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Abstract: Sarcopenia can cause various senile diseases and is a major factor associated with the
quality of life in old age. To diagnose, assess, and monitor muscle loss in daily life, 10 sarcopenia
and 10 normal subjects were selected using lean mass index and grip strength, and their gait signals
obtained from inertial sensor-based gait devices were analyzed. Given that the inertial sensor can
measure the acceleration and angular velocity, it is highly useful in the kinematic analysis of walking.
This study detected spatial-temporal parameters used in clinical practice and descriptive statistical
parameters for all seven gait phases for detailed analyses. To increase the accuracy of sarcopenia iden-
tification, we used Shapley Additive explanations to select important parameters that facilitated high
classification accuracy. Support vector machines (SVM), random forest, and multilayer perceptron
are classification methods that require traditional feature extraction, whereas deep learning methods
use raw data as input to identify sarcopenia. As a result, the input that used the descriptive statistical
parameters for the seven gait phases obtained higher accuracy. The knowledge-based gait param-
eter detection was more accurate in identifying sarcopenia than automatic feature selection using
deep learning. The highest accuracy of 95% was achieved using an SVM model with 20 descriptive
statistical parameters. Our results indicate that sarcopenia can be monitored with a wearable device
in daily life.

Keywords: sarcopenia; gait analysis; gait parameter; XAI; inertial measurement units; smart insole;
Shapley Additive explanations

1. Introduction

The interest in maintaining the daily abilities for a healthy retirement life is increasing
owing to the increase of the elderly population and the extended life expectancy. El-
derly people are susceptible to sarcopenia that is characterized by decreased muscle mass
and muscle function owing to nutritional deficiencies and decreased physical activity. Sar-
copenia is the cause of numerous senile decays, such as falls, fractures, physical disabilities,
depression, poor quality of life, nursing home admission, and even death [1].

Dual energy X-ray absorptiometry (DEXA) and bioelectrical impedance analysis
(BIA) are primarily used as tools for diagnosing patients with sarcopenia. The European
working group on sarcopenia in older people (EWGSOP) uses the grip strength and walking
speed as additional variables to determine the level of sarcopenia [2]. Existing screening
methods cannot be applied without expert help. Therefore, a screening study that can
be easily conducted in nonhospital settings is required. Studies on muscle reduction and
walking speed are actively being conducted. Interestingly, walking speed has allowed
independent predictions of mortality [3]. Therefore, gait analysis can be a useful tool to
determine muscle loss [4]. Cameras and force plates are gold-standard tools for clinical
gait evaluations. Camera-based gait analyses are used in large institutions and university
hospitals. In order to accurately analyze gait, it is necessary to capture three-dimensional
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(3D) motion. Since two-dimensional (2D) cameras cannot detect 3D motion, 2D camera
recordings from various angles are needed to visualize and quantify gait [5]. Recently,
spatial issues have been solved because 3D data have been easily obtained owing to the
development of depth cameras [6]. However, expensive high-speed cameras are required
to accurately analyze human gait. Force-plate-based methods [7] are very good tools used
to measure the reaction force of gait, and to detect step lengths and widths. However, they
have the disadvantage of not acquiring kinematic information.

Inertial measurement units (IMUs) are attracting increased scientific attention as gait
analysis tools because the gold-standard tools are difficult to use to conduct gait monitoring
at home or outdoors [8,9].

The gait parameters are detected to determine the effective gait condition. The pa-
rameters used in clinical analysis are (a) spatial-temporal parameters (e.g., step length,
stance phase, swing phase, single support, double support, step time, cadence, and speed)
and (b) kinematic parameters (the rotational angles of the sagittal, coronal, and transverse
sections of the pelvis, hip, knee, and ankle) [10].

The inertial sensor-based gait parameter detection method derives spatial-temporal
parameters from the values of acceleration and angular velocity signals measured by the
inertial sensor, and extracts features of descriptive statistics (maximum, mean, standard de-
viation, etc.) of the acceleration and angular velocity signal. Segmentation of the gait phase
is necessary to classify daily activities or to assess pathological gait.

Machine learning algorithms are used as a method for screening various diseases
using gait. As a method of detecting gait features, support vector machines (SVM) and
random forest (RF) obtained the best results, and high-screening results were obtained using
deep learning technology that does not extract features [11]. In the field of gait analysis,
domain knowledge to detect gait parameters remains important for designing the inputs
of the model. The explainable artificial intelligence (XAI) method is receiving increased
attention as a method used to obtain domain knowledge based on machine learning [12].

