
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108475, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2020.DOI

Developing a Multicore Platform Utilizing
Open RISC-V Cores
HYEONGUK JANG1,2*, KYUSEUNG HAN1* (Member, IEEE), SUKHO LEE1, JAE-JIN LEE1,2,
SEUNG-YEONG LEE3 (Student Member, IEEE), JAE-HYOUNG LEE3 (Student Member,
IEEE), and WOOJOO LEE3 (Member, IEEE)
1 Electronics and Telecommunications Research Institute, Daejeon, Korea (e-mail: lemon, han, shlee99, ceicarus@etri.re.kr)
2 Department of ICT, University of Science and Technology, Daejeon, Korea
3 School of Electrical & Electronics Engineering, Chung-Ang University, Seoul, Korea (e-mail: sylee6288, jh2eee, space@cau.ac.kr)

* indicates equal contribution.
Corresponding author: Woojoo Lee (e-mail: space@cau.ac.kr).

This research was supported partially (60%) by the MSIT(Ministry of Science, ICT), Korea, under the Development of Ultra-low Power
Intelligent Edge SoC Technology based on Lightweight RISC-V Processor (2018-0-00197) supervised by the IITP(Institute for
Information & Communications Technology Planning & Evaluation), and partially (40%) by the Chung-Ang University Research
Scholarship Grants in 2019.

ABSTRACT RISC-V has been experiencing explosive growth since its first appearance in 2011. Dozens
of free and open cores developed based on this instruction set architecture have been released, and RISC-V
based devices optimized for specific applications such as the IoT and wearables, embedded systems, AI,
and virtual, augmented reality are emerging. As the RISC-V cores are being used in various fields, the
demand for multicore platforms composed of RISC-V cores is also rapidly increasing. Although there are
various RISC-V cores developed for each specific application, and it seems possible to pick them up to
create the most optimized multicore for the target application, unfortunately it is very difficult to realize this
in reality. This is mainly because most open cores are released in the form of a single core without cache
coherence logic, which requires expensive design effort and development costs to address it. To tackle this
issue, this paper proposes a method to solve the cache coherence problem without additional effort from the
developer and to maximize the performance of the multicore composed of the RISC-V core selected by the
developer. Along with a description of the sophisticated operating mechanisms of the proposed method, this
paper details the architecture and hardware implementation of the proposed method. Experiments conducted
through the prototype development of a RISC-V multicore platform involving the proposed architecture
and development of an application running on the platform demonstrate the effectiveness of the proposed
method.

INDEX TERMS Multicore platform, RISC-V, system-on-chip (SoC), electronic design automation (EDA)

I. INTRODUCTION

Instruction set architecture (ISA) is the essential vocabulary
that allows hardware and software to communicate [1]. Over
the past two decades, two major companies, ARM and Intel,
have dominated ISA, and as a result, their microprocessors
are now embedded in all computing devices from smallest to
the fastest. However, after the recent rise of the RISC-V ISA
[2], all of this is changing, and the microprocessor industry
is turning upside down [3]. The RISC-V is a free and open
instruction set with well-structured modularity, providing a
very high level of flexibility at a very low cost and allowing
users to produce custom chips suited to specific applications.

As Linux gained popularity and acclaim in the operating sys-
tems, RISC-V pursues to become Linux in the processors [4],
and is beginning to be used in various commercial products
one after another.

As RISC-V is expected to be used in the design of new
and more specialized processor cores that will soon emerge
in wearables, home appliances, robots, autonomous vehicles
and factory equipment, the need for RISC-V based multicore
platforms is becoming increasingly urgent. Currently, there
are various types of RISC-V cores that have been released,
and by using them, it is ideally possible to configure them
as customized multicores for various applications. However,

VOLUME –, 2021 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108475, IEEE Access

Submitted to the IEEE ACCESS, 2021

⋯
A: 1

⋯

Core1 Core2

Cache Cache

⋯
A: 1➝0

⋯
Main Memory

⋯

A: 1

⋯

Bus

FIGURE 1: Example of the cache coherence problem.

in terms of practicality, building a multicore platform using
the open RISC-V cores, especially released as a single core,
poses unfortunately enormous challenges. This is mainly
due to the cache coherence problem. Without solving this
problem, the correct operation of the multicore is not guar-
anteed, or the expected performance is not exhibited. The
currently possible method to solve this problem is to imple-
ment the cache coherence logic (CCL) for each multicore by
the platform developers themselves, but this has a critical
limitation that the design effort and development costs are
very expensive and sometimes impossible.

To address the difficulty of developing multicore platforms
utilizing RISC-V cores, we propose a method that solves
the cache coherence problem without CCL and maximizes
the performance of multicore regardless of which RISC-V
cores are used in the multicore platform. The main idea of
the proposed method is to avoid cache coherence problem by
disallowing caching on shared data by default, and to allow
temporarily caching on data that are obviously not shared for
a period of time in order to compensate for the performance
degradation caused by the inability to use the cache. We
put it into the role of the programmers to determine which
data are temporarily cached, but provide simple application
programming interface (API) functions to make it easier
for the programmers to apply this method when developing
applications. In addition, we analyze and identify problems
that may arise when the proposed method is applied to
existing cache structure, and devise sophisticated behavior
mechanisms of the proposed method to address them. Next,
we develop the architecture to realize the proposed method in
RISC-V core-based multicore platform, and implement the
necessary hardware. We then build the proposed architecture
into a network-on-chip (NoC) responsible for IP-to-IP com-
munication in system-on-chip (SoC), so even if the developer
selects any RISC-V cores and configures multicores, the
proposed method can be applied. Moreover, by including the
proposed architecture in the RISC-V-based SoC automatic
design tool, we try to increase the usability of the proposed
method. Finally, to verify the effectiveness of the proposed
method, we implement the RISC-V multicore prototype plat-
form including the proposed architecture on an FPGA, and
develop a camera input-based handwriting recognition pro-
gram as an application. Through the experimental work based
on the application running on the FPGA, we confirm that the
performance of the platform on which the proposed method

(a) (b)

Core1 Core2

Cache Cache

Main Memory

A A

A B

Bus

Cache Coherence logic

Core1 Core2

Cache Cache

Main Memory

A B

Bus

FIGURE 2: Solutions to the cache coherence problem: (a)
simply non-caching the shared data and (b) using CCL.

is applied shows a performance improvement of about 37%
over those on which it is not.

The main contributions of this paper may be summarized
as follows:

– As the most practical solution to the cache coherence
problem in multicore development with RISC-V cores,
a temporary caching (TC) method is presented.

– Along with the sophisticated operation mechanism of
the proposed TC, a detailed description of the hardware
and software development for TC is provided.

– Through prototyping of a RISC-V-based multicore plat-
form to which TC is applied and the development of the
application running on this platform, the effectiveness
of the proposed solution is verified.

The remainder of this paper is organized as follows. Sec-
tion II elucidates the cache coherence problem that can occur
when a multicore is configured based on the RISC-V cores,
and the existing solutions associated with them. Section III
introduces the main idea of the proposed method and dis-
cusses problems that may arise from the proposed method.
Next in Section IV, a detailed description of the architecture
and hardware implementation for the proposed method are
presented. Implementing the proposed architecture on NoC
and developing it to be automatically designed are provided
in Section V. Section VI is to develop a prototyped RISC-
V multicore platform and applications as test benches and
to provide experimental results obtained from them. Finally,
Section VII concludes the paper.

