ensuring credentials along with DKMS for
handling decentralized key management and UR for ensuring
the successful retrieval of DDO across different DID meth-
ods. In particular, Kim et al. [1] provide the overview of
the DID-based distributed ID management system over the
blockchain. In Section III-A, we further delineate different
ID management schemes.

B. VC OVER BLOCKCHAIN

Storing and sharing VC via a blockchain system has been
studied by Takemiya and Vanieiev [16], where VC’s integrity
and non-repudiation can be ensured. The authors leveraged
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the use of 128-bit cryptographic salt on top of the key
stretching method of a password-based key derivation func-
tion 2 (PBKDF2) [17]. The key pair to access blockchain
is generated from the PBKDF2 method. The VC is then
separated into public and private parts; the former is added
with another salt and hashed using SHA3-256 [18]. The salted
hash of the VC’s public part is published in a transaction to
the blockchain, where the key pair is used for creating and
propagating the transaction in the blockchain. This design
effectively increases pseudonymity and VC protection in a
public blockchain setting. Besides, the notarization method
for VC can be utilized by stacking each notary’s non-
repudiation signature to the VC and publishing it in the
blockchain.

C. SECURITY CHALLENGES IN USING DID

For DID authentication, Pennino ef al. [7] identified several
issues when binding a user’s real identity to the service
endpoint in a claimed DDO. For example, the user’s proof-
of-possession (PoP) of the service endpoint was used with a
digital signature scheme to establish and publish the proof
to a blockchain system. They proposed a challenge-response
cycle through which a user, i.e. the DID subject, demonstrates
their DID ownership, using the PoP of the claimed service
endpoint to enable a secure DID authentication. However,
the proof establishing process requires a committee consen-
sus, where a set of predefined authorized service endpoint
owners are randomly elected as committee members. To pub-
lish the PoP, the committee members all need to be on-line in
the previous proof establishing process. They identified that
this process could incur a considerable processing delay if
some partial committee members are absent, and thereby the
committee consensus is not processed in time. This procedure
can introduce a new attack. Besides, it will increase the on-
chain data traffic and system complexity for the committee’s
governance framework. Another research on DID authenti-
cation was conducted by Omar [8]. The author suggested
using HMAC key derivation function (HKDF) [19]-based
DID mutual authentication method to counter impersonation
attack, replay attack, and reflection attack in IoT device
authentication.

Regarding security and privacy issues in DID, Halpin [20]
identified the threats on the use of DID and VC on COVID-19
immunity passport [21]. However, storing hashed VC con-
taining personal medical information in a public blockchain
can introduce a significant privacy issue. In particular,
the hash of the personal data without appropriate salting can
violate the privacy law such as General Data Protection Reg-
ulation (GDPR) [22]. For anonymous authentication, Biswas
et al. [23] proposed a ring signature-based Multi-DID design
to encrypt the transactions between an Electric Vehicle (EV)
user and charging station, while using a mixed-use of Sovrin
[4] and, for ephemeral DIDs, the blockchain-independent
Peer DID method [24] to prevent the Man-In-The-Middle
attack. However, the limitation of this work is the excessive

22896

resource consumption on the processing of the ring signature
and storing of the transaction data required for the design.

Consequently, none of the existing studies explore the
systematic attack surfaces according to the entire DID system
components.

Ill. OVERVIEW OF DID SYSTEMS

First, we overview different identity management schemes,
and describe the major components in the DID-based SSI
systems.

A. DIFFERENT ID MANAGEMENT SCHEMES

First, the CIM system was introduced, which brought the
inchoate concept of an identity provider (IDP) and single
sign-on (SSO) [25] to meet the burgeoning needs of man-
aging multiple identity credentials across different internet
service providers. Examples of CIM system subsume digital
certificates, OpenAM (successor to OpenSSO), PGP [26],
Kerberos [27], and Radius [28]. However, users had no other
recourse but to fully trust the centralized IDP, despite the lim-
ited control over their identities, that it will not misuse their
identity. Also, the CIM system lacks cross-organizational
accessibility, expedited to transition to the federated identity
management system.

To circumvent the limitation in the CIM system, the FIM
system has emerged, where the federation means a circle of
trust that was made available by bridging IDPs and sharing
identities across different service providers. The era of the
federated identity coined SAML [29] of XML-based data for-
mat standard for exchanging authentication and authorization
data among parties such as IDPs (also known as asserting
parties (APs)) and service providers (SPs) (also known as
relying parties (RPs)), and OIDC, the identity authentication
layer on top of Open Authorization (OAuth) 2.0. Neverthe-
less, the FIM system still failed to let users fully control their
own identity data, and there are still too many intermediate
authorities. The drawbacks of the superfluous user data expo-
sure among federated IDPs and less controllability of the user
on their own identity data led to the new identity scheme,
which is the UIM system.

The UIM system has emerged by allowing users to com-
plete control over their digital identities, mainly focused on
user’s consent and interoperability. OpenID and Facebook
Connect [30] are the examples of this user-centric identity
scheme enabling users to broadly use their IDs of one public
website in other third-party SP’s websites. However, the same
problem still exists, where users have to depend entirely upon
the trusted identity providers for their personal data.

To further overcome such shortcomings of central author-
ity and minimize user information exposure, the SSI has pro-
posed providing full user identity autonomy and control over
their own identity. According to each contextualized relation-
ship and user-determined delegation level, SSI enables users
to harness security and flexibility about their own identity
credentials (or attributes).
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Moreover, SSI leverages blockchain technology and sev-
eral new emerging standards, at the epicenter of which comes
the DID [10] as the main building block. Those crucial new
emerging standards for SSI are as follows: (1) VC [11]
for the globally unique tamper-evident credentials of claims
by issuers, (2) DKMS [13], which is a decentralized ver-
sion of centralized cryptographic key management systems
(CKMS) for ensuring safe key custodianship while enforcing
the anti-correlation capability lacking in CKMS. In this work,
we specifically focus on the security issues of the DID-based
SSI, along with their implications when deployed in real-
world scenarios.

B. DID SYSTEM BUILDING BLOCKS

1) DID

A DID is the decentralized identifiers, which is a
self-registered globally unique identifier pointing to a
DDO that contains the information of the DID subject.
DID is comprised of three syntactic components (e.g.,
did:example:ABC), which are URI scheme identifier (did),
DID method name (e.g., example), and DID method-specific
identifier (e.g., ABC).

The DID method specifies how the DID is being cre-
ated, resolved, and deactivated, and how the DDO is written
and updated. DID is designed to separate the proof of the
user’s identity from credentials. Thus, DID allows the identity
owner to prove credentials in a selective disclosure through
cryptographic methods such as Zero-Knowledge Proof (ZKP)
and digital signature schemes.

Also, the DID is recommended to be unique per each
situational context and relationship to provide privacy. There-
fore, DID can be adopted for the standard identity scheme
for various cross-domain environments such as IoT, Smart
Factory, Smart City, Cooperative-Intelligent Transportation
System (C-ITS), Smart Government, E-Health, and 3rd Party
Data Consumer and more.

2) DDO AND DID SUBJECT

A DDO is the DID document [31] composed of a data
set that describes the DID subject, which is retrieved by
a DID resolver. The DDO contains the core properties of
DID subject, DID controller, verification method, verification
relationship, and service endpoint. Also, the DDO follows
the representation form as specified by the core data model
of DID [10]. The representation forms are JSON, JSON-LD,
and Concise Binary Object Representation (CBOR).

A DID subject is the primary entity that holds one unique
DID. Also, the DID subject is identified by a DID and
described by the DDO. A DID subject can be not only a per-
son but also a group, organization, or even physical object that
requires a unique identifier without depending on a central
authority. The DID subject can authorize a DID controller to
make changes on behalf of the DID subject. The DID subject
and DID controller relationship is also applicable to the data
subject and data controller in GDPR [22].
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3) VC
VC is the verifiable credentials that contain a set of claims,
credential metadata to cryptographically prove the issuer, and
proofs of the issuer’s digital signature. In VC, the credential
subject is identified by DID and likewise other entities com-
posing the claims are using their DIDs for identification.
The assertion of the claim is expressed using subject-
property-value relationships. For instance, someone (sub-
ject) is alumni of (property) XYZ university (value). The
VC should be securely stored within an identity wallet.
To abide by privacy, the credential subject can expose only
some part of the VC in verifiable presentation form. Besides,
it can combine multiple VCs to generate a single verifiable
presentation, which can be passed to verifiers to prove the
authenticity of VC’s claims. To further enhance security,
the credential subject can also add its own digital signature
to the proof of the original VC’s issuer to protect against a
replay attack.

