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ABSTRACT Audio codecs generate notable artifacts when operating at low bitrates, which degrade the
quality of the coded audio significantly. There have been several approaches to enhance the quality of
decoded signals with and without side information. While pre- or post-processing approaches without side
information can be applied directly to existing systems without modifying codecs, approaches utilizing side
information can further enhance the performance while maintaining backward-compatibility with existing
codecs. In this paper, we propose a method to improve decoded signals using neural network-based side
information. A neural network in the transmitter side that generates the side information and another neural
network in the receiver side that estimates the log power spectra (LPS) of the original signal from the decoded
signal and the side information are jointly trained to accurately reconstruct the original signal. In the same
line with the analysis-by-synthesis, the neural network that generates the side information in the transmitter
side takes not only the LPS of the original signal but also the LPS of the decoded signal as the input by
decoding the encoded bitstream at the transmitter side. Experimental results show that the proposed audio
codec enhancement scheme using neural network-based side information outperformed the audio codec
enhancement without side information for the same codec operating at higher bitrates.

INDEX TERMS Audio codec, speech codec, side information, deep neural network, decoded signal
enhancement.

I. INTRODUCTION
Speech and audio codecs have been studied extensively
to realize higher perceived quality with lower bitrate for
either compressed storage or efficient transmission such as
speech communication and broadcasting [1]–[4]. However,
the quality of decoded signals degrades at low bitrates, due
to issues such as quantization noise, pre-echo, and band-
width limitations. There have been researches to enhance
the quality of the decoded signal. Approaches leveraging
preprocessing on the transmitter side have been proposed.
In such approaches, the input signal is modified so that the
codec output for the modified input is closer to the origi-
nal input signal [5], [6]. Standardized speech codecs such
as ITU-T Recommendation G.711 [7] and G.718 [8] have
postfilters inside the decoder to reduce quantization noise
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and enhance low frequency pitch. There have also been
approaches to reduce pre-echowith andwithout side informa-
tion. A method to detect transient signals in decoded signals,
suppress pre-transient signals, and amplify post-transient sig-
nals when transient signals are detected has been proposed
in [9]. In [10], envelope flattening was applied to high pass
signals as a preprocessor to reduce pre-echo, and the gain
for envelope flattening was transmitted to the receiver side
as side information, which is used to reconstruct the signal
during post-processing. Companding [11] has been applied
in the quadrature mirror filter (QMF) domain to achieve
temporal noise shaping [12], [13] with a lower number of
bits. Recently, deep learning-based approaches have been
proposed to enhance the quality of decoded signals. Con-
volutional neural network (CNN)-based post-processing in
the cepstral domain was proposed in [14], which enhances
low order cepstral coefficients for decoded signals. In [15],
long short-term memory recurrent neural networks (RNNs)
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FIGURE 1. Block diagram of decoded signal enhancement using side information.

were employed to exploit temporal and spectral correlations
to restore original music from that coded at a low bitrate.
Signal restoration using generative adversarial networks was
proposed in [16], by assuming that the generative model is
capable of recovering components lost by low bitrate coding.
Mask-based post-filter was also investigated by employing a
convolutional encoder-decoder [17]. In [18], [19], and [20],
decoders of parametric coders were constructed using neural
speech synthesizers based on WaveNet [21], SampleRNN
[22], and LPCNet [23], respectively. Moreover, in [24], the
decoder of a waveform matching coder was replaced with
LPCNet. The entire coding scheme was replaced by neural
networks in [25], showing impressive performance. However,
this model was prone to errors that the traditional coding
scheme did not induce, such as phoneme mismatches or
slurred speech [26].