II. CACHE COHERENCY PROBLEM IN RISC-V
MULTICORE
Cache coherency problem is a well-known problem on mul-
ticore due to the caches being distributed across individual
cores. Since each core has its own cache, the copy of the
shared data in that cache may not always be the most up-
to-date version, resulting in data synchronization failures that
possibly crash the program or the entire computer. FIGURE 1
shows a simple example of the cache coherency problem.
In the figure, there is a dual-core processor with Core1 and
Core2, where each core brought a memory block for the
variable A into its private cache. And then Core2 writes 0

2 VOLUME –, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108475, IEEE Access

Submitted to the IEEE ACCESS, 2s021

(a) (b)

Consecutive
data

Divided
data

Divided
data

Consecutive
data

FIGURE 3: Example of (a) conceptual diagram of temporary
caching in parallel processing and (b) its code.

to A. When Core1 attempts to read A from its cache, it will
not have the latest version, producing incorrect results.

To tackle the cache coherence problem in multicore,
tremendous research efforts have been continuing for
decades, and various solutions have been proposed. These
solutions can be divided into software-based and hardware-
based schemes. The software-based schemes refer to ap-
proaches of caching and maintaining data coherency in
software by analyzing shared data [5]–[9]. These schemes
mainly solve the cache coherence problem by improving
the compiler, and sometimes by requiring special hardware
assist. Unfortunately, however, a compiler that completely
solves the cache coherence problem has not yet appeared on
the market [10].

The software-based scheme that can be used in practice
is to allocate all the shared data used by multiple cores
into a non-cacheable region at compile time. Then the cores
read the shared data directly from the main memory without
caching, which is described in FIGURE 2 (a). This scheme
has advantages in terms of practicality because the system
developer does not need to modify the existing compiler, and
it has the advantage in terms of programmability because the
program works correctly even if the software developer does
not consider the cache. Of course, the speed at which the core
accesses shared data is slowed, so performance degradation
is unavoidable with this scheme. In particular, in the case
of applications that have a lot of data access, such as image
processing, performance can be greatly degraded.

Due to the shortcomings of software-based schemes in
terms of performance, hardware-based schemes are widely
used in typical multicore systems. By utilizing additional
hardware to synchronize the data in the caches, which is
called CCL (cache coherence logic) as shown in FIGURE 2
(b), the schemes achieve the high performance of multicore
platforms [10]–[13]. However, since the CCL is closely re-
lated to the cache structure, adding the CCL to an already-
designed open source core is very expensive in design effort
and development cost unless the CCL is considered and
designed together when designing the core. Moreover, it is
very difficult and impractical to implement CCL that targets
several different cores rather than one kind of core.

Based on the above discussion, it may be very hard to solve
the cache coherence problem by using the hardware-based
scheme to develop a multicore platform using the RISC-V

TABLE 1: Features of the existing RISC-V cores

Supplier Core Name # of Cache CLL
Cores available? available?

Andes

A25,D25F,N22,
N25F,NX25F 1 O (Yes) X (No)

A25MP,AX25MP 1∼4 O O
AX25 1 O X

ETH Ariane, RI5CY,
Zero-riscy (PLUP) 1 O X

CloudBEAR
BI-350 1 O X

BI-651,BI-671 1∼4 O O
BM-310 1 X X

Codasip Bk3, Bk5, Bk7 1 X

Darklife DarkRISCV 1 X

Bob Hu Hummingbird E200 1 X

FPGA Cores Instant SoC 1 X

Cornell Lizard 1 O X

J. Chrisostomo Maestro 1 X

LambdaConcept Minerva 1 O X

Tom Verbeure MR1 1 X

OnChipUIS OPenV/mriscv 1 X X

VectorBlox ORCA 1 O X

Clifford Wolf PicoRV32 1 X X

Lucas Castro ReonV multi O X

MIT RiscyOO multi O O

Gavin Stark Reve-R 1 X X

SiFive rocket multi O O

Roa Logic Roa Logic RV12 1 O X

S. Tonello RV01 1 X X

Domipheus RPU 1 X X

rsd-devel RSD 1 O X

IQonIC Works
RV32IC_P5 1 O X

RV32EC_FMP5 1 X
RV32EC_P2 1 X X

Syntacore
SCR1 1 X X

SCR3,SCR4,SCR5 1∼4 O O
SCR7 1∼8 O O

Olof Kindgren SERV 1 X

Western Digital SweRV EH1 1 O X

IIT Madras Shakti-Eclass 1 X X
Shakti-Cclass,-Iclass 1 O X

risclite SSRV 1 X X

T-Head XuanTie C910 1∼16 O O
XuanTie E902 1 O X

SpinalHDL VexRiscv 1 O X

cores. To more realistically examine the development of a
multicore platform using RISC-V cores, TABLE 1 lists exist-
ing RISC-V cores. As shown in the table, most of the RISC-V
cores were released in the form of a single core without CCL.
In order to configure a multicore with them while using a
hardware-based scheme, platform developers have no choice
but to implement the CCL by themselves. In the worst case,
some cores do not provide readable RTL code, making it
impossible to add the CCL. In addition, there are some RISC-
V cores released as multicores and they support CCL, but

VOLUME –, 2021 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108475, IEEE Access

Submitted to the IEEE ACCESS, 2021

FIGURE 4: Memory access over time on Core1 for array A,
when the TC is (a) not applied and (b) applied.

these RISC-V cores have a big limit on scalability because
they have a fixed number of cores. Furthermore, there may
be cases where platform developers want to use existing
RISC-V cores to construct heterogeneous multicores, even
in these cases, developers are still faced with the problem
of having to implement their own CCL. After all, platform
developers want to choose the most suitable RISC-V core
from the list, but the reality is that they will have a hard
time building a multicore platform by scaling regardless of
the cache coherence type.

III. TEMPORARY CACHING
A. MAIN IDEA
In this paper, as the most practical solution to develop mul-
ticore with RISC-V cores, we propose a new software-based
scheme that can compensate for the performance degradation
of the conventional software-based schemes without devel-
oping a new compiler or losing programmability. FIGURE 3
shows the motivation and main idea of the proposed scheme.
In software-based schemes, when a program has a consec-
utive array and the array is generally shared data that can
cause cache coherence problem, caching that array is strictly
not allowed. However, as shown in the figure, if the array can
be split into multiple pieces within a loop statement and can
be executed independently on each core, performance can be
improved if the programmer can temporarily allow caching
of this array during the loop statement. Of course, after the
loop is over, the caching for that array should be disabled.