4) DKMS

DKMS is a new cryptographic key management approach
intended to be used with blockchain and Distributed Ledger
Technologies (DLTs). Unlike the conventional CKMS,
DKMS does not rely on X.509 certificate and central author-
ity. In fact, there is no central entity that protects and dis-
tributes the keys on behalf of the identity owner. Instead, each
identity owner is responsible for the key management via an
identity wallet and delegation to each edge agent or cloud
agent authorized by the identity owner.

To present the ownership of credentials, one special key
called link secret is used in every credential of an identity
owner in a blinded form. Thereby, the link secret proves that
all those credentials were issued to one logical identity owner
even though the identity owner uses different wallet SW on
different devices. Also, DKMS handles the key revocation
along with the agent revocation as well as the key rotation
methods and recovery schemes. DKMS is currently being
developed and hosted by Hyperledger Aries project [13].

5) AGENT

An agent is the delegated entity by a DID subject, which
is responsible for agent-to-agent DID communication, oper-
ation of cryptographic functions of DID identity wallet,
and use of credentials with authorized identity sovereignty
according to each relationship. There are two types of agents:
edge agent and cloud agent. Edge agent is within the local
user’s wallet software, while cloud agent is in the cloud to
provide extended features such as key management, identity
wallet backup / recovery, data storage, and the 24/7 DID
communication even when the peer edge agent is not reach-
able or offline.

The agents can access the partial or whole credentials of the
identity owner based upon the authorization policy, which is
stored in the public ledger. When checking the authorization
of each agent, there is no indication on which identity owners
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the agent is belonged to, because the agent is using the
blinded commitment of secret value to prove the authoriza-
tion. Thereby, the ZKP is ensured without revealing the secret
value itself. However, we show that various impersonation
attacks and phishing attacks are feasible against various edge
agents in Section V-B.

6) IDENTITY WALLET

The identity wallet software (SW) stores the credentials
including VCs, DID signing and verification keys, link secret,
each edge agent’s policy keys, and secret value commitments.
The wallet provisions each edge agent to handle each dif-
ferent relationship. Besides, the wallet has an interface for
tamper-proof secure element or TPM, which each agent will
interact with, using cryptographic secret key management.

Also, it provides each edge agent with storage for each
microledger to record DID events over each agent-to-agent
communication. In the case of Hyperledger Indy [32],
the wallet data is stored with a tagging mechanism, where
a tag is defined by key-value pair. Then, the wallet data is
queried and filtered using a JSON-based query language,
i.e., Wallet Query Language (WQL) [33], similar to Mon-
goDB’s syntax. Also, WQL can be mapped to SQL, or other
types of DB languages depending on the specific pluggable
storage used by the wallet SW.

In particular, Connect.Me [34] by Evernym is the first
Sovrin-based digital wallet. Connect.Me provides afore-
mentioned features, which are also partly adopted to the
open-source wallet projects such as Hyperledger Aries [35]
(for Agent, Key Management, DID-to-DID communication
Protocol), and URSA [36] (for the shared cryptographic
library including Camenisch-Lysyanskaya signature, zero-
knowledge proofs used by Indy in exchanging credentials).

7) MICROLEDGER

A microledger is the implementation of the Relationship State
Machine (RSM), which is a very small local Merkle tree-
based ledger. As shown in Figure 2, microledger resides
in each agent secured by DID wallet, and each agent is
recommended, for privacy, to have a unique DID for every
relationship. Since a relationship requires two parties, each
relationship shall have two microledgers.

Thus, each party shall record the DID events such as
New DID Created, Agent Key Updated, Authorization Set /
Updated/ Revoked, Recovery Policy Set, and Added Recovery
Key on their microledger. Then, the DID events are organized
in a Merkle tree. Thus, each party maintains their half of
the relationship and replicates their microledger to the other
party. Therefore, if there are n relationships, it will have a
total of 2 x n microledgers.

8) UR

A UR is a universal resolver [15], which is a DID resolver that
provides the unified lookup and resolution of DIDs across dif-
ferent DID methods. The UR has a collection of DID method
drivers that interface with various identifier system providers.
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A DID or DID URL are parsed across different DID methods
and the corresponding DDO or DID resolution result are
returned as an output. The UR has been developed and hosted
by Decentralized Identity Foundation (DIF), where currently
DIF has deployed two types of URs as a community service
based on Amazon Web Services (AWS3) and IBM Cloud.*

In essence, the DID resolution mechanism is functionally
similar to DNS resolution in that the local stub resolver
invokes the remote recursive resolver. Hence, DID UR can
have a layer of caches to provide the fast resolving output for
a given DID input. Also, it contains a collection of drivers to
ensure interoperability among different DID methods such as
Sovrin [4], Uport [5], Jolocom [6], etc.

In particular, the drivers are comprised of each DID
method-specific wrapping functions. Thus, regardless of the
input DID using different DID methods, it bootstraps to
return the DID resolution output accordingly. Since UR is
analogous to the DNS resolver in resolving mechanism, UR is
vulnerable to the similar cache poisoning and pollution attack
performed on the DNS resolver.

9) VERIFIABLE DATA REGISTRIES (VDR)

A VDR [37] is the verifiable data registries, which is a
storage system facilitating the creation, update, verification,
and revocation of DIDs, DDOs, and VCs. Besides, VDR
provides the storage of the credential schema of a VC, for the
purpose of the verification of the VC. VDR can be designed
as a distributed ledger, peer-to-peer file system, decentralized
file system, or any database. The specific implementation of
VDR may vary according to each different DID method and
its mechanism. In this work, we assume blockchain or ICN
as an underlying data registry for VDR for convenience to
illustrate the VDR interactions within SSI.

IV. HOLISTIC VIEW OF THE ENTIRE DID SYSTEM

In this section, we present the holistic view of the DID system
in detail using the Data Flow Diagram (DFD) [38] in Figure 1.
We use DFD to describe the data flow and interactions among
different entities in the DID system and analyze the compre-
hensive attack surfaces on those later.

We assume the most common use case scenario, where the
local user A’s edge agent (EA) aims to communicate with
the remote party B’s EA through DID communication and
perform the wallet backup and recovery, as shown in Figure 1.
First, the A’s EA queries the DID of B’s EA to the Community
Resolver (CR) within UR. Then, the DID method returns the
DDO of B’s EA to the UR through the interaction with VDR.
Thereafter, the A’s EA retrieves the DDO from the UR and
establishes the DID communication by referencing the data
in the DDO. Besides, the A’s EA encrypts the DID wallet
for backup and stores the backup data in the cloud agent
(CA). Lastly, the A’s EA restores the DID wallet through the
interaction with the CA via a social recovery process.

3 https://dev.uniresolver.io/
4https :/[resolver.identity.foundation/
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FIGURE 1. The holistic DID system view using DFD, where the EA of user A attempts to communicate with the EA of user B through DID communication
via five operational phases (Phase I - Phase V) across Local User Zone, Remote User Zone, Universal Resolver, DID Method, and Verifiable Data Registries,
and the green boxes indicate the specific sequential parameters and interactions among different functional blocks.

In particular, we divide the entire DID system into five
blocks as follows: 1) A’s Local User Zone, 2) B’s Remote
User Zone, 3) UR, 4) DID Method Resolver, and 5) VDR,
as shown in Figure 1. In particular, the Local User Zone
comprises six components: user A, front-end DID wallet app,
A’s EA, microledger, secure element, and CA. Also, UR has
the following three main components, as shown in Figure 1:
a community resolver, a cache, and a driver for the DID
method. For the DID method, we choose Sovrin [4] as a rep-
resentative example to demonstrate the interactions of DID
resolution, where a Sovrin-like DID resolver is comprised of
the following five main components: a steward, cache, DID
syntax checker, serialization validator, and resolution result
constructor. For specific details of DID resolution, we also
utilize the reference DID resolution algorithm from the W3C
standard [39]. For VDR, we assume the network type is either
blockchain or ICN. And the Remote User Zone is comprised
of B’s EA and microledger.

To describe detailed interactions among these components,
we divide the operation phase into five phases (Phase I to V),
as shown in Figure 1. The data flow starts from the installation
of a DKMS-compatible identity wallet (Phase I), showing the
process of DID query via UR and DID method (Phase II).
Also, the retrieval of DDO (Phase IIl) and agent-to-agent
DID communication [14] are shown in the following Phase
(Phase IV). Lastly, wallet backup and recovery interactions
are presented in Phase V.