The aim of this study is to detect parameters from the gait signal measured in the
inertial sensors as a screening method for the sarcopenia group and identify the optimal
classification method. The highlights and contributions of our work can be summarized
as follows: DEXA and grip strength were measured to classify 10 sarcopenia patients
and 10 normal volunteers, and inertial gait data were obtained from each participant.
Gait parameters effective for identifying sarcopenia were detected using the XAI technique.
The optimum classification method was achieved with the use of the various parameters
as input.

For gait parameters, the criteria for data analysis were selected to be right because
13 subjects were right-leg dominant and 7 were left-leg dominant. Owing to insufficient
data, the effect of the dominant leg could not be analyzed and was, therefore, not considered.
Further, the proportion of dominant leg per group (control = 7, sarcopenia = 6) was similar.

The remainder of this paper is organized as follows. Section 2 introduces related
studies on detecting gait parameters and classifying diseases. Section 3 presents de-
tailed screening methods for sarcopenia groups, sensor devices, and proposed algorithms.
Section 4 presents the results for detection of gait parameters and identification of sarcope-
nia. Section 5 presents the discussion. Conclusions are listed in Section 6.

2. Related Work
2.1. Gait Phases

Gait describes human walking that exhibits periodic patterns termed as gait cycles.
For gait analysis, it is important to detect various gait parameters. The gait parameters are
detected based on the gait cycle, and the gait phase is clinically divided into 2–7 phases [13].
Gait is divided into the stance and swing phases; the stance phase refers to the case in
which the foot is attached to the ground, and the swing phase refers to the case in which the
foot is separated from the ground. The stance and the swing phases are further divided into
2–4 subphases. Whittle et al. [14] divided gait into seven phases. The stance phase was clas-
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sified into the loading response, mid stance, terminal stance, and preswing phases, and the
swing stage was classified into the initial swing, mid swing, and terminal swing phases,
as shown in Figure 1.
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Heel strike (HS) and toe-off (TO) detection is required to separate the stance and
swing phases. Spatial-temporal parameters, such as cadence, stance phase (time),
swing phase (time), single-support phase (time), double-support phase (time), step time,
and stride time can be detected by mathematical calculations with HS, TO, opposite HS,
and opposite TO. Therefore, detection of HS and TO is very important for detecting gait pa-
rameters.

Misu et al. [15] detected HS as an acceleration signal and TO based on angular veloc-
ity signals. Mo and Chow [16] detected HS and TO based only on residual acceleration.
HS yielded the highest acceleration peak, and TO was selected as the phase associated
with 2 g or more. Khandelwal et al. [17] detected HS and TO using complex accelera-
tion signals according to continuous wavelet transform (CWT)-based frequency analysis.
We obtained very good accuracy by detecting acceleration along the x-axis for HS and accel-
eration along the z-axis for TO instead of complex acceleration signals through CWT [18].
Based on IMUs attached on the foot, existing work involve 3–4 phases, including HS
and TO. More studies have been conducted on the classification of stance rather than
the swing phase. The front and rear of the flat foot where the foot touched the ground
were classified, and an algorithm was proposed based on the rule and hidden Markov
models (HMM). The existing gait phase studies are frequently divided into the HS-FF
(TS)-HO-TO phases, as shown in Table 1. The abbreviations for each phase or event are
as follows: ST: Stance, SW: Swing, MSw: Mid swing, MSt: Mid stance, HO: Heel off,
TS: Toe strike, FF: Flat foot, oHS: Opposite heal strike, oTO: Opposite toe off, HR: Heel rise,
FA: Feet adjacent, and TV: Tibia vertical. These are mainly detected using gyroscope data,
and the position of the sensor changes from forefoot to hindfoot. Pérez-Ibarra et al. [19]
identified HS as the zero-crossing of sagittal angular velocity during the swing phase.
TO was determined by the zero-crossing of sagittal angular velocity during negative to
positive changes before HS. MSt (from TS to HO) was detected when the resultant angular
velocity was below the threshold. Zhao et al. [20] detected HS-FF-HO-TO using inertial
sensors and multisensor fusion. MSw and MSt events were detected as the events associ-
ated with the minimum magnitudes of specific forces compared with Vicon data. FF and
HO were detected when the sagittal angular velocity was almost zero. HS was detected
as the zero crossing in the same manner as Pérez-Ibarra’s method, and TO was detected
as the maximum value of the sagittal angular velocity. Two negative peaks occurred after
the positive signal of the sagittal angular velocity and are related to TO and HS events.
The gait phase detection methods in the studies [21–28] listed in Table 1 have been reported
by Pérez-Ibarra et al. [19] and Zhao et al. [20].
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Table 1. Existing studies on gait phase detection.