In other words, the main idea of the proposed scheme is to
allow the programmer to temporarily cache data when possi-
ble, i.e. we call this technique TC (temporary caching). The
proposed TC improves performance by making it possible
to dynamically cache data that originally had to be accessed
from the main memory. For example, if array A is shared
data as shown in FIGURE 4 (a), it must be accessed directly
from the main memory. However, if A is accessed only by
Core1 in a certain time, the programmer can program A to
be cached for that time. FIGURE 4 (b) conceptually shows
that the application of TC reduces the memory access time.
In applications such as deep neural network operations and
image processing where there is a lot of memory access and

1 void time_consuming_function(int *a)
2 {
3 int i;
4 for(i=0; i<1000; i++)
5 {
6 ... = a[i+1];
7 a[i] = ... ;
8 }
9 }

(a) Original Code

1 void time_consuming_function(int *a)
2 {
3 int i;
4 int* x;
5 x = tc_malloc(a, 1000);
6 for(i=0; i<1000; i++)
7 {
8 ... = x[i+1];
9 x[i] = ... ;

10 }
11 tc_free(x);
12 }

(b) Modified Code

FIGURE 5: Progamming example.

Instruction

Read-only data

TC heap

Shared data

Memory Map Main Memory

Cacheable region

Non-cacheable region

x

a

FIGURE 6: Mapping mechanism between memory map and
main memory for TC.

TC can be applied frequently, the benefits of TC can be
greatly appreciated.

In order for programmers to apply TC easily, we develop
an API with tc_malloc function to start TC and tc_free
function to end TC. FIGURE 5 shows an example of how to
apply TC to the original program code using the provided
API. In the original code, shown in FIGURE 5 (a), there
is a variable a. When TC can be applied to the variable a
in the program, as shown in the 5th line of FIGURE 5 (b),
the programmer calls tc_malloc with the start address and
size of a as parameters. Then, the starting address of the new
variable x that can be cached while having the same data as
variable a is returned. More in detail, as shown in FIGURE 6,
tc_malloc creates x allocated the same size as a in the
space called TC heap in the cacheable region. For reference,
the TC heap is secured from address space in the cacheable
region in the memory map that is not actually mapped to
memory or MMIO and not for the space for instruction data
and read-only data. Then, tc_malloc dynamically sets the

4 VOLUME –, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108475, IEEE Access

Submitted to the IEEE ACCESS, 2s021

? ?

Same
Cache
Line

A BAB

Core1

Cache

Cache-line

Memory
① The data is cached.
②	Core1 must access this non-TC
 data from the main memory.
 However,
③ Core1	will	access	the	data	
			from	the	cache.

①

② ③

(a)	TC	data	and	non-TC	data	on	the	same	cache-line	

(b)	Two	different	TC	data	on	the	same	cache-line

Core1 Core2

Cache Cache

Memory

Bus

Bus

TC1 data

Non-TC data

TC2 data

FIGURE 7: Problematic cases when adopting TC.

memory map so that this x is mapped to the space of the main
memory mapped with a. After that, instead of using a, x is
used in the code, allowing the core to fetch the same data as a
from the main memory, put it in the cache, and use it. Finally,
when it is no longer necessary or possible to cache the data,
the programmer calls the tc_free with the starting address
of x as a parameter, and tc_free flushes the cached TC
data from the cache, frees the space allocated for x from the
TC heap, and cut off the mapping to the corresponding main
memory.

Meanwhile, when applying TC, programmers must
take into account real-time computing, reliability, and
power/energy consumption resulting from cache usage. More
precisely, the use of cache in shared data can cause cache
interference issues between tasks, which can significantly
hamper the predictability and analysis of multicore real-time
systems [14], [15]. Recent studies on cache architecture and
cache coherence show that they have a significant impact
on system reliability [16], [17]. Additionally, cache archi-
tecture and operational policies are well known to have a
significant impact on overall system power and energy, so
optimizing them has been intensively studied for more than
a decade [18]–[20]. Furthermore, as the power density of
chips increases, thermal design power (TDP) has become an

important concern in modern chip designs [21], [22], and
some studies have pointed out that the leakage current of the
cache significantly affects the TDP of the overall system [23],
[24]. After all, when applying TC, the programmer must
optimize the target application with these factors in mind.
Fortunately, TC is a software based scheme, so programmers
can easily do this by trial and error using the provided TC
API. In addition, compared to the large power overhead of
the CCL [25], [26], which may adversely affect the TDP, TC
is advantageous for TDP because the CCL is not required.

B. LIMITATION DUE TO THE CACHE-LINE PROBLEM
In a function, shared data can be divided into N number of
short-term private data and a short-term shared data, where N
is the number of cores. Each private data can be temporarily
cached by each core, and we refer to these data collectively
as TC data, and define TCx data by attaching the index
x of the corresponding core to each. The short-term shared
data still accessed from main memory is called non-TC
data. Then, noting that data transfer between cache and main
memory is basically done on a cache-line unit, we can notice
that a fatal problem can occur if two or more types of TCx
data or non-TC data are on the same cache line. We call this
problem the cache-line problem and continue its detailed
analysis.

First, when TC1 data is transferred to the cache, non-
TC data just located near the TC1 data can also be cached,
resulting in the cache-line problem. In this case, if the core
attempts to access non-TC data, the data will be accessed
from the cache and not from the main memory. FIGURE 7
(a) shows a detailed example of this problem, which can
eventually cause critical system errors.

Next, when two different TC data belonging to the same
cache-line, another cache-line problem can also occur. FIG-
URE 7 (b) describes this case, where variable A and B are
TC1 and TC2 data, respectively. If A and/or B are modified
and written back to the main memory, the wrong value can be
stored in the main memory, due to the unintentionally-cached
data in each cache. This also can cause a fatal system error,
and there is no existing solution to prevent it.

The cache line problem puts a big limit on the use of TC.
For example, as shown in the 1st line of code in FIGURE 8
(a), array a is shared, so it should not be cached on the dual
core platform without CCL basically. On the other hand,
as seen in the next for-loop in both codes, a is actually
used independently in each core, whereby a[0∼49] and
a[50∼99] are executed on each core. Therefore, to im-
prove performance, it is desired to apply TC for a in each
code, which is described in FIGURE 8 (b). However, since
there is a high possibility that some cache-lines of a[0∼49]
and a[50∼99] overlap, the programmer must never apply
TC as in the example in FIGURE 8 (b). In other words,
the programmer must conservatively apply TC only to data
that clearly does not share the cache-line, which is a huge
constraint on the use of TC.

VOLUME –, 2021 5

Submitted to the IEEE ACCESS, 2021

1 int a[100]; extern int a[100];
2 void core1_work() void core2_work()
3 { {
4 int i; int i;
5 for(i=0; i<50; i++) for(i=50; i<100; i++)
6 { {
7 a[i] = ... ; a[i] = ... ;
8 } }
9 } }

(a) Original code.

1 int a[100]; extern int a[100];
2 void core1_work() void core2_work()
3 { {
4 int i; int i;
5 int *x; int *x;
6 x = tc_malloc(a,50); x = tc_malloc(&a[50],50);
7 for(i=0; i<50; i++) for(i=0; i<50; i++)
8 { {
9 x[i] = ... ; x[i] = ... ;

10 } }
11 tc_free(x); tc_free(x);
12 } }

(b) Code applying TC.

1 int a[100]; extern int a[100];
2 void core1_work() void core2_work()
3 { {
4 int i; int i;
5 lock(); lock();
6 x = tc_malloc(a,50); x = tc_malloc(&a[50],50);
7 for(i=0; i<50; i++) for(i=50; i<100; i++)
8 { {
9 x[i] = ... ; x[i] = ... ;
10 } }
11 tc_free(x); tc_free(x);
12 unlock(); unlock();
13 } }

(c) Code applying TC with lock.