A. PHASE I. INITIALIZATION OF IDENTITY WALLET AND
AGENT

In Phase I, the user A first installs the wallet SW and ini-
tiates the process to provision the first EA, as shown in
Step 1 and 2 in Local User Zone. Then, the EA creates a
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credential for Secure Element (SE), link secret, and DID for
agent-to-agent communication in Step 3, where the link secret
is used to establish each DID relationship through a blinded
commitment, which can be used across different identity
wallets that belong to the same identity user. Thus, the link
secret can prove that the claimed credentials, or each identity
wallet, are all belonged to the same logical identity.

In Step 4, the EA requests the SE to create a secret value
(SV) and a SV commitment (SVC) for Agent Policy (AP).
In addition, the EA requests for creating different types of
keys such as wallet encryption and decryption keys, AP keys,
and DID keys for signing and verification. In Step 5, the SE
stores 1) the SV and 2) private (signing) keys of DIDs,
a wallet decryption key, and agent policy keys. Then, the SE
returns the wallet encryption key for wallet backup, SVC for
AP, and DID verification keys in Step 6.

In Step 7, the EA requests the front-end DID wallet app to
store agent IDs, a link secret, and an AP registry address P,
where the address P is pointing to the stored AP location in
the public ledger. Then, the AP determines the authorization
level permitted to each agent per each different credential.
Each time when a new agent is added, the new agent stores
its SVC in the PROVE section of the AP at the address P.

As a result, the DID system achieves SSI, preserving the
privacy of the identity system via Confidentiality and Con-
trol [40]. The confidentiality is satisfied such that the user’s
credential is secured within the DKMS-compatible identity
wallet. Also, the control is achieved via minimum control-
lable disclosure of the proof.

Also, using the SVC in Step 6, the EA can prove
the authorization from the user, without disclosing the
real secret value. For herd privacy, the SVC with the AP
address is also converted into another commitment, called AP
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FIGURE 2. The entire DID system’s overview with each possible attack surface of vulnerabilities, where those attack vectors are divided into the
seven areas in the proposed DID system: 1. Wallet System Attack, 2. Phishing / Impersonation Attack, 3. Cache Poisoning / Pollution Attack, 4.
Microservice Attack, 5. DDO Forgery Attack, 6. VDR Partitioning Attack / ICN Attack, and 7. Social Recovery Attack.

Address Commitment (APAC). Then, the APAC is stored in
the global prover registry of the public ledger shared by all
identity owners.

In particular, the DID keys, in Steps 4 and 6, are com-
posed of a verification key and a signing key, based on
ED25519 [41], where ED25519 is the signature scheme of
Edwards-curve Digital Signature Algorithm (EdDSA) using
SHA-512 (SHA-2) and Curve25519. Next, the DID and ver-
ification key are passed to the other party each time when a
new relationship is established. Lastly, the EA creates a CA to
pair with, where CA stores the encrypted backup of the DID
wallet as shown in Step 35 in Phase V. From this, the CA
creates the recovery endpoint only known to the CA itself.
Also, the CA forwards messages between the EA of the local
user and the remote party’s CA or EA.

As shown in Figure 1, the DID wallet encompasses essen-
tial components such as agents, secure element interactions,
and microledgers. Therefore, the wallet can be possibly
exploited by various attacks. We describe the details of the
DID wallet attack surface in Figure 2 and possible attacks in
Section V-A.

B. PHASE II. DID QUERY TO UR AND DID METHOD
INTERACTION

In Phase II, the EA of the local user A receives a DID
connection invitation from a remote party B. Then, A’s EA
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sends the DID query to the CR of UR, as shown in Step 8.
Upon receiving the DID query, in Step 9, the CR first checks
the cache. In Step 10, if the cache hits the DID query, then
CR immediately returns the stored DDO, as shown in Step
24, where the DDO can be returned with other metadata
(e.g., DDO metadata and DID resolution metadata based on
the input metadata of resolution) in Step 11 in Figure 1.
Otherwise, on the cache miss in Step 10, the CR invokes the
resolution process by first choosing the driver that matches
the DID method given in the input DID. In the proposed DID
system, Sovrin is selected for the DID method.

In Step 11 at the DID Method block shown in the top
right corner in Figure 1, the driver requests the resolution
of the DID to the DID method, passing the DID and DID
Resolution Input Metadata (DRIM). Upon successful recep-
tion of those, the accept [42] property of the DRIM can
be passed to determine the representation form [10] of the
returned DDO in Step 22. In Step 12, the steward in Sovrin
checks the cache if the DDO for the input DID is present.
Upon cache hits in Step 13, the steward immediately returns
DDO. Otherwise, the steward prepares to resolve the DID
query. In Step 14, the steward checks if the input DID is con-
formed to the standard DID format. If the syntax error occurs,
then the steward returns the corresponding error in Step 22.
Otherwise, in Step 16, the steward invokes a read operation
to VDR with the input DID. If the input DID was a public
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FIGURE 3. Phishing and impersonation attacks (.Ag) being executed,
while exploiting the DID signing key via Ul-redressing and data
exfiltration.

DID URL [43], then the DID URL needs to be dereferenced
[44] by the DID method, where DID URL includes more
information on specific resources to be referenced in DDO.
The URI components of the DID URL such as path, query,
and fragment are used to identify the resources in DDO.

For practical implementation, the UR and the drivers
are containerized applications orchestrated by microservice-
deploying platforms such as Kubernetes or Docker-Compose,
where the microservices are easy and flexible to be deployed
across different systems. However, the microservices are vul-
nerable to system attacks, exploiting homogeneous deploy-
ment from the base image, misconfiguration, failed audit, etc.
Besides, using a cache layer in UR and DID method can also
introduce the exploitability of cache poisoning or cache pol-
lution attacks. We discuss the detailed attacks on the caches in
UR and microservices in Section V-C and V-D, respectively.
And the corresponding attack surfaces are also illustrated
in Figures 4 and 5.

C. PHASE Ill. DDO RETRIEVAL INTERACTION
As discussed, VDR can be any kind of database, peer-to-
peer networks, or other forms of trusted data storage. In this
work, we assume that the VDR uses the blockchain or ICN for
analysis. The first VDR operation is shown in Step 17, where
the VDR processes the read operation and return the DDO
to the steward. Then, in Step 18, the serialization validator in
the DID method validates that the DDO is conformed to the
serialization formats, where the formats can be JSON, JSON-
LD, and CBOR, as specified in the DID core data model
standard [10].

If the serialization validator in Step 21 returns an error,
the steward will forward the error to the driver in UR in
Step 22. Otherwise, in Step 19, the DDO is passed directly to
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the steward. However, if the DRIM in Step 11 has an accept
[42] property and the value is application/ld+json;profile
=“https://w3id.org/did-resolution”, then the DDO returns the
DID resolution result in Step 22. The returned DID resolution
result contains DID resolution metadata, DDO metadata in
addition to the DDO. If the accept property has the value,
then the DDO is passed, as shown in Step 19, to the resolution
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result constructor to further make the representation form of
DID resolution result.

Next, the resolution result constructor returns the DDO
to the serialization validator and updates caches with the
DDO in Step 20. Then, the serialization validator returns the
DDO to the steward in Steps 21, and the steward returns
the DDO to the driver of UR in Step 22. In Step 23, the driver
passes the DDO to CR and also updates the cache with the
DDO. Eventually, in Step 24, the CR returns the DDO to the
EA of the user.

However, during the DDO retrieval process in VDR,
the partitioning attack and cache pollution attack can occur in
blockchain and ICN network, respectively. The partitioning
attack in blockchain results from the skewed distribution
of the full nodes participating in the network maintenance.
Also, the cache pollution attack in ICN can occur due to the
frequent random DID queries or repeated queries of unpop-
ular DID set to disrupt the cache operation for DID service.
We investigate more in-depth attacks in Section V-F.

D. PHASE IV. AGENT-TO-AGENT COMMUNICATION
INTERACTION

In Step 25 in Remote User Zone, A’s EA of Local User
Zone communicates with B’s EA by sending a DIDComm
[14] messages and the delta of microledger. The DID com-
munication uses a message-based protocol between EAs.
In other words, each agent exchanges a series of messages.
Consequently, such an agent-to-agent communication way
can lead to the replication delay when exchanging the delta
of microledger to share each EA’s DID events over the asyn-
chronous communication where the delta of microledger con-
tains the DID events recorded from each EA. Here, the delta
can be represented as the updates of microledger organized
in a Merkle tree and exchanged via authenticated encryption
[13] using the verification key of each EA. In Step 26, B’s
EA stores the DID events in the relationship between A and
B. The microledger delta of DID events received from A is
also stored in B’s microledger to make sure each party of A
and B shares the same copy of DID events of the other.