In this paper, we propose a coded speech enhancement
scheme using neural network-based side information. As the
generated side information is appended to the bitstream
from the encoder of the target codec, the proposed approach
can ensure backward-compatibility with existing devices and
content, while improving the quality of the decoded sig-
nal significantly. Examples of such side information can be
seen in the MPEG high-efficiency advanced audio coding
(HE-AAC) family [27], [28], where HE-AAC v1 appends
the spectral band replication [29] as side information to the
bitstream of AAC [30], and HE-AAC v2 adds the parametric
stereo [31], [32] on top of the HE-AAC v1 bitstream. A neural
network on the transmitter side generates side information
from the signals, and another neural network on the receiver
side estimates the log power spectra (LPS) of the origi-
nal signal from the decoded signal and the quantized side
information. The side information extraction network on the
transmitter side and the post-processing on the receiver side
are jointly trained to minimize the loss. Experimental results
showed that the proposed scheme outperformed deep neural
network (DNN)-based enhancement methods without side
information applied to the same codec operating at higher
bitrates.

II. ENHANCEMENT OF CODED SPEECH USING
DNN-BASED SIDE INFORMATION
Fig. 1 shows a block diagram of the decoded signal enhance-
ment scheme using side information. The coded side informa-
tion is concatenated with the bitstream generated by the main
part of the encoder, and then transmitted to the receiver side.
The side information is reconstructed at the receiver side
from the received bitstream and is used for post-processing
with the decoded signal. The side information transmitted
to the receiver side is in many cases hand-crafted features
such as voice activities, transient signal detection, and soft
gain at time-frequency bins. The postfilter at the receiver side
should then be designed accordingly to enhance the audio
quality using the side information. In this paper, we propose
to employ neural networks for both side information extrac-
tion and post-processing. Instead of designing the extractor
to estimate hand-crafted features and then constructing the
model for the post-processing to incorporate the resultant side
information, we trained the networks for side information
generation and post-processing simultaneously. As a result,
we were able to generate side information and process the
decoded signal in a data-driven manner, with an objective
function on the similarity between the original input and the
final output. Vector quantization (VQ) for the side informa-
tion was not considered during network training. The code-
book for the VQ was constructed using k-means clustering
[33] after training two neural networks. We expect that the
proposed method would produce higher fidelity sound com-
pared with the output of DNN-based post-processing without
side information, even at the higher bitrates.

The neural network models for side information
extraction and post-processing can be any deep learn-
ing model, such as feed-forward DNN (ffDNN), CNN,
RNN, and adversarial loss-based models in the time- or
frequency-domain [14]–[17]. In this study, we employed
the simplest model to confirm if neural network-based side
information generation and post-processing are effective.
The neural network that generates side information takes
not only the features for the original signal but also those
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for the decoded signal obtained by the decoder equipped
in the encoder, as they provide important information on
what is missing in the decoded signal. The side information
extraction was implemented as a CNN that takes the LPS
for the original and decoded signals in the current and pre-
vious frames as inputs and produces a d-dimensional vector.
The post-processing is a ffDNN that estimates the LPS for
the original signal using the LPS for the decoded signal in the
current and two previous frames and the received side infor-
mation. In speech enhancement, most widely-used targets
may be the LPS [34] and spectral masks [35]. Because audio
codecs produce artifacts such as high-frequency cuts, band
ruptures, holes, and isolated clusters on spectrograms [36],
the LPS for the original audio signal may be more suitable
as the target of the post-processing compared with spectral
masks. Over-smoothing is a common problem in DNN-based
regression approaches, but it may aid in smoothening the
spectrogram to relieve the artifacts described above. Two
neural networks were trained to minimize the loss function
E as follows:

E =
1
N

N∑
n=1

K∑
k=1

(
X kn − X̂

k
n
)2

, (1)

where N is the mini-batch size, K is the number of fre-
quency bin, X kn denotes the LPS for the original signal
at the k-th frequency bin in the n-th frame, and X̂ kn =
g(C̃n,Yn) is the LPS estimated by post-processing from both
the LPS for the decoded signal Yn = [Y 1

n ,Y 2
n , . . . ,YKn ]

and the transmitted side information C̃n. It should be noted
that post-processing considers the quantized side informa-
tion C̃n instead of the Cn generated by the neural net-
work, but the difference between C̃n and Cn was ignored
in the training. The network f to generate the side infor-
mation Cn was jointly trained with the post-processing g to
minimize the loss in Eq. (1). Post-processing without side
information was also learned to minimize the mean squared
error (MSE) between the LPS of the original and estimated
signals. The phases of the decoded signal were used along
with the estimated LPS to reconstruct the time domain signal.
The configuration is described in more detail in the next
section.

