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Abstract: Human-robot interaction has received a lot of attention as collaborative robots became
widely utilized in many industrial fields. Among techniques for human-robot interaction, collision
identification is an indispensable element in collaborative robots to prevent fatal accidents. This
paper proposes a deep learning method for identifying external collisions in 6-DoF articulated
robots. The proposed method expands the idea of CollisionNet, which was previously proposed for
collision detection, to identify the locations of external forces. The key contribution of this paper
is uncertainty-aware knowledge distillation for improving the accuracy of a deep neural network.
Sample-level uncertainties are estimated from a teacher network, and larger penalties are imposed
for uncertain samples during the training of a student network. Experiments demonstrate that the
proposed method is effective for improving the performance of collision identification.

Keywords: collision identification; collaborative robot; deep learning; uncertainty estimation; knowl-
edge distillation

1. Introduction

With the increasing demands of collaborative tasks between humans and robots, the
research on human–robot interaction has received great attention from researchers and
engineers in the field of robotics [1]. Robots that can collaborate with humans are called
collaborative robots (cobots), and cobots differ from conventional industrial robots in that
they do not require a fence to prevent access. Previously, the application of robots is limited
to performing simple and repetitive tasks in well-structured and standardized environ-
ments such as factories and warehouses. However, the development of sensing and control
technologies has significantly expanded the area of application of cobots [2], and they are
beginning to be applied to several tasks around us. More specifically, their applications
have been diversified from traditional automated manufacturing and logistics industries to
more general tasks such as medical [3], service [4,5], food and beverage industries [6], and
these tasks require more elaborate sensing and complicated control techniques. Further-
more, with the development of intelligent algorithms including intention estimation [7]
and gesture recognition [8], cobots can be utilized in wider application areas.

In general, robots have advantages over humans in repetitive tasks, and humans are
better at making comprehensive decisions and judgments. Therefore, human–robot col-
laboration possibly increases the efficiency of intelligent systems through complementary
synergies. As the scope of robotics applications gradually expands through collaborative
work, interaction with humans or unstructured environments has become an important
technical issue, which requires the implementation of advanced perception and control
algorithms. Especially, collision detection and identification techniques are indispensable
elements to improve the safety and reliability of collaborative robots [9,10].
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To perform cooperative tasks with the aid of human–robot interactions, several studies
have been carried out to detect and identify robot collisions for the safety of workers [11].
Previous work can be categorized into two approaches: the first category is the study on
the control of collaborative robots by predicting possible collisions and the other is the
study of responses after impacts. While collision avoidance is more advantageous in terms
of safety [12], this approach inevitably requires additional camera sensors for action recog-
nition of coworkers or 3D reconstruction of surrounding environments [13]. Furthermore,
it is difficult to completely avoid abrupt and unpredictable collisions. Therefore, techniques
for collision identification are essential to improve the safety and reliability of collaborative
robots.

Collision detection algorithms investigate external forces [14] or currents [15] to deter-
mine whether a true collision has occurred on an articulated robot. A key element in the
procedure of collision detection is the estimatation of external torques. A major approach
to estimating external torques is utilizing torque sensor signals to compute internal joint
torques based on the physical dynamics of robots, and several other methods to construct
momentum observers to estimate external torques without the use of torque sensors. The
method that does not use torque sensors is called sensorless external force estimation, and
an elaborate modeling of the observer and filter is essential for the precise estimation of
external forces [16–19]. External forces are further processed by a thresholding method [20]
or classification algorithm [21], to determine whether a collision has occurred. Recently,
deep-learning-based methods have outperformed traditional model-based methods in
detecting collisions [22]. Beyond collision detection, the identification of collision locations
is beneficial for the construction of more reliable collaborate robots, by making them react
appropriately in collision situations.