In Step 27, B’s microledger sends a change of state as a
response to the recording operations in Step 26. In Step 28,
B’s EA sends areply to the DIDComm message and replicates
B’s microledger delta to A’s EA. Likewise, in Step 29, A’s
EA will store the DID events in A’s microledger, and the
microledger delta received from B. As shown in Step 30, A’s
microledger sends a state change as a response to A’s EA.
Then, A’s EA checks that the DID events are in sync with B’s
EA in Step 31.

In this phase, we assume that the DIDComm is transport-
agnostic, and the protocol can operate on top of various trans-
port layers such as HTTP(s) 1.x and 2.0, Bluetooth, NFC,
Advanced Message Queuing Protocol (AMQP), WebSockets,
and more. Also, as the EA is directly involved into the agent-
to-agent communication, the region around EA becomes
the target of the attacks such as impersonation or phishing
attacks. In particular, we examine the attacks that exploit the
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vulnerabilities of the latency inherent to the DID communi-
cation protocol and the attack surface for the agent-to-agent
communication in Figure 3.

E. PHASE V. WALLET BACKUP AND RECOVERY
INTERACTION

At Local User Zone, we assume the user initiates the backup
process for the identity wallet via the front-end DID wallet
app (Step 32). Then, the backup request is forwarded to the
EA in Step 33. The EA encrypts the wallet using the wallet
encryption key in Step 34, where the key was already received
from the secure element in Step 6 in Phase I. Then, the EA
stores the encrypted backup of the wallet in the cloud via the
CA in Step 35. Thereafter, in Step 36, we assume that the user
initiates the recovery for the encrypted wallet backup due to
unexpected compromise of device or theft and the user selects
the social recovery when asked by the front-end DID wallet
app in Step 37.

We assume that the A’s EA has already set up the social
recovery before Step 36. For the recovery setup, the decryp-
tion key for the encrypted wallet backup along with the link
secret of the user and special recovery endpoint are packed
into a recovery data file. The recovery endpoint is set up by
the CA when the EA requests CA to create the recovery buddy
invitation, where the buddy means a social trustee of the user.

In the social recovery setup, the recovery endpoint is used
to communicate with the recovery buddies. The recovery
endpoint is only known to the CA itself. Then, the recovery
data file is sharded into recovery data shares based on Shamir
Secret Sharing Scheme (SSSS) [45] using Eq.-(1). Thereafter,
the EA requests the CA to forward the recovery invitation
to the recovery trustees. The recovery invitation contains
the recovery data share to be distributed to the recovery
trustees.

In Step 38, the EA receives the recovery request. The
EA will request CA to start the social recovery process and
collect the recovery data shares from the trustees. In Step 39,
the CA forwards the collected recovery data shares to the EA.
Then, the EA assembles the recovery shares in Step 40. Using
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the reconstructed decryption key, the EA can finally restore
the wallet in Step 41. Consequently, the recovery result is
forwarded to the user in Step 42. In this social recovery step,
however, several attacks are feasible and we describe the
details of the social recovery attack in Figure 7.

V. SECURITY THREATS AND ATTACK SURFACES
In this section, we investigate the security threats compris-
ing the attack surfaces of the DID system, where Figure 2
illustrates the components of the entire DID system and the
attacks that can be mounted on each component. As shown
in Table 1, we identify eighteen different attack vectors
(A;~A1g) and categorize them into the following seven cat-
egories based on the functional blocks attacks are performed
on:

1) Wallet System Attack

2) Phishing / Impersonation Attack

3) Cache Poisoning / Pollution Attack

4) Microservice Attack

5) DDO Forgery Attack

6) VDR Partitioning Attack / ICN Attack

7) Social Recovery Attack

A. WALLET SYSTEM ATTACK (A; ~ A7)

First, as discussed, the DID identity wallet plays a pivotal role
in the SSI system to provide security and privacy in the local
user zone. The wallet system comprises EA(s), SE interface,
microledgers, and also built-in user-interactive applications,
as shown in Figure 2. Therefore, attackers can precisely
target the wallet system and it can become a honeypot for
many potential attacks via various types of spoofing, data
tampering, repudiation, malware intrusion, information dis-
closure, and data exfiltration measures, etc. Hence, we start
the analysis of the wallet system attack by examining a key
exposure attack.
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1) KEY EXPOSURE ATTACK (A;)
An attacker can trigger a key exposure attack via various data
exfiltration measures to target the sensitive data such as DID
keys (e.g., agent-to-agent keys of signing key, verification
key, etc.), DID wallet keys, DID agent keys, a link secret, pri-
vate keys, etc. In particular, Davenport and Shetty [46] used
a Markov chain model to show how an external attacker can
infiltrate into an air-gapped target device, to establish a covert
channel and exfiltrate data, when a blockchain-based wallet
is running. Hence, they show that it is feasible for attackers
to leverage the lack of perimeter security of the wallet system
in the device. For the DID wallet system, similar attacks by
Davenport and Shetty [46] can be performed to exfiltrate
private keys through an established communication channel.
Also, depending on data transfer bandwidth in the wal-
let system, the attacker can secretly infect the wallet sys-
tem with the exfiltration malware, which can make them-
selves covert via code obfuscation, debugger detection, exe-
cution environment-aware binary packing, virtual machine
detection, etc.

2) MAN-IN-THE-MIDDLE (MITM) ATTACK OVER DID
COMMUNICATION (.A,)
The wallet system is also vulnerable to MITM, where the
typical MITM attack involves two endpoints and the third-
party attacker during DID communications. In DID agent-to-
agent communication, the initial setup messages for invitation
between the two endpoints are in plain texts as described in
Step 25 in Figure 1. This is because both entities have no
trusted communication channel yet. Only when a connection
request based on the invitation is completed and each DID is
exchanged [47], the public key-based encryption can be used.
Hence, problems can occur for trust on first use
[48] or blind trust before verification [49] cases, which
implicate that the user has to blindly trust the other party
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TABLE 1. The categorization of DID system components and their potential security threats. We specifically identified eighteen attack vectors across the

seven attack domains.

Wallet f) lﬁrslk;)‘;g Po(fggr}l‘ieng Micro DDO Yi?ignliflrg_ Social
Main Category DID System Components System . . service Forgery Recovery
Attack sonation /Pollution Attack Attack / ICN Attack
Attack Attack Attack
User DID Subject A1~A7 Ag Ag A10~Ars Ale A7 A1g
DID Decentralized Identifiers Ag Ag Als
DDO DID Document Ag Als A7
Front-end Wallet App A~A7 Ag Aig
Identity Wallet Microledger Ay~A7 Ag Als A1g
Software Edge Agent A~A7 Ag Ale Aig
Secure Element Interface
Universal gzzrlllr;lunity Resolver 7 Aro~Ars
Resolver . 9
Drivers for DID Methods Ar0~Ass
Syntax Checker
DID Method Cache Ag
Resolver Steward Az
(Sovrin-like)  Serijalization Validator
Resolution Result Constructor
VDR Blockchain / ICN Ag Ale A7

before DID connection [47] is made. In such an environment,
the attacker can insert himself in the middle and trigger the
MITM attack at the initial connection phase in Step 25 in
Figure 1 during Phase IV. In addition, the mediator and
relay [50], supporting routes of multiple transports for cross
domain inter-operability [51] in agent-to-agent communi-
cation, also open another security loophole for the MITM
attacker to exploit.

Besides, if the key exfiltration attack in .A; is successfully
carried out, then the attacker can further establish a backdoor
channel to monitor the agent-to-agent message traffic. Thus,
the miscreant can trigger MITM attacks by eavesdropping
and manipulating the data in the agent-to-agent communica-
tion. Moreover, since the DID agent-to-agent communication
is transport-agnostic [14], the MITM attack can be executed
in various network types. Conti et al. [52] show the wide
range of MITM over underlying network communication
protocols.

Thus, based on these MITM tactics on the various com-
munication channels, the attacker can intercept the message-
based DID communication and manipulate the messages at
their disposal in the DID system. Furthermore, it is possible
to carry out the MITM attack in other types of DID communi-
cation systems involving UR, SSL/TLS, and Board Gateway
Protocol (BGP), as follows:

« DID Spoofing-based MITM attack via UR.

o DID SSL/TLS MITM attack via two separate SSL con-
nections maintained by the attacker.

o DID BGP MITM attack via traffic tunneling through
attacker’s Autonomous Station (AS).