FIGURE 8: Example codes for the false sharing problem.

C. PLAUSIBLE SOLUTIONS

To overcome the limitation of using TC, one can come up
with a method of using a lock mechanism with TC. For
example, as shown in the 5th and 12th lines in FIGURE 8 (c),
a programmer codes to lock and unlock before tc_malloc
and after tc_free, respectively, so that a[0∼49] and
a[50∼99] are cached, updated, and flushed independently.
In this way, performance is improved in terms of data ac-
cess speed due to TC, but since programs are sequentially
processed by lock, significant performance loss may occur in
terms of data parallel processing, which may lead to overall
performance degradation.

Data allocation by the compiler is also a plausible ap-
proach to think about, but in the end it is not appropriate. For
example, one might think that inserting the proper padding
between a[49] and a[50] would avoid the conflict, but
this is only possible if the address of the array elements is
linear, which is not possible in reality. On the other hand,
allocating one element per cache line size at compile time
will definitely prevent the two TC groups from mixing into
the cache line. However, this approach not only increases
memory usage extremely, but also significantly reduces per-
formance by removing the spatial locality of the cache.

We may also consider a way to fundamentally block two

0x200x0 0x40 0x60 0x80 0x1000...

start
address

0x8

last
address

0x47
TC heap
pointer

FIGURE 9: Example of assigning a new variable to TC Heap:
the TC Heap is from 0x0 to 0xFFF, the cache-line size is
0x20, and the start address and size of the original variable
are 0x10001068 and 0x40, respectively. The green part is the
space allocated for the new variable, and the blue part is for
the actual TC data.

or more TCx data and/or non-TC data belonging to one
cache-line by copying each TC data to new data and using
it. However, this method violates the aim of TC to improve
performance, as it incurs memory resource waste and signif-
icant time overhead for copying data. Meanwhile, instead of
the software-style approaches discussed above, we may think
of a hardware-based solution that supports variables whose
addresses are unaligned to the cache-line size. This method
is ideally possible, but none of the existing core architectures,
including the RISC-V cores, support this structure.

After all, all of the above solutions have fatal weaknesses.
In particular, the problem is exacerbated by the inability to
modify the RISC-V cores themselves. Under the conclusion
that a solution based on software or hardware alone is dif-
ficult, we try to solve the cache-line problem through an
approach that considers both software and hardware. Further-
more, to find the most practical solution, we considered the
following issue in the software/hardware co-design approach:
no matter how easily the developed software is available
on the platform, if it is difficult to configure the platform
using the necessary hardware with the software, this cannot
be a practical solution. In the following sections, we will
introduce our software/hardware co-design solution in detail
and explain how to make this solution the most practical by
implementing a way to automatically generate a multicore
platform with the proposed hardware.

IV. TEMPORARY CACHING ARCHITECTURE
A. OVERVIEW
The cache-line problem can be solved by making the ad-
dresses of TC and non-TC data not consecutive. To do
that, we introduce the concept of virtual addresses. The use
of virtual addresses has the same effect as the copy-based
solution discussed in Section III-C, which copies TC data
to a new memory location, but the copy overhead can be
avoided by mapping a virtual address to the original TC data.
To realize this concept, it is necessary to develop system
software that allocates virtual addresses and hardware that
supports address translation, which is one of the major topics
in this section.

Unfortunately, the introduction of virtual addresses alone
cannot solve the cache-line problem because cache lines still

6 VOLUME –, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108475, IEEE Access

Submitted to the IEEE ACCESS, 2s021

have unintentionally-cached dummies. In other words, using
a virtual address prevents the use of dummies, but cannot
prevent them from being included in the cache-lines. There
seems to be no problem because read/write does not directly
take place on such unintentionally-cached dummies during
the program execution. However, the moment a write to TC
data occurs, the entire cache line containing the TC data is
changed to dirty, which means dummies can also be written
to the memory during the write-back process, resulting in
inconsistency. As a solution to this problem, we propose a
method that uses a speculative approach to cache all data in
the cache line containing TC data and ensure that these data
work correctly when they are written back to memory, which
is another major topic in this section.

B. VIRTUAL ADDRESS MAPPING
Virtual address mapping requires three components, the TC-
MMU, TC heap, and TC APIs. First, the TC-MMU is a hard-
ware unit that translates virtual address to physical address.
It is similar to MMU for page table processing, but much
simpler since direct translation is its only function. Next,
the system software prepares the TC heap at compile time,
which is a memory space in the cacheable region but does not
contain actual data. It has a start address and an end address,
but it does not include a compiled binary that is identical
to the original heap used for dynamic memory allocation.
Lastly, the TC API functions, tc_malloc and tc_free,
are designed to perform the virtual address mapping inter-
nally. tc_malloc issues a virtual address when a physical
address and the size of the target variable are given. When
a programmer calls this function with the two parameters,
the function allocates a specified amount of memory in the
TC heap and returns its address. At the same time, it also
configures the TC-MMU with the original address and new
address by writing some registers. The description of these
registers is given in Section IV-D, which presents detailed
description of the hardware for TC.

During the heap allocation, the issued address must be
aligned to the size of the cache line. This is to prevent
problems that may occur due to cache-line overlap between
different TC data in the TC heap. Moreover, we allocate
memory in the way that the cache-line-offset of the virtual
address is the same as that of the original physical one. The
cache-line-offset refers to a value of the lower bits that are
smaller than the size of the cache-line among all address
bits. This approach will reduce the complexity of address
translation logics in TC-MMU.

FIGURE 9 shows an example of assigning a new variable
to the TC heap, where the start address and the size of the
variable are 0x10001068 and 0x40, respectively, and the
size of the cache-line is 0x20. As shown by the blue part in
this figure, the start address of the new variable becomes 0x8
and the last address becomes 0x47, and the space allocated
to the variable is larger than that, which is from 0x0 to 0x60
as shown in green in the figure.

When it is no longer possible to apply TC, the programmer

executes the tc_free to flush the TC data in the cache
and to release the allocated space for the variable in the
TC heap. Since other variables can be allocated to the same
address of current TC data in the future, tc_free must
invalidate all the caches whether cache policy is write-back
or write-through. The corresponding TC-MMU registers are
also initialized, eliminating the mapping between the new
variable and original data in the memory map. tc_free
also contains a garbage collection process since the mem-
ory space for the TC heap is not infinite. The process
can be implemented simply without any complex algorithm
by tracking the number of alive TC variables in the two
APIs; tc_malloc increases the number and tc_free
decreases it. If the number becomes zero after the decrement,
tc_free initializes a TC heap pointer, which is the variable
to assign the next virtual address, to the start address of the
TC heap. This initialization almost always takes place at the
end of the function, so tc_malloc can now repeatedly
issue the virtual address.

C. BYTE LEVEL MANAGEMENT
The basic idea to prevent the side effect of unintentionally-
cached dummies is as follows: we stick with the traditional
way that cache data is moved on a per-cache-line basis, but
when data from the cache is written back to main memory,
the dummies must not be written back to the main memory.
For example, FIGURE 10 shows an example of the proposed
method. In the figure, each TC data to is displayed in blue
and orange, respectively, and the gray areas indicate the
unintentionally-cached dummies. As seen in the figure, when
writing back the data in main memory, only the blue and
orange areas excluding the gray areas should be written.