To ensure the proper responses of collaborative robots in cases of collisions, it is neces-
sary to identify collision locations. The collision identification technique can be defined as
a multiclass classification of time series sensor data according to collision locations. In early
studies, collision identification was mainly based on the elaborate modeling of filters [23]
and observers [24], and a frequency domain analysis was conducted to improve the accu-
racy of collision identification [25]. To address the classification problem, machine learning
techniques, which were employed to analyze time series data, have also been applied to
collision identification [26]. Recently, support vector machines [27] and probabilistic meth-
ods [28] were applied to improve the reliability of collision identification systems. In [29],
the collision identification performance was improved by utilizing additional, sensors such
as inertial measurement units, and analyzing their vibration features.

In this paper, we propose a method that can identify collisions on articulated robots by
utilizing deep neural networks for joint sensor signals. Collision identification refers to a
technique that not only detects the occurrence of a collision, but also determines its location.
Recently, a collision detection method was proposed by Heo et al. [22]; we extend this
existing method for collision identification and improve the robustness of the deep neural
network. To improve the performance of the collision identification system, we construct a
deeper network, which is called a teacher network, to distill its probabilistic knowledge to
a student network. In the process of distilling knowledge, we employ the uncertainties of
the teacher network to focus on learning difficult examples, mostly collision samples. This
paper is organized as follows. Section 2 presents related work, Section 3 explains collision
modeling and data collection, and Section 4 presents the proposed method. Section 5 and
Section 6 presents the experimental results and conclusion, respectively.

2. Related Work
2.1. Deep Learning Methods for Collision Identification of Collaborative Robots

Collision detection is a key technology to ensure the safety and reliability of col-
laborative robots. Although most previous methods were based on the mathematical
modeling of robots [30–32], recently, deep learning methods have shown promising results
for this goal. Min et al. [33] estimated vibration features based on the physical modeling
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of robots and utilized neural networks for collision identification. Xu et al. [34] combined
neural networks and nonlinear disturbance observer for collision detection. Park et al. [35]
combined a convolutional neural network and support vector machine to detect colli-
sions, and Heo et al. [22] employed causal convolutions, which were previously utilized
for auto-regressive models in WaveNet [36] to detect collisions based on joint sensor signals
including torque, position, and velocity. Maceira et al. [37] employed recurrent neural
networks to infer the intentions of external forces in collaborative tasks, and Czubenko
et al. [38] proposed an MC-LSTM, which combines convolutions and recurrent layers
for collision detection. Mohammadi et al. [13] utilized external vision sensors to further
recognize human actions and collisions.

2.2. Knowledge Distillation

Knowledge distillation was proposed by Hinton et al. [39] to train a student network
with the aid of a deeper network, which is called a teacher network. Probabilistic responses
of the teacher network are beneficial to improve the accuracy of the student network be-
cause the probabilities of false categories were also utilized during knowledge distillation.
Although most early methods directly distill the logits of a teacher network, Park et al. [40]
utilized the logits’ relations, and Meng et al. [41] proposed a conditional teacher–student
learning framework. Furthermore, knowledge from intermediate feature maps was dis-
tilled for network minimization [42] and performance improvement [43,44]. Knowledge
distillation has been employed in various applications such as object detection [45], seman-
tic segmentation [46], domain adaptation [47], and defense for adversarial examples [48].
Recently, the teacher–student learning framework has been applied with other advanced
learning methodologies such as adversarial learning [49] and semi-supervised learning [50].

2.3. Uncertainty Estimation

Uncertainty plays an important role in interpreting the reliability of machine learning
models and their predictions. Probabilistic approaches and Bayesian methods have been
regarded as useful mathematical tools to quantify predictive uncertainties [51]. Recently,
Gal and Ghahramani proposed Monte Carlo dropout (MC-dropout) [52], which can be
interpreted as an approximate Bayesian inference of deep Gaussian processes, by utilizing
dropout [53] at test time. Lakshminarayanan et al. [54] proposed deep ensembles for the
better quantification of uncertainties, and Amersfoort et al. [55] proposed deterministic
uncertainty quantification, which is based on a single model to address the problem
of computational cost of MC-dropout and deep ensembles. Uncertainties have been
utilized to quantify network confidences [56], selecting out-of-distribution samples [57],
and improving the performance of deep neural networks [58,59], in various application
areas such as medical image analysis [60] and autonomous driving [61].