3) DID WALLET REVERSE ENGINEERING ATTACK (.A43)
Also, it is possible for an attacker to use various tools to
reverse engineer SW binaries of the DID wallet. For instance,
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in android-based DID wallet applications, the attacker can
use a bakSMALI [53] to disassemble the class.dex file of
a target DID application into SMALI code [53], where the
attacker can examine and modify the code and reassemble the
code into class.dex in SMALI assembly code. Hence, reverse
engineering the DID wallet application can be clearly feasible
using the existing reverse engineering methods [54]. Lastly,
the attacker can use Keytool and Jarsigner tools in JDK to go
through the signing process of the DID wallet applications for
further compromise.

In particular, reverse engineering becomes easier when
there are no preventive measures such as obfuscation on
the generated binaries of the DID wallet applications. Thus,
the attacker can perform reverse engineering and tamper the
DID wallet application binary on the wallet to achieve their

purpose.

4) WQL INJECTION ATTACK (A4)

WQL [33] injection attack can occur, which is leveraging
code injection techniques, similar to SQL injection. In partic-
ular, an attacker can inject malicious codes into WQL strings
for key exposure attack in .4; and other malware to ease data
exfiltration out of DID wallet. Then, those injected codes are
later passed to the DID wallet’s SQL Server for parsing and
execution.

The typical form of WQL injection is the direct insertion of
the malicious codes into user-input variables that are concate-
nated with WQL commands, which can be executed when the
WQL commands are parsed and executed later. A less direct
attack injects the malicious code into strings that are stored in
the table or metadata of DID wallet database. Therefore, when
the stored strings in the DID wallet are subsequently concate-
nated into a dynamic WQL command, the malicious code can
be executed. A loose login auditing, privilege account abuse,
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or insecure input validation in the wallet database can be the
typical entry points for WQL injection attack. Using the WQL
injection attack, the attacker can execute arbitrary commands
in the DID wallet database.

5) DID WALLET DB INFORMATION DISCLOSURE ATTACK
(As)

In addition, an attacker can exploit the lack of encryption on
either data at rest or data in use of DID wallet database and
gain access to sensitive data such as personally identifiable
information (PII) or high business impact (HBI) data. For
example, in Hyperledger Indy wallet, some information is
stored in the plain text, usually for richer and faster searcha-
bility in the DID wallet database via WQL. A tagging mecha-
nism is used for searchability, where a tag is a key-value pair.
In general, the tag names, record ids, and record values are
always encrypted.

However, tag values are not encrypted when a special
prefix ~(tilde) is attached to the name of a tag value. This is
usually the case when a user wants to perform some complex
searches. In particular, the un-encrypted tag value enables the
use of extended query operators for comparison or predicates
such as $gr (greater than), 3t (less than), $like. In addition,
if the malware attack in A; is successfully carried out and
DID wallet stores the sensitive PII or HBI data on untrusted
SD card or local storage, then the data may get covertly
extracted and exfiltrated out of DID wallet.

6) ELEVATION OF PRIVILEGES ATTACK (.Ag)

If the DID wallet reverse engineering attack in 43 is suc-
cessful, then an attacker can gain the knowledge of target
DID identity wallet applications. For instance, in the Indy
wallet case, the knowledge on the following important system
parameters® can be obtained: wallet id, storage type, and
storage configuration including the path of wallet files, key
derivation method, etc. Based on the combined knowledge
and information, the attacker can further infiltrate into a target
device via the data exfiltration techniques in .A; to escalate
the privileges.

When the attacks in A and Aj3 are successful, the attacker
can easily exploit unauthorized access to the database
within the identity wallet. The attacker can also exploit the
loose authorization rules such as user access permission to
data or type of allowed actions to the data per user. Moreover,
the attacker can exploit the privileged account abuse such
as root account, domain admin account, and other accounts
that can access security elements and more in the DID wallet
system.

7) JAILBREAK/ROOTING ATTACK AGAINST DID IDENTITY
WALLET (A7)

The techniques in reverse engineering (A3) and the elevation
of privilege (Ag) can be combined together to carry out a

5 https://github.com/hyperledger/indy-sdk/blob/master/wrappers
/python/indy/wallet.py
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rooting attack against the DID identity wallet. The attacker
can exploit unauthorized access to the secret area of the
wallet application through elevated privileges. Consequently,
the attacker can run the data exfiltration process, as shown in
A1, to obtain wallet keys and user credentials.

B. PHISHING / IMPERSONATION ATTACK (Ag)

When DID EAs communicate with each other on an already
established relationship, as shown in Step 28 in Figure 1,
an attacker can trigger a phishing attack on a target user to
gain access to the user agent’s keys or credentials. In gen-
eral, the phishing attack is a type of social engineering
attack, tricking victims into disclosing their secret informa-
tion. Thus, the attack can be launched through various imper-
sonation forms such as legitimately-looking websites, emails,
a third-party app UI, and more. Moreover, the attacker can
spoof the victim user using advanced tools such as a Phishing
kit [55] or Click-jacking [56]. For example, the attacker can
use fake website templates and execute a server-side data
collection using the Phishing Kit. Also, the Click-jacking
enables the Ul-redressing of a victim app through a fake
overlay on top of the screen.

Specifically, the attacker can impersonate the EA of the
user by masquerading the UI of DID wallet using the tools
above. Then, the attacker shows a fake pop-up message,
asking if the user wants to rotate the DID keys for security.
If the user accepts and inputs the DID keys in the fake UI, then
the DID keys are transferred to the attacker’s remote server.

Figure 3 illustrates this specific scenario, where phishing
and impersonation (Ag) attacks are executed taking advan-
tage of the phishing kit and UI redressing of DID wallet
mentioned above.

Detailed Phishing / Impersonation Attack Scenario: In
Step 1, the user A establishes DID connection with the user
B. And, in Step 2 in Figure 3, a legitimate-looking pop-up
message Ul is rendered to the user A to impersonate the EA
of the user A. The pop-up message asks the user A to rotate
the DID signing key, saying the rotation should be performed
periodically to maintain high security.

If the user selects the message in Step 3, then the phishing
pop-up message redirects to the fake key rotation pop-up
message. In Step 4, the user A provides the old DID signing
key and a new DID signing key for rotation. In Step 5, the new
DID signing key plus the old DID signing key are transferred
to the remote side attacker. Using the old DID signing key
in Step 5, the attacker replaces the key with a new key and
propagates the DID event of Key replaced for an agent to the
other party’s microledger

However, the DID event is not immediately transferred to
the user A due to the microledger replication delay. Taking
advantage of the latency, in Step 6, the attacker impersonates
the user A and communicates with the user B via the new
DID signing key. Consequently, in Step 7, since the old key is
changed, the message from user A becomes invalid to the user
B and the attacker can successfully hijack the relationship.
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C. CACHE POISONING / POLLUTION ATTACK (Ag)

In the DID system, as shown in Figure 4, a DID agent sends
a DID query to the UR and the query is checked if the local
cache of UR has a matching DDO. If the cache misses the
DDO, the query is forwarded to the DID method via driver
layer in UR, as shown in Step 11 during Phase II in Figure 1.
Then, each DID method runs its own process to retrieve
the DDO. To improve the performance, most DID methods
may use a cache of DDOs. In addition, each local DID
resolver in the DID method can use a proxied resolution [57],
called a remote binding mechanism, by which a resolver can
invoke another DID resolver that runs on a different network
host.

Because of the strong similarity between DID resolver and
DNS resolver, these DID resolver processes operationally
inherit similar vulnerabilities from DNS spoofing or cache
poisoning. In DNS cache poisoning [58], the response ver-
ification is relatively simple based on those three met-
rics: IP destination/source addresses, UDP destination/source
ports, and the original transaction ID. In the DID system,
the attacker can exploit the analogous security loopholes in
the verification process of the response from the DID remote
resolver.

In Figure 4, we illustrate how such cache poisoning attacks
against DID resolver can be executed in two different ways,’
showing each sequential step in red circles for Scenario 1)
and black circles for Scenario 2) below:

1) Detailed DID Resolver Cache Poisoning Attack
Scenario.  First, an attacker sends a DID query to
a target DID method server, as shown in red cir-
cle. Next, the DID method server forwards the DID
query to the remote DID resolver via the URL of
“https://example.com/resolver/identifiers/did:sov:ABC” in
Step 2. In Step 3, the attacker, masquerading the remote DID
resolver, sends a response with the falsified DDO before the
response from the legitimate remote DID resolver arrives.
Then, the DID method updates the cache with the falsi-
fied DDO and the attacker succeeds in the cache poisoning
attack (Ag).