The extracted side information, which is in the form of a
d-dimensional vector, should be quantized appropriately for
efficient transmission. In this study, the codebook for the side
information was constructed using k-means clustering on the
side information vectors for the training set obtained with the
trained network f . The codebook index for the quantized side
information C̃n was converted into a bitstream and concate-
nated with the bitstream from the encoder of the main codec.
Although it is desirable to reflect the effect of the VQ of the
side information during training as in [25] and [37], VQ did
not degrade the performance in the experiments conducted in
this study.

III. EXPERIMENTS
A. TARGET CODEC AND DATASET
To demonstrate the performance of the proposed approach,
HE-AAC [27], [28] and adaptive multi-rate wideband speech
codec (AMR-WB) [38] were used as the baseline codecs.
While there are various implementations for HE-AAC v1,
we adopted two different codecs, Nero AAC [39] and QAAC
[40], in our experiments. The first is the Nero AAC operating
at constant bitrates of 20, 21, and 24 kbps. The bitrates for
QAAC, which is an open-source wrapper for Apple AAC,
were set to constant bitrates of 20 and 24 kbps. As for
the AMR-WB, the seven highest bitrates were used for the
experiments.

For evaluation, we used speech data sampled at 16 kHz
rather than music data because many speech databases are
readily available, and adequate objective measures are avail-
able for speech quality assessments, such as the ITU-T
Recommendation P.862.2 wideband perceptual evaluation of
speech quality (PESQ) [41]. Speech signal is also easier to
analyze, as a single frame of speech signal can be classified as
voiced, unvoiced, or silence. In the experiments, the TIMIT
[42], VCTK [43], and Wall Street Journal0 (WSJ0) [44]
databases were used, which are monaural speech databases
resampled at 16 kHz. The training set in the TIMIT dataset
contains 4,620 utterances spoken by 326male and 136 female
speakers, and the test set contains 1,680 utterances spoken by
112 male and 56 female speakers. The VCTK dataset con-
tains 12,396 utterances from 15 males and 15 females. The
WSJ0 dataset includes 35,487 utterances spoken by 66 males
and 65 females. We built the training set using the training set
of the TIMIT database, 11,572 utterances from 14 male and
14 female speakers in the VCTK database, and all utterances
from the WSJ0 database. The test set in the TIMIT database
and 824 utterances from one male and one female speakers in
the VCTK database were used as the test set.

B. COMPARED SYSTEMS AND MODEL CONFIGURATIONS
We analyzed the signals with a 32 ms long Hamming window
with a 16 ms frame shift. A 512-point FFT was applied to
retrieve the LPS features. The LPS features of the decoded
and original signals were normalized to zero-mean and unit-
variance. The estimated LPSwas denormalized to reconstruct
the signal in the time domain. The dimension of the side
information Cn generated by f , d , was set to 3. For the
VQ of the side information, 210 centroids were obtained by
the k-means algorithm using the side information vectors
generated for a randomly selected 10% portion of the training
set. As 10 bits of side information was generated for every
frame of 16 ms shift, the bitrate for the side information
was approximately 0.6 kbps. The proposed method with
vector-quantized side information applied to the main codecs
operating at 20 or 23.05 kbps is denoted as 20+0.6 kbps
enhanced or 23.05+0.6 kbps enhanced in the experimental
results. We also evaluated the performance of the proposed
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method without VQ on the side information, which resulted
in 3 kbps of the side information using three 16-bit numbers
to verify the effect of the VQ for the side information on the
performance. This system is denoted as 20+3 kbps.