First Author, Year Phase/Events Signals Algorithm Class Position

Seel et al., 2016 [21] 4/HS-ST-HO-SW 3 Acc + 3 Gyro Rule-based Forefoot
Gouwanda et al., 2016 [22] 3/HS-HO-MSw 1 Gyro Rule-based Forefoot

Rueterbories et al., 2014 [23] 4/HS-FF-HO-TO 2 Acc Rule-based Forefoot
Mariani et al., 2013 [24] 4/HS-TS-HO-TO 3 Acc + 3 Gyro Rule-based Forefoot
Sabatini et al., 2005 [25] 4/HS-ST-HO-SW 1 Gyro Rule-based Forefoot

Kang et al., 2012 [26] 4/HS-FF-HO-TO 1 Gyro Rule-based Forefoot
Mannini et al., 2014 [27] 4/HS-FF-HO-TO 3 Gyro HMM-based Forefoot

Abaid et al., 2013 [28] 4/HS-FF-HO-TO 3 Gyro HMM-based Forefoot
Zhao et al., 2019 [20] 4/HS-FF-HO-TO 3 Acc + 3 Gyro HMM-based Hindfoot

Pérez-Ibarra et al., 2019 [19] 4/HS-TS-HO-TO 1 Gyro Rule-based Hindfoot
Ours 7/HS-oTO-HR-oHS-TO-FA-TV 1 Acc + 1 Gyro Rule-based Hindfoot

2.2. Patient Identification Using IMU

Studies conducted to identify patients based on inertial sensors include Faller, Parkin-
son’s disease (PD), and total hip arthroplasty (TPA). Moreover, algorithms such as naive
Bayes (NB), SVM, RF, decision tree (DT), k-nearest neighbor (kNN), and deep learning (DL),
were applied as classification methods. The spatial-temporal and descriptive statistical
parameters derived from the acceleration and angular velocity signals were used as input to
the algorithm. Existing studies include the spatial-temporal, descriptive statistics, and fre-
quency parameters. Spatial-temporal parameters are cadence, stride time, stride length,
speed, stance, swing, and double and single support. Descriptive statistical parameters
include range of motions (ROM), maximum, mean, and standard deviation. Frequency
parameters, such as the spectral entropy, median frequency, and fast Fourier transform
were used.

Teufl et al. [29] classified TPA patients using stride length, stride time, cadence,
speed, hip, and pelvis ROM as features of the SVM, and obtained an accuracy of 97%.
Caramia et al. [30] classified PD using the linear discriminant analysis (LDA), NB, k-NN,
SVM, SVM radial basis function (RBF), DT, and the majority of votes. The performance
of the machine learning technique—the SVM with nonlinear kernel basis—was the best.
Howcroft et al. [31] predicted the risk of falls using accelerometer data and used tem-
poral (cadence and stride time) and descriptive statistics (maximum, mean, and stan-
dard deviation of acceleration). NB, SVM, and artificial neural networks (ANN) were
used as classification methods, and the best single-sensor model was the neural network.
Deep learning is currently receiving tremendous attention as a classification algorithm.
Additionally, Eskofier et al. [32] classified PD based on the application of AdaBoost, PART,
kNN, SVM, and convolutional neural networks (CNN), and CNN yielded the highest accu-
racy. Deep learning has an advantage in that it can detect features within the algorithm
from the raw signal, but Tunca et al. [33] achieved a higher accuracy in long short-term
memory (LSTM) when parameters (e.g., speed, stride length, cycle time, stance time,
swing time, clearance, stance ratio, and cadence) were used as input compared with
raw signals. Zhou et al. [34] classified age groups by dynamic gait outcomes with SVM,
RF, and ANN. Gait outcomes that significantly contributed to classification included the
root-mean square, cross entropy, Lyapunov exponent, step regularity, and gait speed.
In recent years, interest in XAI has been increasing owing to its classification accuracy
and to features that significantly contributed to classification. Dindorf et al. [12] used
the local interpretable model-agnostic explanations (LIME) to understand the features for
identifying total hip arthroplasty (THA), and found that the sagittal movement of the hip,
knee, and pelvis as well as transversal movement of the ankle were especially important
for this specific classification task, as shown in Table 2.
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Table 2. Existing studies on disease identification using gait parameters.