To realize this idea, we propose a byte-level management
method that exploits the byte enable signal, which is used
to determine the validation of data in the conventional bus
protocol [27]. In the bus protocol, data read or write is
performed in units of data bus width, which is the size of
data transferred per clock. If data smaller than the data bus
width is transferred for the write operation, an unintended
value may be written to the memory. To prevent this, a byte
enable bit is placed for each byte in a byte lane to determine
the validity of the data. Therefore, as many byte enable
bits are used as the number of bytes of the data bus width.
Meanwhile, in the case of a read operation, when reading
data smaller than the data bus width, no byte enable bit is
needed because there is no problem even if the data is not
used except for the required part by taking the data as much
as the data bus width.

In the proposed byte level management, only the byte
enable bits of the part corresponding to the TC data are set to
1, and the rest are set to 0. For instance, in FIGURE 10, only
the byte enable bit corresponding to the blue and orange data
becomes 1, the rest becomes 0, and then only the part with
the corresponding byte enable bits 1 is written back to main
memory. Along with the byte-level management mechanism,
we have designed optimized hardware for this, and thanks to

VOLUME –, 2021 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108475, IEEE Access

Submitted to the IEEE ACCESS, 2021

Cache of Core1 Cache of Core2

Main Memory

Cache-line 1 Cache-line 2 Cache-line 2 Cache-line 3

Update only
the TC data of Core1.

Update only
the TC data of Core2.

InvalidInvalid InvalidInvalid

Cache-line 1 Cache-line 2 Cache-line 3

FIGURE 10: Proposed solution to the problem of
unintentionally-cached dummies.

this hardware support, the system itself ensures that there are
no data inconsistency due to the unintentionally-cached dum-
mies, allowing the programmer to actively and conveniently
use TC without worrying about the cache-line problem. A
detailed description of the designed hardware is provided in
the following section.

D. TEMPORARY CACHING UNIT
We have developed hardware that supports the virtual address
mapping (i.e., TC-MMU) and byte level management func-
tions, which we call a temporary caching unit (TCU). The
TCU is written in Verilog hardware description language at
register-transfer level, and is verified on a Xilinx FPGA. We
first paid attention to the bus interface for communication
between the core and the memory, and designed the TCU
targeting the most commonly used AXI protocol [28], [29].
For reference, the AXI protocol consists of multiple chan-
nels of a read address (AR) channel, a write address (AW)
channel, a read data (R) channel, a write data (W) channel,
and a write response (B) channel, each of which works
independently. Of the multiple AXI channels, the TCU is
designed to implement the virtual address mapping function
by controlling the signal of the AR/AW channel, and the byte
level management function by controlling the signal of the
W channel. The R and B channels in the AXI protocol are
transmitted without any control from the TCU. The proposed
architecture of the TCU is illustrated in FIGURE 11, and as
shown in the figure, the TCU is largely composed of a block
(on the left side of the figure) that takes the transfer of the
AR/AW channel as an input, and a block (on the right side
of the figure) that takes the transfer of the W channel as an
input.

The block responsible for the virtual address mapping
function of the TCU has dedicated hardware, called a TC
entry, for mapping each variable to which TC is applied to
its main memory address. The total number of TC entries in
the block is the same as the number of variables to which
TC can be applied at the same time, and platform developers
can adjust this number as necessary. Each TC entry has two
registers, each of which is to store the start address or the last
address of the variable received from the TC API in order to
determine whether the address accessed by the core through
the AXI interface is the address of the variable to which TC
is applied. Also, in the TC entry, there is a register to store

the offset that is received from the TC API, which is used to
convert the address of the TC variable to the address pointed
by the original variable. Meanwhile, unlike TC entries, the
mux-based control logic for each TC entry has the same
configuration and function with each other, so we designed
multiple TC entries to share one logic to reduce unnecessary
overhead.

The main operation of the block being described is as
follows. When an input address enters the TC entry from the
AR/AW channel, the Matched Decision Logic in the TC
entry compares the start address and the last address stored in
the registers to the input address, and generates a Matched
signal that can determine whether this address is the address
of the variable to which TC is applied or not. At the same
time, in the TC entry, the target address indicating the address
of the main memory to which the TC variable is mapped is
calculated by adding the value of the offset register to the
input address. That is, the target address in the TC entry is
calculated regardless of whether it is matched, but the target
address finally becomes the output of the TC entry only when
the Matched signal is 1 (cf. the Mux in the TC entry uses the
Matched signal as a selecting signal), otherwise, the original
input address will be the output of the TC entry. Then, a
bitwise OR operation is performed on the Matched signals
of all the TC entries, and the result is called the TC signal.
This TC signal is used as the selecting signal of the next mux,
which determines the final output address.

The right side block of the TCU in FIGURE 11 imple-
ments the byte level management function of the TCU. This
block consists of a FIFO that stores the information received
from the block on the left, a logic to create a burst address
of TC data (we call this the Burst Address Generator),
and a logic to control the byte enable signal (we call this the
WSTRB1 Mask Generator). The Burst Address Gener-
ator receives TC signal and AW channel information from
FIFO as inputs (cf. FIFO Out1 in the figure), and generates
the burst address as output. Along with this burst address,
the WSTRB mask generator takes as input the TC signal,
matched start addresses, matched last addresses, and matched
signals from the FIFO (cf. FIFO Out2 in the figure), and
outputs a WSTRB mask for byte level management.

The main operation of this block is as follows. According
to the write operation of the AXI protocol, the write infor-
mation generated by the AW channel (cf. AW channel info.
in FIGURE 11) is stored in the FIFO of this block, and data
is currently entering this block from the W channel once or
several times in a certain size unit, depending on the data
transfer mode determined based on the AW channel info.
Then, when all addresses of the data correspond to TC data,
i.e., when the TC signal is 1, the Burst Address Generator
calculates the burst address of the corresponding data for
each data transfer by using the AW channel information
from the FIFO. Simultaneously, when the TC signal is 1, the
WSTRB Mask Generator compares the burst address with the

1In the AXI protocol, the byte enable signal is called the WSTRB signal.

8 VOLUME –, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108475, IEEE Access

Submitted to the IEEE ACCESS, 2s021

R BW

Input
WSTRB

Output
WSTRB

F
I
F
O

Burst
Address

Generator

&

WSTRB
Mask

Generator

AW
Channel

Info.

Input Address

…

…

…

M
ux

Matched
Start

Address

Matched
Last

Address

M
ux…

AR/AW

TC Entry

+
Matched Signal

Matched
SignalsMux

… …

Mux |

Output Address

Matched
Decision

Logic
Target

Address

Offset

Start
Address

Last
Address

WSTRB
Mask

Burst
Address

TC SignalTC Signal

FIFO
Out1

FIFO
Out2

FIGURE 11: The proposed TCU architecture.

matched start address and matched last address to determine
whether the transmitted data is TC data in byte levels. The
WSTRB mask signal is then generated by setting the bit of
the WSTRB mask corresponding to TC data to 1, otherwise,
the bit of the WSTRB mask to 0. On the other hands, when
the TC signal is 0, meaning that the data is non-TC data and
its address belongs to the non-cacheable region, the WSTRB
Mask Generator instantly sets all bits of the WSTRB mask to
1. Finally, a bitwise AND operation is performed between the
generated WSTRB mask signal and the input WSTRB signal,
and the converted output WSTRB signal is sent out from the
TCU. Owing to the converted output WSTRB signal, only the
TC data excluding the invalid portion of the data is written to
the main memory as shown in FIGURE 10, so the cache-
line problem due to the unintentionally-cached data does not
occur.