The input size of the network for side information extrac-
tion was 2×(3×257), including the LPS for the two previous
frames and the current frame of the original and decoded
signals. The input was passed through three convolutional
layers without padding. The kernel sizes were (1 × 257),
(3 × 1), and (1 × 1), and the parametric rectified linear
unit (PReLU) and the sigmoid function were used as the
activation functions for the first two layers and the last layer,
respectively. The number of output channels were set to
64, 16, and d . The model for post-processing with the side
information had an ffDNN structure of 1024-1024-1024 units
with the PReLU activation function when the input dimen-
sion was 771+3, including the LPS for the current and two
previous frames and 3-dimensional side information, and the
output dimension was 257. The activation function for the
output layer was a linear function. The network structure
for side information extraction, f , and post-processing, g,
is illustrated in Fig. 2. The filters in the first layer of f in the
transmitter side extract features from the original and decoded
signals in all frequencies of each of the individual frames,
while the filters in the second layer summarize the features
across the temporal dimension, which is further compressed
in the last layer of f . The CNN was suitable to apply filtering
in appropriate dimensions step-by-step. The ffDNN-based
post-processing, g, in the receiver side was constructed using
a simple structure that takes the transmitted side information
along with the LPS from the three frames of the decoded
signals to estimate the original LPS. The proposed pre-and
post-processing required approximately 200 weighted mil-
lion operations per second (WMOPS) [45] in addition to
that of the main codec. It is noted that the current work
focused on demonstrating the effectiveness of using neural
network-based side information for coded speech enhance-
ment, and computational complexity was not of primary con-
cern. We compared the performance of the proposed method
to that of the decoded signals for the same codec operating at
higher bitrates enhanced with ffDNN-based post-processing
without any side information and the mask-based post-filter
proposed in [17]. The ffDNN structure for post-processing
without side information was also 1024-1024-1024 units for
three hidden layers, which was the same as that for the
post-processing g in the proposed method, except for the
input dimension. The mask-based post-filter [17] had a con-
volutional encoder-decoder structure that takes the log mag-
nitude spectra for the current and previous frames to estimate
the ideal ratio masks bounded by 4 and 2 for HE-AAC and
AMR-WB, respectively. The ffDNN-based post-processing
without side information and the mask-based post-filter
required approximately 197 WMOPS and 1187 WMOPS,
respectively. The loss functions were minimized using the
adaptive moment estimation (Adam) optimizer [46] with a

FIGURE 2. The structure of networks for side information extraction f
and post-processing g.

learning rate of 0.0001. Themodel was trained for 100 epochs
with a batch size, N , of 128.

IV. EXPERIMENTAL RESULTS
We evaluated the quality of the output signals using an objec-
tive measure of subjective quality and a subjective listening
test. The objective measure used in the experiments was the
wideband PESQ scores [41], which are designed to mimic
the ITU-T Recommendation P.800 Absolute Category Rat-
ing (ACR) Mean Opinion Score (MOS) test scores [47]. The
average PESQ scores for the decoded signals, outputs of the
mask-based post-filter in [17], outputs of the ffDNN-based
post-processing without side information, and outputs of the
proposed method utilizing side information for the HE-AAC
operating at various bitrates are shown in Fig. 3. The quality
of the decoded signals for the Nero AAC was generally
worse than that for the QAAC at the same bitrates. For
both the Nero AAC and QAAC codecs, the experimental
results show that the average PESQ scores for the decoded
speech could be significantly improved by the mask-based
post-filter [17] or the ffDNN-based post-processing without
side information, and could be further improved by using
side information. The average PESQ score for the proposed
system with 0.6 kbps of side information applied to the
Nero AAC operating at 20 kbps (denoted as 20+0.6 kbps
enhanced) was 0.23 higher than that for the signals enhanced
by the ffDNN-based post-processing without side infor-
mation. 20+0.6 kbps enhanced outperformed the signals
enhanced without side information by 0.11 when the bitrate
of the Nero AAC codec was 24 kbps. As for QAAC, the per-
formance improvement over the signals enhanced by the
ffDNN-based post-processing without side information for
bitrates of 20 and 24 kbps was 0.22 and 0.06 in terms of
the PESQ scores, respectively. The 95 % confidence intervals
are also shown in Fig. 3. We can conclude that the proposed
system with 20+0.6 kbps outperformed the signal enhanced
without side information even when the bitrate was 24 kbps
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FIGURE 3. Average PESQ scores for the decoded signals (20, 21, and
24 kbps), the signals enhanced by the mask-based post-filter (20, 21, and
24 kbps enhanced by [17]), those enhanced by the ffDNN-based
post-processing without side information (20, 21, and 24 kbps enhanced
by ffDNN), and those enhanced by the proposed method with side
information (20+0.6 kbps enhanced, 20+3 kbps enhanced) for (a) Nero
AAC and (b) QAAC. Whiskers indicate 95 % confidence intervals.