3. Collision Modeling and Data Collection
3.1. Mathematical Modelling of Collisions

This section explains the mathematical modeling of dynamic equations for 6 Degrees
of Freedom (DoF) articulated robots. In order to operate a robot through a desired trajectory
and move it to a target position, precise control torque is required for each joint motor, and
the control torque can be represented as the following dynamic equation:

τ = M(q)q̈ + C(q, q̇)q̇ + g(q), (1)

where τ ∈ Rn is the control torque, M(q) ∈ Rn×n is the inertia matrix of the articulated
robot, C(q, q̇) ∈ Rn×n is the matrix of Coriolis and Centrifugal torques, g(q) ∈ Rn is
the vector of gravitational torques, and q, q̇, q̈ are the angular position, velocity, and
acceleration of each joint, respectively. The dynamic equation can be obtained through the
Newton–Euler method or the Euler–Lagrange equation using the mechanical and physical
information of the robot. Since the dynamic equation of the robot is given as (1), in the



Sensors 2021, 21, 6674 4 of 16

absence of external force, external torques can be computed by subtracting the control
torques from measured torques.

When a joint torque sensor is installed onto each joint, the torque generated on each
joint due to external force is given as follows:

τext = τs − τ, (2)

where τext is the external torques generated onto each joint due to a collision, and τs is
torque values measured by joint torque sensors. The external torque can be precisely
estimated under an accurate estimation of robot dynamics and physical parameters of the
articulated robot such as the mass and center of mass of each link.

In robots that are not equipped with a joint torque sensor, sensorless methods are
utilized to estimate external torques. Sensorless methods are basically based on the current
signal of each joint motor, and an additional state variable p = M(q)q̇ is defined to
reformulate the dynamic equation as follows:

ṗ = C(q, q̇)> q̇− g(q)− f (q, q̇) + τm, (3)

where f (q, q̇) is the friction matrix, and τm is the motor torque. In the case of the sensorless
method, it is necessary to obtain the transmitted torque from the motor to the link to
estimate the collision torque. Therefore, the friction must additionally be considered in the
existing robot dynamics equation. A main issue in sensorless external torque estimation is
the elaborate design of observer and filter under the dynamic Equation (3), and the effect of
disturbance can be reduced using momentum state variables. Due to the effect of noise and
nonlinear frictional force, sensorless methods are generally less precise in the estimation
of external torques compared to methods that utilize joint torque sensors. Through the
methods mentioned above, it is possible to obtain the torques generated in each joint due
to the collision of the robot. Then, the collision identification algorithm can determine
collision locations from joint torques obtained through sensor or sensorless methods.

3.2. Data Collection and Labeling

Figure 1a presents the 6-DoF articulated robot to collect sensor data, which include
the information of joint torque, current, angular position, and angular velocity. The
Denavit–Hartenberg parameters of the articulated robot are presented in [62]. From the
6-DoF articulated robot, joint sensor signals were obtained with the sampling rate of 1 kHz,
and a data sample collected at time t can be expressed as

xt = [τ>t , i>t , θ>t , w>t ]
> ∈ R24, (4)

where τt, it, θt, wt are six-dimensional vectors corresponding to torque, current, angular
position, and angular velocity, respectively; the i-th components of these vectors indicate
the sensor signals obtained at the i-th joint. Figure 1b shows the definition of collision
categories according to collision locations. Collisions were generated at six locations, and
in the case of no collision, which refers to the normal state, a label of 0 was assigned. In
the case of a collision, a categorical label corresponding to the location was assigned to
generate ground truth data.
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Figure 1. The definition of labels. (a) presents 6-DoF articulated robot, and (b) presents the definition
of categories; yellow arrows in (b) indicate categorical labels according to collision locations.

Joint sensor data were collected, along with collision time and category, by applying
intentional collisions at different locations. The collision time and category were converted
into ground truth data which have an identical length to the corresponding sensor signals,
as shown in Figure 2. For a collision occurrence, the corresponding category was assigned
to 0.2 s of data samples from the collision time; each collision is represented as 200 collision
samples in the ground truth data. We collected joint sensor signals for 5586 intentional
collisions along with their ground truth data; the number of collisions, which were applied
to different locations, is equal. This dataset was divided into training, validation, and test
sets with the ratio of 70%, 10%, and 20%, as presented in Table 1.