V. EXPANSION OF TC CAPABILITY
A. EMBEDDING THE TCU INTO NETWORK-ON-CHIP
In order to answer question of where it is best to implement
the developed TCU in a multicore platform, we focused on
NoC, which plays a pivotal role of concurrent communica-
tion between IPs in the platform. Owing to the ability of
NoC to overcome the limitations of the conventional bus-
based system interconnects (e.g., unbearable increasing den-
sity and complexity induced by the system interconnect) [27],
[30], [31], NoC is commonly used in the state-of-the-art
multicore platforms. FIGURE 12 (a) shows the conventional
NoC architecture, and the processor core in the platform
communicates with other IPs only through the dedicated
network interface (NI) of NoC [28], [32]. Therefore, since the
developed TCU operates independently between the core and
the network, if it is embedded in NI, TC can be realized on the
platform no matter what cores are used. In addition, as shown

(a) (b)

NoC

Conv. NI

Core

Network

AXI NoC

Core

Conv. NI

TCU

Network

AXI

APB

Proposed NI

FIGURE 12: Architectures of (a) the conventional NoC and
(b) the proposed NoC with the embedded TCU.

in FIGURE 12 (b), the design of placing the TCU inside the
NoC does not require modification of the original internal
structure of NI, so adding a TCU to NI can be easily designed
without being limited to a specific NoC. In the end, we
propose to embed the TCU in the core-dedicated NI within
the NoC as a general solution for TCU implementation.

In this paper, we implemented the TCU in our own NoC
based on the presented architecture in [27], that is a com-
pactly designed NoC that supports various types of IP inter-
face conversion and has been silicon-proven in a fabricated
SoC. To embed the TCU in the NoC, we first designed the
TCU to have the advanced peripheral bus (APB) interface
to configure the start address register, last address register,
and the offset register in the TCU. This APB interface is
connected to the NoC as shown in FIGURE 12 (b), so that the

VOLUME –, 2021 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108475, IEEE Access

Submitted to the IEEE ACCESS, 2021

FIGURE 13: TC enabled multicore platform.

core can control the TCU using simple read/write memory
operations. Next, we placed the TCU between the core and
the existing NI, so that AXI data between the core and NI
must be processed through the TCU.

B. ENABLING DESIGN AUTOMATION OF RISC-V
MULTICORE PLATFORMS WITH THE TCU
In a previously published paper [33], we introduced a
new electronic design automation (EDA) tool, RISC-V
eXpress (RVX), that allows the SoC developers to quickly
and easily create SoC platforms using a variety of RISC-V
cores. Indeed, there are many open source RISC-V cores and
it is not difficult to acquire them, but the process of devel-
oping SoCs using such open source cores is very complex,
which requires a lot of time and effort with high design skills
and experience. To tackle this and ultimately accelerate SoC
development, the RVX is developed to generate Verilog RTL
codes, an FPGA prototype, and software development kit
(SDK) for the target SoC, when the IPs to be integrated into
the SoC are given using a high-level description.

In this paper, we have integrated the proposed TCU into
RVX, so that RISC-V-based multicore SoCs equipped with a
TCU can be automatically generated through the RVX. More
specifically, we have implemented the TCU-embedded NoC
in the RVX, allowing users to select this NoC as on-chip
communication IP in the target SoC platform that connects
the selected RISC-V cores and various necessary IPs. We also
have upgraded the RVX to support an interface that enables
users specify the number of TC entries per TC on the target
platform. Finally, by using the upgraded RVX, we prototyped
a TCU embedded RISC-V multicore platform and set up a
software development environment. A detailed description of
the experimental work performed using this is presented in
the next section.

VI. EXPERIMENTAL WORK
A. PROTOTYPING A RISC-V MULTICORE PLATFORM
To verify the function and effectiveness of the proposed
TC, we have implemented a complete verification system
including the TC embedded multicore platform. Especially,

TABLE 2: Clock speed of each IP on the prototype multicore
platform (MHz)

Cores TCU Peripherals DDR

50 50 50 300

Video IPs NoC

300, 200, 150, 50, 25 150

TABLE 3: Resource consumption on the FPGA

LUTs FFs

Cores (x4) 38,936 (34.4%) 16,060 (13.6%)
DDR Controller 23,144 (20.4%) 27,593 (23.3%)

Video IPs 8,137 (7.2%) 9,211 (7.8%)
Peripherals 10,787 (9.5%) 34,959 (29.6%)
TCUs (x4) 4,424 (3.9%) 3,644 (3.1%)
Conv. NoC 18,050 (15.9%) 20,271 (17.1%)

Etc 9,841 (8.7%) 6,500 (5.5%)

Total 109,807 (100%) 126,286 (100%)

the prototype platform was designed to have a quad-core,
and for this, four Rocket [34] cores based on the RISC-
V were implemented on the platform, each of which core
was created as a single core without CCL. Additionally, this
platform has a 512 MB DDR memory, video input/output
controllers (VIC/VOC), and peripherals including UART,
I2C, etc. Finally, all the IPs are interconnected with the
developed TCU embedded NoC, that NoC has four NIs for
each core, and each NI has a TCU with eight TC entries.
Clocks of IPs are summarized in TABLE 2.

To utilize video input/output, we designed a custom FPGA
board. It contains a Xilinx FPGA chip (Virtex UltraScale+),
DDR4 memories, a camera, and an LCD screen. FIGURE 13
shows the architecture of the developed platform, along with
a picture of the actual implementation prototyped on the
custom board.

The platform prototype was synthesized by using Xilinx
Vivado [35], and resulting resource consumption of the TCU
and the others are reported in TABLE 3. The four TCUs
consume 4,424 look-up tables (LUTs) and 3,644 flip-flops
(FFs), which takes only 3.9% and 3.1% in the entire platform.

B. DEVELOPING AN APPLICATION
We developed a handwriting recognition application based
on camera input as an application to verify the validity of
TC. In fact, the handwriting recognition applications are
commonly used as a basic example of the deep neural net-
work (DNN) [36], [37]. This basic handwriting recognition
application recognizes an image in which one of the numbers
0 to 9 is handwritten, determines which number the image
is, and shows the result. As the DDN architecture for this
application, an architecture consisting of two convolution
layers, two max pooling layers, and two fully connected
layers was used, as shown in FIGURE 14. For DDN training,

10 VOLUME –, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108475, IEEE Access

Submitted to the IEEE ACCESS, 2s021

Contrast

Convolution & Pooling

Core1

Core2

Core3

Core4

28x281024x600

Bounding box

Resize

Fully connected

FIGURE 14: Multi-processing of the handwriting recognition application.

MNIST [38], the well-known handwritten image database,
was used, and the parameters of the DNN trained in a Linux
PC using TensorFlow [39], a deep learning framework, were
applied to the handwriting recognition application.