Since the query transaction via remote binding is
completed in Step 3, the response from the legitimate
remote DID resolver is discarded in Step 4. Then,
the EA sends a DID query to UR via the URL of
“https://uniresolver.io/1.0/identifiers/did:sov:ABC” in Step
5. Then, the cache in the DID method server returns
the falsified DDO to the UR as a response. Thereafter,
the UR forwards the falsified DDO as shown in Step
6. Finally, the EA connects to the fake service end-
point to the attacker’s malicious server via the URL of
“https://fake.com/myagent/profile?query#fragment” in Step
7, and the attack is successful at last.

The main difference between Scenario 1) and 2) is the legitimacy of the
response. Scenarios 1) assumes the valid response from the legitimate remote
DID resolver.

22906

2) Detailed DID Resolver Cache Poisoning Attack
Scenario.

In addition, another cache poisoning attack (show in
black circles) can be executed if the remote DID resolver
gets compromised by the attacker. First, an attacker
compromises a target remote DID resolver via the
cache poisoning attack in the above Scenario 1). Next,
the EA sends a DID query to UR via the URL
of “https://uniresolver.io/1.0/identifiers/did:sov:ABC” in
Step 2.

Then, the UR forwards the query to the DID method
server. Thereafter, the DID method server invokes the com-
promised remote DID resolver for the query, as shown in
Step 3 via the remote binding URL of “https://example.com/
resolver/identifiers/did:sov:ABC”. In Step 4, the compro-
mised remote DID resolver returns the falsified DDO.
In Step 5, the UR forwards the falsified DDO. Finally, the EA
receives the falsified DDO and makes a connection to the fake
service endpoint via the URL of “‘https://fake.com/myagent/
profile?query#fragment” in Step 6.

Cache Pollution Attack. Lastly, the cache pollution attack
can be performed, where the attacker can skew the con-
tent popularity of DID query by issuing multiple valid DID
queries frequently that are less popular. The cache pollution
attack could be in two forms depending on the intent of
the attack, which are locality disruption and false locality
[59]. The locality disruption is the case when the attacker
repeatedly issues new DID queries to disrupt the locality of
the cache in the DID method server. The false locality occurs
when the attacker repeatedly requests those DID queries
which are in a set of unpopular DIDs.

D. MICROSERVICE ATTACK (Ao~ A;s)

As briefly mentioned in Section IV, the UR and DID
method drivers are implemented in containerized applica-
tions and hence managed by the microservice orchestration
platforms such as Kubernetes or Docker-Compose. Microser-
vice is an independently deployable and autonomous com-
ponent for a bounded scope that can support interoperability
through message-based communication [60]. Thus, microser-
vice architecture (MSA) can be highly automated, flexible,
and scalable, comprised of microservice instances. And MSA
is built from the identical base image, which is popularly used
in the UR by DIF.

However, there are several known vulnerabilities with
MSA. Especially, in Figure 5, we present the attack surface of
microservices in the UR and DID method drivers, considering
existing well known Kubernetes vulnerabilities in National
Vulnerability Database (NVD)” of National Institute of Stan-
dards and Technology (NIST).

Detailed DID Microservice Attack Scenario: Each vulner-
ability in NVD is cited with Common Vulnerabilities and
Exposures (CVE) ID, where Common Vulnerability Scor-
ing System (CVSS) score is above 9.0 of critical severity.

7https://nvd.nist. gov/vuln/search
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We identified the following six attack vectors with five spe-
cific CVEs that are directly applicable to existing UR and
DID method drivers:

1) MULTI-STEP ATTACK (A;0)

The derivation from base images introduces a homogeneity
[61] in MSA, providing simplicity in managing multiple
technologies. However, the simplicity also becomes another
security loophole. For instance, the base image’s vulner-
abilities can be directly propagated, as shown in Step 8§,
to all the derivative microservice instances of the UR and
DID method drivers. The multi-step attack exploits the re-
occurrence of such base image’s vulnerabilities in multiple
microservices.

2) BYPASSING AUTHENTICATION ATTACK (A;7)

Using the vulnerability of CVE-2018-0268 (CVSS:10),
the attacker, who can access the service port of Kubernetes,
can bypass authentication and obtain the elevated privileges
due to the misconfiguration of Kubernetes container manage-
ment subsystem for UR and DID method drivers, as shown in
Step 1 in Figure 5.

3) LATERAL MOVEMENT ATTACK (A;5)

In Step 2, the attacker can exploit lateral movements via
containers of UR and DID method drivers using a subpath®
volume mount. The attacker can perform the attack outside of

the container’s volume and the host’s file system, specifically
using the vulnerability of CVE-2017-1002101 (CVSS:9.6).

4) COMMAND LINE INJECTION ATTACK (Aq3)

In Step 3, the attacker can exploit a command-line argument
injection, leveraging the vulnerability of CVE-2018-1002101
(CVSS:9.8) insecure command line input validation when
mounting a volume” in UR and DID method driver microser-
vices via command-line interfaces. The attacker can execute
malicious commands which can be used for other attacks such

as A4 and A;s.

5) BACK-END CONNECTION ATTACK (\A;4)

In Step 4, the attacker can establish a back-end connection
that can be used as an egress point of data exfiltration (CVE-
2018-1002105, CVSS:9.8) in the UR and DID method driver
microservices. The target data for the exfiltration can be
system information of the UR and DID method microservices
such as port numbers, details of currently running workloads,
and privileged account information (e.g., /etc/sudoers). Then,
the system information is forwarded to the attacker in Step 5.

6) SERVER SIDE REQUEST FORGERY (SSRF) ATTACK (A;5)

In principle, a Server Side Request Forgery (SSRF) attack
[62] allows an attacker to induce a server-side web application
in vulnerable servers, such as SSRF entry point as shown in

8https://kubernetes.io/clocs/concepts/storage/volumes/#using—subpath
9https://kubernetes.io/docs/ concepts/storage/volumes/
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Step 6 to make HTTP requests. Next, the HTTP requests can
be executed in the attacker’s target domain. In Step 7, with the
vulnerability of CVE-2018-18843 (CVSS:10), the attacker
can successfully trigger the SSRF attack in the UR and DID
method driver microservices.

E. DDO FORGERY ATTACK (A;6) ON REDACTABLE
BLOCKCHAIN

In general, a DDO is stored at public ledgers of VDR [37].
Each EA’s authorization policy or secret value commitment
is also recorded at the public ledgers, where the root of
trust in the public ledgers is built on top of the blockchain’s
immutability.

In recent years, however, there has been paramount interest
in making blockchain redactable, allowing deleting and mod-
ifying a transaction in the middle of the chain. For example,
Chameleon Hash (CH) enables a redactable blockchain with a
key exposure-free CH function when a trap door key is given
[63]. The CH, based on the minimum disclosure proofs of
knowledge [64] and Chameleon Signature (CS) [65], effi-
ciently finds the collision of a hash when the trap door key
is known.

Derler et al. [66] extended a CH-based blockchain redac-
tion via a policy-based access control mechanism using
Attribute-Based Encryption (ABE). However, when the
VDR of DID method is implemented using the redactable
blockchain schemes, the immutable blockchain transaction
data is severely jeopardized by tampering attacks. For exam-
ple, if the attacker can acquire the trapdoor key of the CH
function, then the attacker can exploit the CH-based block
redaction. Hence, the attacker can trigger the DDO forgery
attack. Also, in DDO, the attacker may tamper the data such
as service endpoint URL, properties of verification relation-
ships, public key information, etc.

In Figure 6, we introduce how the DDO forgery attack
can be invoked in the redactable blockchain scheme [63] by
Ateniese et al., which is already available for commercial
solution.'” Each sequential step is marked with the cor-
responding number in Figure 6. In particular, we assume
the blockchain scheme has the CH along with the legacy
SHA-256 hash.

Detailed DDO Forgery Attack Scenario: When the blocks
are altered, their SHA-256 hash values are also changed, and
the CH is connected instead. In Step 1, the attacker acquires
the trapdoor key via the key exposure techniques, introduced
in Aj. Then, the attacker accesses the transaction Tx in Block;
that stores the target DDO and forges the DDO, as shown in
Step 2 in Figure 6.

Since the change of Tx data on Block; affects the Merkle-
tree root, Nonce, and the hash of the Block;, the legacy
SHA-256 hash of the Previous Block Hash in Blockiy is
not consistent as shown in Step 3. In Step 4, the attacker

1Ohttps://www.accenture.com/us—en/insight—editing—uneditable—
blockchain
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uses the trap door key to unlock the CH and find the hash
collision. Therefore, the next Block;+1 is not affected by
the inconsistent SHA-256 hash, and the blockchain becomes
persistent due to the CH. Consequently, the execution of the
DDO forgery attack becomes successful.