Figure 2. Examples of sensor signals and ground truth data. (a) shows a part of the acquired sensor
signals, and (b) presents examples of generated ground truth data around collision occurrences.
Green lines with numbers in (b) indicate labeled categories in the ground truth data.
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Table 1. The number of collisions and data samples. Total indicates the number of data samples,
which were collected with a sampling rate of 1 kHz, and Collision indicates the number of collision
samples.

Training Set Validation Set Test Set

Collisions 3906 558 1122

Samples
Total Collision Total Collision Total Collision

19,563,048 781,200 2,778,777 111,600 5,798,685 224,400

4. Proposed Method

This section presents the proposed method for the collision identification of articulated
robots. Firstly, two neural network architectures are presented; one of them is a student
network and the other architecture is a teacher network for knowledge distillation. The
second part explains the proposed knowledge distillation method, which considers the pre-
dictive uncertainties of the teacher network. Lastly, a post-processing is utilized to improve
the robustness of the proposed algorithm by reducing noise in network predictions.

4.1. Network Architectures

This paper employs the network architecture presented by Heo et al. [22] as a base
network model. Heo et al. [22] proposed a deep neural network, called CollisionNet, to
detect collisions in articulated robots. Its architecture is composed of causal convolutions
to reduce detection delay and dilated convolutions to achieve large receptive fields. We
modeled the base network by modifying the last fully connected layer in CollisionNet
to conduct multiclass classification and identify collision locations. The base network is
composed of seven convolution layers and three fully connected layers, and its details
are identical to CollisionNet except the last layer; convolution filters with the size of 3 are
utilized for both regular and dilated convolutions, the depth of the intermediate features
is increased from 128 to 512, and the dilation ratio is increased by a factor of two. The
architecture of the base network is identically utilized as a student network in the process
of knowledge distillation.

Figure 3 shows the architecture of the teacher network. To construct the teacher
network, three regular convolutions in the base network are replaced into convolution
blocks. A convolution block contains four convolution layers with a skip connection, and
therefore, the number of parametric layers in the teacher network increases to 19. The
number of channels in the second and third convolution layers in a convolution block are
identical to the number of output channels of the corresponding regular convolution layers.
The number of trainable parameters in the teacher network is 6.63 million; therefore, it
has more capacity to learn the training data compared to the base network, which has
2.79 million parameters. Dropout layers with a dropout ratio of 0.5 are added to the
fully connected layers in the teacher network, and Monte Carlo samples from the teacher
network are acquired by applying dropout at the test time.
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Figure 3. The architecture of the teacher network.

4.2. Uncertainty-Aware Knowledge Distillation

The teacher network is trained with the cross-entropy loss between the softmax
prediction ŷT and its one hot encoded label y. The i-th component of ŷT indicates the
predicted probability that the input sample belongs to the i-th category. In our case, seven
categories exist, which contain the normal state and six possible collision locations. The
loss function for the training of the teacher network is defined as

lce(y, ŷT) = −∑
i

yi log(ŷT,i), (5)

where yi and ŷT,i are the i-th components of y and ŷT , respectively.
After training the teacher network, K logits, ẑ1

T , · · · , ẑK
T are obtained from an input

sample by utilizing MC-dropout [52]. These logits are computed by randomly ignoring
50% of neurons in the fully connected layers in the teacher network. Based on the K logits
of the teacher network, the i-th component of the uncertainty vector is computed by

ui =
1
K ∑

k
(ẑk

T,i − z̄T,i)
2, (6)

where z̄T,i is the i-th component of the averaged logit z̄T , which is computed by

z̄T =
1
K ∑

k
ẑk

T . (7)

The uncertainty ui is the variance of logits; therefore, the value of the uncertainty
increases as distances between the logits increase.