The MNIST database is composed of images of handwrit-
ten numbers, each image is in the format of 8 bits grayscale
28x28 pixels, and the handwritten numbers in the images
are located at a certain size in the center of the image. In
addition, since the MNIST database was used for training
DNN, the input image of the DNN must be in the same
format as the image of the MNIST database, and to improve
the performance of DNN inference, the handwritten number
should be located in the center of the image at a certain size,
as do the images in the MNIST database.

In our target application that uses images taken by the
camera connected to the multicore prototype, not only the
format of the image obtained from the camera is different
from that of the MNIST database, but the handwritten num-
ber may not be located in the center of the image. Therefore,
to convert the image received from the camera into the image
format of the MNIST database, and to place the number in
the center of the image, we needed to implement image pre-
processing such as contrast, bounding box, and resize (cf.
yellow boxes in FIGURE 14). Finally, including this image
pre-processing part, we have implemented the camera-input
based handwriting recognition application by coding all of
the inference parts of the DNN in C language.

Using the developed handwriting recognition application
as a baseline, to experiment how much the performance
improves when TC is applied, we wrote a testbench that
applies TC to the baseline code that processes data in parallel.
More specifically, by coding the testbench that applies TC to
the image preprocessing process, we made the preprocessing
performed in parallel on 4 cores. After the pre-processing
process, the convolution layer and the max pooling layer of
the application are distributed to 4 cores in unit of feature
map, and multilayer perceptron (MLP) is distributed and

FIGURE 15: Measured execution time of the testbench run-
ning on the TC-enabled quad-core platform.

processed in parallel through implementation.
The developed testbench and baseline application were run

on a multicore platform consisting of four RISC-V cores pro-
totyped on a custom FPGA, and the results of the experiment
are reported in detail in the following subsection.

C. PERFORMANCE IMPROVEMENT RESULT
The testbenches are set by varying the number of variables
to which TC is applied to the developed handwriting recog-
nition application code. Then, the program execution times
are measured by operating each testbench on the TC enabled
quad-core platform (cf. FIGURE 13). More specifically, the
number of variables to which TC is applied is 0 as the
baseline (ie, TC is not applied), 1 to 5, and the measured
execution time of each case is reported in FIGURE 15. As
seen in the figure, the execution time continuously decreases
as the number of variables to which TC is applied increases.
As a result, when TC is applied to the five variables, its
execution time is greatly shortened compared to the baseline,
achieving a performance improvement of about 37%.

VOLUME –, 2021 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108475, IEEE Access

Submitted to the IEEE ACCESS, 2021

TABLE 4: Comparison of quad-core platforms with different
coherency schemes implemented on the FPGA.

Approach HW Practical-SW TC

Shablack variable Cached Not-cached Temporarily

Requiblack HW CCL - TCU
(Availability) (limited) (Provided)

Platform dev. Hard Easy Easydifficulty

Requiblack SW - - API
(Availability) (Provided)

Application dev. Easy Easy Mediumdifficulty

LUTs 48,698 38,936 43,360
(80.0%) (89.0%)

FFs 18,663 16,060 19,704
(86.1%) (105.6%)

Application 0.992 1.818 1.148
exec. time (sec) (183.3%) (115.8%)

D. COMPARISON WITH THE OTHER APPROACHES
We evaluate how close the performance improvement of the
proposed TC is to that of a multi-core platform using CCL.
To this end, we used the Rocket [34] cores, which fortunately
also offers a 4-core version with a dedicated CCL along with
a single-core version. The results of comparative analysis
for the hardware-based approach using CCL, the software-
based approach that does not allow shared variable cache
at all, and the proposed TC are reported in TABLE 4 as
HW, practical-SW, and TC, respectively. As can be seen
from the table, the HW approach often presents a very high
level of difficulty in developing the CCL directly, so only
limited platform development is practically possible using
only the few types of cores that come with the CCL. On
the other hand, practical-SW and TC approaches have low
platform development challenges, no matter which core is
used to develop a multi-core platform. Looking at the diffi-
culties of developing applications that work on the developed
platform, the TC approach provides an easy-to-use API,
but it is still difficult compared to the HW or practical-SW
approach. Meanwhile, in FPGA prototyping, the hardware
resource consumption results of CCL and TCU show that
the HW approach requires more hardware resources than the
TC approach. In addition, for performance comparison, the
HW approach has the shortest application execution time as
expected, but the TC approach is also close. Of course, the
performance of these two is far better than the practical SW
approach. In the end, when developing multicore platforms
using different types of RISC-V cores, the proposed TC
approach may be the general solution, as it is flexible and
easy, and the developed platform has good performance.

VII. CONCLUSION
Considering that when developing multicore platforms us-
ing various RISC-V cores, it is difficult to implement the

dedicated CCL within each platform, resulting in a serious
performance degradation problem. As a solution of this
problem, we proposed the TC, a method that improves the
performance of a multicore platform by enabling caching
of data that are definite to not be shared for a certain pe-
riod of time. Through a sophisticated operation mechanism,
the proposed TC achieves performance improvement of the
multicore platform while preventing the problem that can
occur when TC data and non-TC data are on the same cache-
line that can cause a fatal system error. To implement the
proposed TC, we developed TC API for programmers and
TC dedicated hardware, TCU, for platform developers, and
detailed descriptions of each implementation method were
provided in this paper. Especially, since the TCU operates
independently of the core, it is possible to develop a TC-
enabled multicore platform no matter what RISC-V cores
are used. In addition, we proposed a method of embedding
and implementing TCU in NoC in a multicore platform to
facilitate the convenience of platform developers. Finally,
in order to verify the effectiveness of the proposed TC, we
implemented a quad-core platform equipped with TCU on
the FPGA, and developed a handwriting recognition appli-
cation with TC applied as a testbench. Through experimental
work, we demonstrated that by applying TC, the performance
of a multicore platform can be improved up to about 37%
compared to the performance of a platform without TC.

REFERENCES
[1] J. L. Hennessy and D. A. Patterson, “A new golden age for computer

architecture,” in Communications of the ACM, vol. 62, no. 2, 2019, pp.
48–60.

[2] RISC-V, https://riscv.org/, accessed 23 Feb. 2020.
[3] S. Greengard, “Will RISC-V revolutionize computing?” in Communica-

tions of the ACM, vol. 63, no. 5, 2020, pp. 30–32.
[4] D. Patterson, “50 years of computer architecture: From the mainframe cpu

to the domain-specific tpu and the open risc-v instruction set,” in 2018
IEEE International Solid - State Circuits Conference - (ISSCC), 2018, pp.
27–31.

[5] B. Chapman, L. Huang, E. Biscondi, E. Stotzer, A. Shrivastava, and
A. Gatherer, “Implementing OpenMP on a high performance embedded
multicore MPSoC,” in IEEE International Symposium on Parallel Dis-
tributed Processing, 2009, pp. 1–8.

[6] A. C. Sodan, J. Machina, A. Deshmeh, K. Macnaughton, and B. Esbaugh,
“Parallelism via multithreaded and multicore CPUs,” Computer, vol. 43,
no. 3, pp. 24–32, 2010.

[7] Y. Kanehagi, D. Umeda, A. Hayashi, K. Kimura, and H. Kasahara,
“Parallelization of automotive engine control software on embedded multi-
core processor using OSCAR compiler,” in IEEE COOL Chips XVI, 2013,
pp. 1–3.