for both Nero AAC and QAAC. Additionally, we evalu-
ated the quality of the signals enhanced by the proposed
method without VQ, which resulted in 3 kbps of side infor-
mation. As observed in Fig. 3, the average PESQ scores for
20+0.6 kbps and 20+3 kbps were very close, implying that
10 bits of vector-quantized side information was suitable to
provide information to reconstruct the original signal. We can
also speculate that incorporating the effect of the VQ into the
neural network training may not improve the average PESQ
scores by more than 0.02, as the performance for 20+3 kbps
would be upper bound.

The subjective quality was assessed with MUltiple Stimuli
with Hidden Reference and Anchor (MUSHRA) listening
tests [48]. Fig. 4 shows the average MUSHRA scores for
nine items evaluated by 11 listeners to compare five systems
for each codec: the decoded signals at 24 kbps, the signals
enhanced with side information operating at 20+0.6 kbps,
and the signals enhanced without side information at 24 kbps,
along with the hidden references and 3.5 kHz low-pass (LP)
filtered anchors. We can confirm that both the enhanced
signals were perceived significantly better than the decoded
signals for 24 kbps, and the proposed method exhibited

FIGURE 4. Average MUSHRA scores for 9 items evaluated by 11 listeners
comparing the quality of the decoded signal (24 kbps decoded),
the signal enhanced by a ffDNN-based post-processing without side
information (24 kbps enhanced by ffDNN) for the HE-AAC operating at
24 kbps, and the output of the proposed approach with 0.6 kbps of the
side information for the HE-AAC operating at 20 kbps (20+0.6 kbps
enhanced) when the HE-AAC codec was (a) Nero AAC and (b) QAAC.
Whiskers indicate 95 % confidence intervals.

comparable perceptual quality to the 24 kbps enhanced by
ffDNN although it required only 20.6 kbps.

Fig. 5 shows the spectrograms of the original sig-
nals, the decoded signals (denoted as 24 kbps decoded),
the enhanced signals with the mask-based post-filter (denoted
as 24 kbps enhanced by [17]) and the ffDNN-based
post-processing without side information (denoted as 24 kbps
enhanced by ffDNN ) for the HE-AAC operating at 24 kbps,
and the outputs of the proposed system with 0.6 kbps
of side information applied to the HE-AAC operating at
20 kbps (denoted as 20+0.6 kbps enhanced) for Nero AAC
and QAAC. For both codecs, artifacts such as pre-echo,
high-frequency cuts, band ruptures, or holes were observed
in the spectrograms of the decoded signals at 24 kbps,
and these artifacts were mitigated to a certain extent in the
enhanced signals. The signals enhanced with side informa-
tion were more similar to the original signal than others,
especially in the areas indicated by the dotted boxes. For
the Nero AAC, the spectral holes in the first and the second
boxes of 24 kbps decoded, which are the time-frequency
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FIGURE 5. Spectrograms for the original, decoded, and enhanced signals with the mask-based
post-filter in [17] and the ffDNN-based post-processing without side information for the HE-AAC
operating at 24 kbps, and the output of the proposed system with 0.6 kbps of side information
applied to the HE-AAC operating at 20 kbps when the HE-AAC codec was (a) Nero AAC and (b) QAAC.