The total loss L for the training of the student network is composed of two loss
functions, as follows:

L = lce(y, ŷS) + lkd(z̄T , ẑS, u), (8)

where lce(y, ŷS) is the cross-entropy loss between the softmax prediction of the student
network and its corresponding label, u is the uncertainty vector whose i-th component
is ui, and lkd(z̄T , ẑS, u) is the uncertainty-aware knowledge distillation loss. The knowl-
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edge distillation loss os obtained by computing uncertainty-weighted Kullback–Leibler
divergence (KL divergence) between σ(ẑS, T) and σ(z̄T , T), as follows:

lkd(z̄T , ẑS, u) = −∑
i

uiσ(z̄T , T)i{log(σ(ẑS, T)i)− log(σ(z̄T , T)i)}, (9)

where σ(z, T) is the softmax function with the temperature T, and σ(z, T)i is the i-th
component of σ(z, T). In (9), σ(z, T)i can be computed as

σ(z, T)i =
exp(zi/T)

∑j exp(zj/T)
. (10)

The overall procedure for the training of the student network is presented in Figure 4.

Figure 4. The procedure of uncertainty-aware knowledge distillation for the training of the student
network; SN and TN indicate the student and teacher networks, respectively, and σ(z, T) is the
softmax function with the temperature T.

4.3. Post-Processing

The post-processing to reduce errors in network predictions is inspired by a connected
component analysis in image-processing techniques. In the labeled data, a collision is
represented by connected samples, with a non-zero number corresponding to its location.
However, a few predictions may differ from their adjacent predictions, because a neural
network independently infers predictions for different data samples. Based on the collision
properties in the labeled data, incorrect predictions are reduced by the post-processing
presented in Figure 5.

Figure 5. The procedure for the post-processing. (a) presents the predictions from the student
network, and (b) presents the result of grouping non-zero connected samples and assigning an
identical category of the maximum frequent. (c) presents the result of a thresholding method.
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The post-processing is composed of two steps; in Figure 5, (a) shows predictions from
the student network, and (b) and (c) present the results after the first and second post-
processing steps, respectively. In the first step, non-zero connected samples are grouped,
and the number of samples for each category are counted. Predictions in a group are
replaced into the category which corresponds to the maximum frequency, as presented in
Figure 5b. In the second step, if the number of non-zero connected samples is less than a
threshold value, then these samples are regarded as the normal state. The threshold value
of 10 samples is utilized in experiments, and Figure 6 presents examples of the results of
the post-processing.

Figure 6. Examples of predictions before and after the post-processing. (a) presents predictions for
the collision categories of 4 and 5, and (b) presents predictions for the collision categories of 2 and 3.

5. Experiments
5.1. Experimental Environment and Evaluation Measures

The proposed algorithm is developed within a hardware environment including
Intel core i7-10700 CPU, 32GB DDR4 RAM, and RTX 3080 GPU. In experiments, Python
and Pytorch are mainly utilized to implement the proposed algorithm and to conduct
an ablation study. To demonstrate the proposed method, the dataset is gathered from a
collaborative robot, which consists of six rotating joints. The cobot weighs 47 kg, has a
maximum payload of 10 kg, and reaches up to 1,300 mm. The actuator consists of motors
manufactured from Parker, motor drivers from Welcon, and embedded joint torque sensors
in each joint. The hardware of the cobot contains a custom embedded controller, based on
real-time linux kernel, and it communicates with drivers through EtherCAT with a cycle
time of 1 ms.

To demonstrate the effectiveness of the proposed method, we evaluate the algorithm in
three ways: (1) sample-level accuracy, (2) collision-level accuracy, and (3) time delay. In the
process of collision identification, deep neural networks perform sample-level multiclass
classification, which classifies each sample, composed of a 24-dimensional sequence of
sensor data, into the normal state or one of six collision locations. To evaluate the sample-
level accuracy of deep neural networks, we measure Recall, Precision, and F1-score for
each sample, which are defined as follows:

Recall = TP/(TP + FN),

Precision = TP/(TP + FP),

F1-score = 2× precision× recall
precision + recall

,

(11)

where TP, FP, FN are the numbers of true positives, false positives, and false negatives,
respectively. True positive is a correctly identified collision sample, false positive is an
incorrect prediction, which is classified into a collision, and false negative is an incorrect
prediction which is classified into the normal state.
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Collision-level accuracy is another important measure for evaluating a collision iden-
tification system. Because collaborative robots respond to each collision, reducing the
number of false positive collisions is an important issue. Recall, Precision, and F1-score are
computed as (11) with different definitions of TP, FP, and FN to measure the collision-level
accuracy. A group of connected samples that are classified into a collision is regarded
as a true positive if the intersection over union (IoU) between the connected predictions
and its corresponding true collision samples is greater than 0.5. A group of predictions
that are classified into a false category of collisions is regarded as a false positive, and a
false negative is a missed collision. Figure 7 shows several cases of TP, FP, and FN for
measuring the collision-level accuracy.

Figure 7. Examples of true-positive, false-positive, and false-negative collisions for computing
collision-level accuracies. (a) presents a TP collision, (b,d) present FP and FN cases, (c) presents TP
and FP cases, and (e) presents a FP collision.

Finally, the time delay is measured to evaluate the processing time of the collision
identification system. For the safe and reliable collaborations of human and robots, the
processing time is required to be reduced as possible. The total processing time is composed
of the inference time of a neural network, detection delay for collisions, and post-processing
time. Based on these three types of evaluation measure, the effectiveness of the proposed
method is demonstrated in experiments.

5.2. Training of Neural Networks

To train the neural networks, Adam optimizer [63] is utilized with a learning rate of
10−4. The learning rate is decreased to 10−5 after training 200 epochs. Figure 8 presents
f1-scores for the training and validation datasets during the training of 500 epochs. As
shown in Figure 8, after training a sufficientl number of epochs, the validation accuracy
was not further decreased. Therefore, in the following experiments, the accuracies of deep
neural networks are evaluated for the test set after training 300 epochs.

To train the student network, the temperature of the softmax function is set to 5 during
the process of knowledge distillation. The temperature value has to be greater than 1
to soften probabilistic predictions of neural network, and temperature values between 2
and 5 are usually used for knowledge distillation in the previous literature [39]. In our
experiments, modifications to the temperature value glead to insignificant changes in
the experimental results. In Figure 9, (a) shows the first dimension of 24-dimensional
sensor data, which corresponds to the torque signal at the first joint, and (b) presents
uncertainties measured by MC-dropout with the value of K = 4. As shown in Figure 9, the
uncertainties of collision samples are high compared to normal state samples. By weighting
the uncertainties on the KL-divergence between probabilistic predictions of the student and
teacher network, the student network is able to focus on learning difficult data samples.
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Figure 8. F1-scores for the training and validation datasets.

Figure 9. Uncertainties measured by MC-dropout of the teacher network. (a) shows the first
dimension of 24-dimensional sensor data, and (b) presents uncertainties measured by MC-dropout.
In (a), red ×marks indicate collision moments, and green lines represent labels for the normal state
and locations of collisions.

5.3. Sample-Level Accuracy

The first measure to evaluate the performance of deep neural networks is the sample-
level accuracy. As explained in Section 4.1, the architecture of the deep neural network
proposed in [22] is employed to construct the base model. To demonstrate the effectiveness
of uncertainty-aware knowledge distillation for the problem of collision identification,
we compare the accuracies of the proposed method with those of the base model and a
student network. The student network has an identical architecture to the base model, and
is trained by distilling knowledge in the teacher network without employing uncertainty
information. Table 2 presents the sample-level recall, precision, and f1-score of four neural
network models; the proposed method means another student network, which is trained by
uncertainty-aware knowledge distillation. The last row of Table 2 presents the sample-level
accuracies of the teacher network. As presented in Table 2, the f1-scores of the proposed
method are comparable to those of the teacher network; it is worth noting that the proposed
method employs a lightweight network compared to the teacher network.
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Table 2. Sample-level accuracies of the four different neural network models before and after the
post-processing.