F. VDR PARTITIONING / ICN ATTACK (A7)

The VDR partitioning attack can occur when the hashing
power on blockchain is unequally distributed. In particular,
this attack can be caused by the excessive aggregation of
maintenance nodes such as full nodes participating in the
mining process of Bitcoin network.

According to Saad et al. [67], the distribution of the full
node is usually concentrated around a few major mining
pools that have a high hashing rate. The geospatially central-
ized distribution makes the local autonomous systems (ASes)
of the internet service provider, responsible for hosting the
mining pools, to be the main target of attack such as BGP
hijacking [68].

Detailed Partitioning / ICN Attack Scenario: Typically,
the mining pool uses the stratum overlay protocol server
that has a public IP address, which is vulnerable to routing
attack and flood attacks due to the open public IP address.
According to research by Apostolaki et al. [69] and Saad et al.
[70], the impact of these BGP hijacking and routing attacks
is severe such that the network hash rate can be reduced up
to 50% due to the hijacking. Besides, the block propagation
time of Bitcoin network can increase up to 20 mins by routing
attacks.

Therefore, such network partition increases the likelihood
of the stale blocks or orphan blocks being created and incurs
significant damages such as blockchain fork, network con-
gestion causing consensus latency, and more. As a result,
all these network partitioning attacks jeopardize the DID
services provided from the blockchain-based VDR. The oper-
ations of VDR, such as Create, Read, Update, Deactivate
(CRUD) methods on DDO and DID, can be severely dis-
turbed. Consequently, the partitioning attack makes VDR
exposed to Denial of Service or system resource hijacking.

Moreover, the in-network caching system in ICN can be
further exploited by the attacker through the cache pollution
attack. The cache pollution attack targets the cache perfor-
mance degradation in ICN-based VDR, whereas the partition-
ing attack targets the significant damage of hashing power in
the blockchain-based VDR network.

The in-network caching is used to ensure low-latency con-
tent delivery in ICN. Each router node in ICN maintains a
cache along with content storage. If the attacker repeatedly
invokes random DID queries through UR or DID method,
then the node in ICN suffers the churning of locality in the
cache [59]. Besides, the attacker can invoke a massive number
of unpopular DID queries to spoil the caching system in VDR.

G. SOCIAL RECOVERY ATTACK (A;g)
For an encrypted DID wallet backup recovery, we observe
the reconstruction of the decryption key can be threatened
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through a social recovery process. Specifically, we identify
the vulnerabilities of the secret sharing scheme and corre-
sponding attack scenario in this section.

1) SECRET SHARING AND TOMPA-WOLL ATTACK

For example, when a user invokes the DID wallet backup
process, the EA generates an encrypted backup of the DID
wallet. And the backup file is passed to the CA of the user
to be restored later and the decryption key is then sharded
using Eq.-(1) of threshold-based secret sharing scheme and
distributed to the trustees of the user, as described in Step 4 in
Figure 7.

In particular, we consider the Shamir Secret Sharing
Scheme (SSSS) [45], where the threshold is the number of
secret shares necessary to recover the original secret. The
collection of the shares for the recovery is called the access
structure for the secret sharing scheme. If the number of
shares is less than the threshold k out of a total number
of shares n, the secret cannot be determined. Thus, with
knowledge of k — 1 or fewer pieces, no information about the
secret can be obtained, which is equivalent to the case that no
share was given. Given the k shares, the original secret D can
be uniquely determined through Lagrangian interpolation as
below, where the k shares become the k pairs of (x;, g(x;)).
The g(x;) is a random k — 1 degree of a polynomial with
q(0) = D:

k—1 k—1
qx)=ap+ Y ax' =D+ ax’, (1)

i=1 i=1

However, another secret D outofk — 1 pairs of (xlf, q(x;))
plus (xx, g(xx)) can also determine a legal secret, where
D # D'. For a thorough meaning of the legality, we refer to
Tompa and Woll [71]. Therefore, an attacker can collude with
the shareholders of k — 1 pairs and deceive the shareholder
of (xk, g(xx)), claiming the D' to be the legal secret D. This
is the core mechanism of Tompa-Woll attack [71], which is
used by the social recovery attack. In Figure 7, we describe
the attack scenario of social recovery for DID wallet via the
DKMS method of Hyperledger Aries [13].

2) DETAILED SOCIAL RECOVERY ATTACK SCENARIO
First, the user A initiates a recovery setup in Step 1
in Figure 7. Next, the EA creates a recovery file containing the
link secret of the user, DID wallet backup decryption key, and
recovery endpoint of the CA. Then, the file D is divided into
shares via Eq.-(1). We assume that the shares are distributed
to four trustees using (3,4) access structure of SSSS, where
3 is the threshold and 4 is the total number of shares in Step 4.
In Step 5, the attacker colludes with the three of trustees
to trigger Tompa-Woll attack. Thereafter, when the DID
wallet is compromised, the user A invokes the social recovery
request in Step 6. In Step 7, the EA forwards the request
and the CA collects the shares from the trustees. Then, the
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collected shares from the group in collusion by the attacker
are forwarded to the EA in Step 8.

In Step 9, the EA assembles the shares and generates the
legal secret D'. Since the D' is legal but not D, the recov-
ery of the DID wallet backup comes to fail in Step 10 in
Figure 7. Therefore, the execution of the social recovery
attack becomes successful.

VI. DISCUSSIONS ON POSSIBLE COUNTERMEASURES

In this work, we introduce seven new attack domains against
the entire DID system when it is actually deployed with
the latest technologies using Kubernetes, ICN, Chameleon-
hashes, two-level secret sharing scheme, etc. Some attacks
are direct extensions of the existing vulnerabilities from the
underlying system components, while other attacks can be
specifically carried out due to complex interactions within the
entire DID system. In this section, we describe the possible
mitigation approaches to the attack vectors from the previous
section.

A. DEFENSE FOR WALLET SYSTEM ATTACK

Generally, Wallet System Attack is rooted from the key
exposure attack (A;) vulnerability. Therefore, preventing
the key exposure in the first place is of the utmost impor-
tance. Therefore, an approach such as a Software Data
Diode [72] can be used. The mechanisms to provide the path
integrity, packet integrity, and packet confidentiality using
commodity hardware (HW) Trusted Execution Environ-
ments [73] can also be employed to mitigate the key exposure
exfiltration.

To prevent MITM Attack over the agent-to-agent DID
communication (Ay), a certificate pinning can be used, where
pinning is the process of associating a host with their expected
X.509 certificate or public key. Once a certificate or public
key is known or seen for each EA in DID wallet SW, the cer-
tificate or public key is associated or ‘pinned’ to the EA.
Thus, when an adversary attempts to perform a TLS MITM
attack, during TLS handshaking, the key from the attacker’s
server will be different from the pinned certificate’s key of
the EA, and the request will be discarded. Also, to defend
against reverse engineering attack (A3) of DID wallet app,
existing defense mechanisms such as Crypto Obfuscator
[74] can be actively deployed to prevent reverse engineering
threats.

For WQL Injection Attack (Aj4), a login auditing to the
DID wallet database must be enabled to detect password
guessing attacks. It is important to capture failed login
attempts, which would help to identify the attacker’s foot-
prints. To defend against WQL injection attacks, existing
defenses for SQL injection can be jointly applied here. In par-
ticular, the least-privileged accounts should be granted to
connect to the database within the DID wallet. And DID ser-
vice application login should be restricted in the DID wallet
database and should only execute the allowed procedures.

Besides, a DID service application’s login should not
have direct table access to the DID wallet database.
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All WQL-mapped SQL statements (including the SQL state-
ments in stored procedures) must be parameterized. This
is because the parameterized SQL statements only accept
characters that have predetermined meaning to SQL.

Moreover, sensitive data in the DID wallet database
columns should be encrypted. For example, data can be
encrypted using column-level encryption or by an appli-
cation using encryption functions. In particular, database-
level encryption of Transparent Data Encryption (TDE) can
be enabled, where TDE in SQL server helps in encrypt-
ing sensitive data in the database of DID wallet and pro-
tecting the keys that are used to encrypt the data with a
certificate.

B. DEFENSE FOR IMPERSONATION FROM STOLEN KEY
First, in case the attacker attempts to replace the DID key of
the victim with the stolen key, the other party’s EA should
be able to notify the event to the CA of the victim. Thereby,
the EA of the victim can report the event to the victim and
revoke the compromised DID key.

Also, the DID system can consider applying a group con-
sensus agreement protocol, where more than two group mem-
bers are selected from the victim’s EAs to allow the update
of the target agent’s DID key. At that time, the proof of
the agreement should be presented on the DID event of Key
replaced for an agent. The proof of agreement can be the ring
signature [75] of the selected EAs of the victim.