components quantized to zero resulting in sharp or insta-
ble sounds, were not recovered in 24 kbps enhanced by
ffDNN and 24 kbps enhanced by [17], but were filled in
20+0.6 kbps enhanced. In the third boxes, the pre-echo in
24 kbps decoded, which is the spectral component before
the onset of the signal generated by the codec due to the

use of long windows, was reduced in 24 kbps enhanced by
[17] and 24 kbps enhanced by ffDNN , and was completely
removed in 20+0.6 kbps enhanced. As for the last boxes,
the reverberation in the original signal, which is a gradual
diminishing of spectral components, was present in 24 kbps
decoded and 20+0.6 kbps enhanced, but was suppressed
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FIGURE 6. LPS differences between the original and decoded signals
averaged for frequencies above 4.9 kHz, temporal evolution of the
3-dimensional side information for Nero AAC operating at 20 kbps, and
spectrograms of the original and decoded signals.

in 24 kbps enhanced by ffDNN. In Fig. 5(b), the harmonic
structure in the first boxes was more evident in 20+0.6 kbps
enhanced, compared with others. The pre-echo in the second
boxes was also removed most successfully in 20+0.6 kbps
enhanced. In the last boxes, the reverberation was preserved
better in 20+0.6 kbps enhanced , compared with 24 kbps
enhanced by ffDNN.

We examined how the extracted side information was
related to the characteristics of the input signal. Fig. 6 shows
the LPS differences between the original and decoded signals
averaged over frequencies above 4.9 kHz for Nero AAC
operating at 20 kbps, along with the spectrograms of the
original and decoded signals. The side information marked
with a blue line in the second plot resembled the average LPS
differences in the high frequency shown in the top plot. The
red boxes in the spectrograms indicate the frames with pre-
echoes, which is the audible component before the onset of
the signal that was not present in the original signal. This was
introduced by the use of long windows. It can be seen that
the red line in the second plot had high values for the regions
with pre-echoes. The pattern of the last variable marked with
yellow was not as clear as the others; this is possibly because
it should consider all the residual information required to
reconstruct the original signal.

To verify that the proposed method can enhance the quality
of the decoded speech for the speech codec, we performed
additional experiments on the AMR-WB codec operating
at various bitrates in a similar manner to the experiments
with HE-AAC. Fig. 7 shows the average PESQ scores for
the decoded signals, signals enhanced with the ffDNN-based
post-processing without side information, the mask-based
post-filter [17], and the proposed method with 0.6 kbps of
side information when the AMR-WB was operating with

FIGURE 7. Average PESQ scores for the decoded signals, the signals
enhanced by the post-processing without side information,
the mask-based post-filter [17], and the proposed method with side
information, when the baseline codec was AMR-WB operating at various
bitrates. Whiskers indicate 95 % confidence intervals.

12.65 to 23.85 kbps. In contrast to the experiments with
the HE-AAC codecs, the mask-based post-filter [17] outper-
formed the ffDNN-based post-processing in this experiment,
which is possibly because each codec generates different
types of artifacts. The average PESQ scores for the outputs
of the proposed method with side information were similar to
or higher than those for the signals coded and decoded with
higher bitrates and enhanced by [17]. From the experimental
results, we can confirm that the proposed method enhanced
the quality of the decoded speech effectively using only
0.6 kbps of side information.

V. CONCLUSION
In this paper, we propose a codec enhancement scheme
using neural network-based side information. Compared with
designing an entire codec with new principles, the proposed
approach appends side information to the bitstream gen-
erated by legacy coders to provide backward-compatibility
for existing devices, while providing adequate performance
improvement that cannot be achieved without side informa-
tion. A CNN generates side information using the LPS for the
original and decoded signals in the current and two previous
frames, which is vector-quantized and transmitted with the
bitstream from the original encoder. On the receiver side,
an ffDNN-based post-processing takes the side information
and the LPS for three frames of the decoded signal as inputs
to estimate the LPS of the original signal. The networks were
jointly trained to minimize the mean square error between
the original and reconstructed signals. Our experiments on
two different HE-AAC andAMR-WB codecs showed that the
proposedmethodwith neural network-based side information
could achieve better perceptual quality of the output sig-
nal than DNN-based enhancement without side information
applied to the same codec operating at higher bitrates.
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