Before Post-Processing After Post-Processing

Recall Precision F1-Score Recall Precision F1-Score

Base model 98.1611 98.3985 98.2796 98.5473 99.0617 98.8038
Student network 98.2015 98.3458 98.2736 98.5992 99.0198 98.8091
Proposed method 98.3110 98.4516 98.3812 98.7119 99.0465 98.8789

Teacher network 98.2729 98.5337 98.4031 98.5629 99.1011 98.8313

5.4. Collision-Level Accuracy

This section presents the collision-level accuracies. As collaborative robots react to
each collision, reducing the number of false-positive collisions is a very important issue
in reliable collision identification systems. In the labeled data, a collision is represented
by 200 non-zero samples; therefore, false-positive collisions, which are composed of a
few fals- positive samples, are not effectively reflected in the sample-level accuracies.
Although the sample-level accuracies of the four neural network models are above 98%,
there are a considerable number of false-positive collisions. To compute the collision-level
accuracies, a group of non-zero predictions is regarded as a collision, and Table 3 presents
the numbers of true-positive, false-positive, and false-negative collisions of the four neural
network models. In Table 3, the base model, student network, and proposed method have
an identical network architecture to CollisionNet [22]; the student network is trained by
regular knowledge distillation, and the proposed method employs uncertainties during
knowledge distillation. As shown in Table 3, the number of false positives is significantly
reduced after the post-processing. Table 4 presents the collision-level recall, precision, and
f1-score of the four neural networks. By utilizing probabilistic labels and uncertainties
from the teacher network, the proposed method produces better accuracies, despite its
lightweight network architecture compared to the teacher network.

Table 3. The numbers of true-positive (TP), false-positive (FP), and false-negative (FN) collisions of
the four neural network models before and after post-processing.

Before Post-Processing After Post-Processing

TP FP FN TP FP FN

Base model 1119 229 3 1119 121 3
Student network 1118 295 4 1118 109 4
Proposed method 1120 205 2 1120 76 2

Teacher network 1119 267 3 1119 77 3

Table 4. Collision-level accuracies of the four different neural network models before and after the
post-processing.

Before Post-Processing After Post-Processing

Recall Precision F1-Score Recall Precision F1-Score

Base model 99.7326 78.9139 88.1102 99.7326 90.2419 94.7502
Student network 99.6436 79.1224 88.2052 99.6435 91.1165 95.1894
Proposed method 99.8217 84.5283 91.5406 99.8217 93.6454 96.6350

Teacher network 99.7326 80.7359 89.2344 99.7326 93.5619 96.5487

5.5. Analysis for the Processing Time

The processing time is another important factor for responding to external forces
within an acceptable timeframe. In the collision identification system, the total processing
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time is composed of the inference time of a neural network, time delay for detecting a colli-
sion, and post-processing time. Table 5 presents the averaged processing time for each step.
The teacher network requires an 83% longer inference time compared to the base model,
student network, and proposed method. The detection delay is measured by averaging
the time intervals between collision occurrences and their corresponding first true-positive
samples. As presented in Table 5, the proposed method requires 2.6350 ms to identify a
collision occurrence, and this satisfies the requirement for the safety of collaborative robots.

Table 5. The averaged processing time in ms for the collision identification.

Inference Time Detection Delay Post-Processing Total

Base model 1.7641 0.8239 0.2057 2.7938
Student network 1.7641 0.6198 0.2057 2.5897
Proposed method 1.7641 0.6651 0.2057 2.6350

Teacher network 3.2348 0.7006 0.2057 4.1412

6. Conclusions

This paper proposes a collision identification method for collaborative robots. To iden-
tify the locations of external forces, the propose method employs a deep neural network,
which is composed of causal convolutions and dilated convolutions. The key contribution
is the method of capturing sample-level uncertainties and distilling the knowledge of a
teacher network to train a student network, with consideration of predictive uncertainties.
In the knowledge distillation, KL-divergence between the predictions of the student and
teacher networks are weighted by the predictive uncertainties to focus on data samples
that are difficult to train. Furthermore, we also propose a post-processing to reduce the
number of false-positive collisions. Experiments were conducted with a 6-DoF-articulated
robot, and we demonstrated that the uncertainty is beneficial to improving the accuracy of
the collision identification method.
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