If the DID event is propagated to the other party’s EA with-
out the proof of agreement, then the EA can be aware of the
malicious attempt at the moment. Thereafter, the other party’s
EA can notify the victim’s EA of the malicious attempt. Then,
the victim’s EA can either trigger the revocation process for
the compromised DID agent’s key so that the attacker cannot
easily impersonate the victim using the compromised key and
inflict another damage to the hijacked relationship.

C. DEFENSE FOR CACHE POISONING / POLLUTION
ATTACK

To prevent cache poisoning attack, as shown in Scenario
1) of Figure 4 against DID resolver, the core ideas from
DNS Security (DNSSEC) [76] can be adopted to check the
validity of the response given a DID query. Thus, the local
DID resolver should be able to check if the response has
been really received from the authentic DID resolver invoked
through the remote binding. In our case, the DID proxied
resolution process can strengthen the integrity of the received
resolution response via the verification of the digital signature
from the remote resolver.

Also, recent work such as Jin et al. [77] using a machine
learning-based DNS traffic model can be used to characterize
the cache poisoning attack for Scenario 2) of Figure 4. For
example, the local DID resolver can employ two-level phases
of Global Training (GT) phase and Selective Training (ST)
phase for analyzing DID query-response pairs.

In the GT phase, all DID query-response pairs are ana-
lyzed based on the features extracted from the general DID
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resolution protocol [39]. The main purpose of the GT phase
is similar to anomaly detection by classifying abnormal DID
query-response pairs from normal ones. In the ST phase,
we can apply the selective features of DID query-response
pairs based on the heuristic analysis on the anomaly detection
in the GT phase.

The selective features can be the following: 1) the geo-
graphic information of the IP address used in the DID query,
2) the distance between a current DID query and the previous
DID query, and 3) the abnormal DID query and the response
of cached DID resolution. Consequently, the DID resolver
can utilize the above analyzer of the query-response pairs
between the local DID resolver and the remote DID resolver
to detect the cache poisoning attacks.

D. DEFENSE FOR MICROSERVICE ATTACK

To prevent MSA attacks, prior work on moving target defense
approach by Torkura et al. [61] can be considered. Their
defense introduces the diversification index that can be used
to determine the degree of diversification in the container
image and the code. The main purpose of this approach is to
increase the uncertainty for attackers, while the attack surface
is diversified.

Hence, the inherent homogeneity of the microservice is
improved against the multi-step attack Ao, as shown in Fig-
ure 5, on the UR and the driver of DID methods. Also,
the verification of the base image’s origin and integrity check
can be incorporated to prevent the multi-step attack in the UR
and drivers of DID methods.

Except for Ajg, other microservice attacks from 4;; to
Ais have been partially patched with each of the mitigations
in the NVD of NIST that can be further checked with each
CWE ID in Section V-D. However, the attacker may expand
the domain of those attacks, in a more sophisticated way,
by sidestepping the known mitigation and trigger a new attack
on top of the old ones. Therefore, further research on the
security of microservice needs to be performed to prevent the
attacks.

E. DEFENSE FOR PARTITIONING / ICN ATTACK

To prevent partitioning attacks in VDR, the geospatial con-
centration of hashing power should be distributed to the
broader geographical regions with network diversity as
pointed out by Saad et al. [67]. This can be achieved through
the decentralized hosting of the mining pools and full nodes
over the internet. In parallel, the secure and scalable relay
network of Bitcoin [78] can be considered, using an inter-
domain routing policy to provide a secure and fast routing
path among relay nodes.

In the case of an ICN attack, the router node in the ICN
should be able to cache the DID with the matching DDO
according to the popularity of the contents. Also, the pop-
ularity of the cached DID and DDO should be periodically
evaluated to detect the cache pollution attack. For detecting
the attack in ICN-based VDR, the research by Xie et al. [79]
on the robust cache shielding scheme can be considered to
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prevent cache pollution attacks. Their approach leverages the
difference between a normal request having Zipf-like [80]
distributions and a malicious request, which can be generated
from a totally different distribution.

Another work by Karami and Guerrero-Zapata [81] pro-
posed a fuzzy logic-based cache content evaluation, based on
the membership function to return a goodness value ranging
from O to 1, where the boundary value of 1 means normal
content, 0.5 cache disruption attack, and O the false local-
ity attack, respectively. However, both approaches of [79],
[81] incur a high computation overhead due to the proba-
bilistic cache replacement and fuzzy logic-based goodness
derivation, which should be considered for further research
in deployment.

F. DEFENSE FOR SOCIAL RECOVERY ATTACK

The core threat against the social recovery attack is the weak
integrity on the distributed shares of DID wallet’s recovery
file. To prevent such threats, we need to confirm the cor-
rectness as well as the legality of the reconstructed secret
and avoid the collusion attack from dishonest participants
(cheaters).

To confirm the correctness of the reconstructed secret,
the integrity on the share of DID wallet recovery file,
as shown in Step 2 of Figure 7, needs to be protected. A recent
approach by Sprenkels [82] can be employed by applying
a hybrid mode of encryption and Shamir’s scheme. First,
the secret (DID wallet recovery file) is encrypted using a
random key.

Then, the random key is sharded and distributed to the par-
ticipants. When reconstructing the secret, it will first obtain
the reconstructed random key, and use it to decrypt the secret
so that the secret will be recovered successfully, only when
the reconstructed random key is valid through Shamir’s pro-
cess.

Also, to avoid the collusion attack, two-level scheme for
the secret sharing by TREZOR team [83] can be used such
that the secret, i.e. the DID wallet recovery file, is divided
into Group share and Member share. It will first apply the
threshold-based secret sharing scheme in a large group (e.g.,
3/5). Then, the scheme divides each of the groups into mem-
bers so that the possibility of collusion within each individual
group becomes impotent to recover the entire key, unless the
collusion of other remaining groups is made. This scheme
adds more safeguards to the original Shamir’s approach in
the social recovery of the DID wallet.

Nevertheless, the problem of cheater identification is not
addressed in the above defenses. Also, the verification of
an individual share still remains as an open problem to be
addressed. Thus, further research is needed in this area for
the social recovery. Moreover, system performance metrics
should also be considered such as the overall recovery speed
of DID wallet, the availability for non-interactive verification
of secret share, the size of each secret share, the expandability
for multi-secret sharing solution, etc.
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VIi. CONCLUSION

In this work, we systemically explored the blockchain-
based DID system’s attack surfaces. First, we considered
the cutting-edge underlying technologies such as DID, VC,
blockchain to enable SSI and characterized the detailed infor-
mation flows and interactions among different entities. Next,
we carefully analyzed the possible attacks that are native
to each of the technologies and new attacks that can occur
due to the intertwined complexity of the combined DID and
blockchain technologies. In particular, we presented the full-
scale attack surfaces across the different DID functional block
systems. Some of these attacks should be urgently considered
to build a more secure DID-based SSI system for a wide range

of practical application deployment.

APPENDIX
NOMENCLATURE
ABBREVIATIONS
AP Agent Policy
APAC Agent Policy Address Commitment
BGP Board Gateway Protocol
CA Cloud Agent
CBOR Concise Binary Object Representation
CH Chameleon Hash
CIM Centralized Identity Management
CKMS Centralized cryptographic Key Management
Systems
CR Community Resolver
CS Chameleon Signature
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
DDO DID Document
DFD Data Flow Diagram
DID Decentralized Identifiers
DIF Decentralized Identity Foundation
DKMS Decentralized Key Management System
DNSSEC DNS Security
DRIM DID Resolution Input Metadata
EA Edge Agent
FIM Federated Identity Management
GDPR General Data Protection Regulation
GT Global Training
HBI High Business Impact
HKDF HMAC Key Derivation Function
ICN Information-Centric Networking
IDP Identity Provider
MITM Man-In-The-Middle
MSA Microservice Architecture
NIST National Institute of Standards
Technology
NVD National Vulnerability Database
PBKDF2 Password-Based Key Derivation Function 2
PII Personally Identifiable Information
PoP Proof-Of-Possession
SSI Self-Sovereign Identity
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SSO  Single Sign-On

SSRF  Server Side Request Forgery

SSSS  Shamir Secret Sharing Scheme

ST Selective Training

SV Secret Value

SVC  Secret Value Commitment

TDE  Transparent Data Encryption

UIM  User-centric Identity Management

UR Universal Resolver

VC Verifiable Credentials

VDR  Verifiable Data Registry

WQL  Wallet Query Language

ZKP  Zero-Knowledge Proof
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