[8] S. Davidson, S. Xie, C. Torng, K. Al-Hawai, A. Rovinski, T. Ajayi,
L. Vega, C. Zhao, R. Zhao, S. Dai, A. Amarnath, B. Veluri, P. Gao,
A. Rao, G. Liu, R. K. Gupta, Z. Zhang, R. Dreslinski, C. Batten, and M. B.
Taylor, “The celerity open-source 511-core risc-v tiered accelerator fabric:
Fast architectures and design methodologies for fast chips,” IEEE Micro,
vol. 38, no. 2, pp. 30–41, 2018.

[9] M. Strobel and M. Radetzki, “Design-time memory subsystem optimiza-
tion for low-power multi-core embedded systems,” in IEEE International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MC-
SoC), 2019, pp. 347–353.

[10] M. Wang, T. Ta, L. Cheng, and C. Batten, “Efficiently supporting dynamic
task parallelism on heterogeneous cache-coherent systems,” in ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
2020, pp. 173–186.

12 VOLUME –, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108475, IEEE Access

Submitted to the IEEE ACCESS, 2s021

[11] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo directory:
A scalable directory for many-core systems,” in IEEE International Sym-
posium on High Performance Computer Architecture, 2011, pp. 169–180.

[12] M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache
coherence is here to stay,” vol. 55, no. 7, 2012.

[13] Y. Fu, T. M. Nguyen, and D. Wentzlaff, “Coherence domain restriction on
large scale systems.” New York, NY, USA: ACM, 2015.

[14] H. Kim, A. Kandhalu, and R. Rajkumar, “A coordinated approach for
practical OS-level cache management in multi-core real-time systems,” in
2013 25th Euromicro Conference on Real-Time Systems, 2013, pp. 80–89.

[15] M. Hassan, A. M. Kaushik, and H. Patel, “Predictable cache coherence for
multi-core real-time systems,” in 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017, pp. 235–246.

[16] S. Li and D. Guo, “Cache coherence scheme for hcs-based CMP and its
system reliability analysis,” IEEE Access, vol. 5, pp. 7205–7215, 2017.

[17] M. Gupta, V. Sridharan, D. Roberts, A. Prodromou, A. Venkat, D. Tullsen,
and R. Gupta, “Reliability-aware data placement for heterogeneous mem-
ory architecture,” in 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2018, pp. 583–595.

[18] A. Ros, M. E. Acacio, and J. M. Garcia, “DiCo-CMP: Efficient cache
coherency in tiled CMP architectures,” in 2008 IEEE International Sym-
posium on Parallel and Distributed Processing, 2008, pp. 1–11.

[19] I.-C. Lin and J.-N. Chiou, “High-endurance hybrid cache design in CMP
architecture with cache partitioning and access-aware policies,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23,
no. 10, pp. 2149–2161, 2015.

[20] U. Milic, A. Rico, P. Carpenter, and A. Ramirez, “Sharing the instruction
cache among lean cores on an asymmetric CMP for HPC applications,” in
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2017, pp. 3–12.

[21] G. G. Shahidi, “Chip power scaling in recent CMOS technology nodes,”
IEEE Access, vol. 7, pp. 851–856, 2019.

[22] M. Ansari, M. Pasandideh, J. Saber-Latibari, and A. Ejlali, “Meeting
thermal safe power in fault-tolerant heterogeneous embedded systems,”
IEEE Embedded Systems Letters, vol. 12, no. 1, pp. 29–32, 2020.

[23] S. Chakraborty and H. K. Kapoor, “Exploring the role of large centralised
caches in thermal efficient chip design,” ACM Trans. Des. Autom. Elec-
tron. Syst., vol. 24, no. 5, Jun. 2019.

[24] M. Rapp, M. Sagi, A. Pathania, A. Herkersdorf, and J. Henkel, “Power-
and cache-aware task mapping with dynamic power budgeting for many-
cores,” IEEE Transactions on Computers, vol. 69, no. 1, pp. 1–13, 2020.

[25] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethinking the
memory hierarchy for disciplined parallelism,” in International Conference
on Parallel Architectures and Compilation Techniques, 2011, pp. 155–166.

[26] J. Cai and A. Shrivastava, “Software coherence management on non-
coherent cache multi-cores,” in 2016 International Conference on VLSI
Design and 2016 15th International Conference on Embedded Systems
(VLSID), 2016, pp. 397–402.

[27] K. Han, J. J. Lee, and W. Lee, “Converting interfaces on application-
specific network-on- chips,” To appear in IEIE Journal of Semiconductor
Technology and Science, vol. PP, no. 99, pp. 1–1, 2017.

[28] H. Jang, K. Han, S. Lee, J. Lee, and W. Lee, “Mmnoc: Embedding memory
management units into network-on-chip for lightweight embedded sys-
tems,” IEEE Access, vol. 7, pp. 80 011–80 019, 2019.

[29] D. Petrisko, F. Gilani, M. Wyse, D. C. Jung, S. Davidson, P. Gao, C. Zhao,
Z. Azad, S. Canakci, B. Veluri, T. Guarino, A. Joshi, M. Oskin, and
M. B. Taylor, “Blackparrot: An agile open-source RISC-V multicore for
accelerator SoCs,” IEEE Micro, vol. 40, no. 4, pp. 93–102, 2020.

[30] L. Chen, D. Zhu, M. Pedram, and T. M. Pinkston, “Power punch: towards
non-blocking power-gating of NoC routers,” in Proceedings of the Inter-
national Symposium on High Performance Computer Architecture, 2015,
pp. 378–389.

[31] K. Han, J. J. Lee, J. Lee, W. Lee, and M. Pedram, “TEI-NoC: Optimizing
ultra-low power nocs exploiting the temperature effect inversion,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. PP, no. 99, pp. 1–1, 2017.

[32] M. Schoeberl, L. Pezzarossa, and J. Sparsø, “A minimal network interface
for a simple network-on-chip,” in Architecture of Computing Systems –
ARCS 2019, 2019, pp. 295–307.

[33] K. Han, S. Lee, K.-I. Oh, Y. Bae, H. Jang, J.-J. Lee, W. Lee, and
M. Pedram, “Developing tei-aware ultralow-power soc platforms for iot
end nodes,” IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4642–4656,
2021.

[34] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio,
H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller,
D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao,
M. Moreto, A. Ou, D. A. Patterson, B. Richards, C. Schmidt, S. Twigg,
H. Vo, and A. Waterman, “The rocket chip generator,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr
2016. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2016/EECS-2016-17.html

[35] Xilinx, “Vivado 2016.4,” https://www.xilinx.com/support/\\download/
index.html/content/xilinx/en/downloadNav/vivado-design-tools/2016-4.
html, accessed 23 Feb. 2020.

[36] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in 2012 IEEE Conference on Computer
Vision and Pattern Recognition, 2012, pp. 3642–3649.

[37] B. Hutchinson, L. Deng, and D. Yu, “Tensor deep stacking networks,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35,
no. 8, pp. 1944–1957, 2013.

[38] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[39] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). Savannah, GA: USENIX
Association, Nov. 2016, pp. 265–283. [Online]. Available: https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/abadi

VOLUME –, 2021 13