First Author, Year Phase/Events Signals Position Classification Accuracy

Teufl et al., 2019 [29]
Stride length, stride time,

cadence, speed,
ROM (hip, pelvis)

THA Hip, thigh,
shank, foot SVM 97%

Caramia et al., 2018 [30]
Step length, step time,

stride time, speed,
RoM (hip, knee, ankle)

PD R&L ankle,
knee, hip, chest

LDA, NB, k-NN,
SVM, SVM rbf,

DT, majority
of votes

96.88%

Howcroft et al., 2017 [31]

Cadence, stride time,
maximum, mean,

and standard deviation
of acceleration

Faller Head, pelvis,
R&L shank NB, SVM, NN 57%

Eskofier et al., 2016 [32]

Energy, maximum,
minimum, mean, variance,

skewness, kurtosis,
fast Fourier transform

PD Upper limbs AdaBoost, PART,
kNN, SVM, CNN 90.9%

Tunca et al., 2019 [33]

Stride length, cycle time,
stance time, swing time,
clearance, stance ratio,

cadence, speed

Faller Both feet SVM, RF, MLP,
HMM, LSTM 94.30%

Zhou et al., 2020 [34]

Root mean square,
cross entropy,

Lyapunov exponent,
step regularity, gait speed

Age groups
by dynamic

gait outcomes
Trunk SVM, RF, ANN 90%

Dindorf et al., 2020 [12] Various parameters THA Hip, knee,
pelvis, ankle

RF, SVM,
SVM rbf, MLP 100%

Ours Various parameters Sarcopenia Both feet RF, SVM, MLP,
CNN, BiLSTM 95%

3. Methods

In this section, we present detailed screening methods for sarcopenia groups, sen-
sor devices, and proposed algorithms.

3.1. Subject, Equipment, and Data Collection

Ethical approval was obtained from the Chungnam National University Hospital
Institutional Review Boards before the study was conducted (File No: CNUH 2019-06-042).
We collected gait data from 10 elderly women with sarcopenia and 10 normal women with
non-sarcopenia. The diagnosis of the sarcopenia group was selected as the lean mass index
(appendicular skeletal muscle mass in kg/height in m2) of less than 5.4 kg/m2 as a result
of DEXA, while the grasp power was less than 18 kg. Population statistics can be found in
Table 3. The walking data of the 20 subjects were obtained with a sensor that was attached
to their insoles over four walking cycles at the speed of their choice through a straight
corridor of 27 m. A total of 80 walking cycles were acquired. The sampling rate of the
inertial sensor was measured at 100 Hz.

Table 3. Population statistics for normal and sarcopenia groups.

Parameter Normal Sarcopenia

Age (years) 69.6 ± 3.0 71.1 ± 2.0
Height (cm) 153.5 ± 5.0 151.0 ± 4.8
Weight (kg) 60.8 ± 5.1 52.7 ± 5.0

Feet size (mm) 238.0 ± 5.1 232.0 ± 5.5
Grasp power right (kg) 22.5 ± 2.6 14.4 ± 3.5
Grasp power left (kg) 22.3 ± 2.8 14.2 ± 3.7

ASM (kg) 14.7 ± 1.6 11.3 ± 0.9
LMI (kg/m2) 6.3 ± 0.4 4.9 ± 0.2
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The proposed insole system obtained Pearson’s correlation, r > 0.9, for HS, TO, op-
posite HS, and opposite TO, compared to the camera- and force-plate-based clinical
standard system. An intraclass correlation >0.9 was obtained based on four measure-
ments. The results achieved the same high validity and reliability as existing inertial
system [35–37].

The clinical system consisted of 10 cameras (Vicon, Oxford Metrics, Oxford, UK)
and four force plates (ATMI, Advanced Mechanical Technology, Watertown, MA, USA).
Data analysis was performed with Vicon Polygon 3.5.2 (3.5.2, Oxford Metrics, Oxford, UK).

The size of inertial insole device was 17 × 25 × 3 mm; the processor was a Nordic
nRF52840 (ARM Cortex-M4 32-bit processor with FPU, 64 MHz, Cambridge, UK), the in-
ertial sensor was an Invensense MPU-9250 with 16-bit ADCs, the flash was 512 Mbits,
memory was 1 MB flash and 256 kB RAM, and the device supported Bluetooth low energy
(BLE) mode.

3.2. Extraction of Gait Parameters

The 3-axis acceleration and angular velocity signals of the right foot and the left foot
were obtained from the inertial sensor, and spatial-temporal and descriptive statistics
parameters were obtained from the signals. The definitions of the gait parameters used in
this study are shown in Table 4. The value of the descriptive statistics is the 3-axis inertial
signal divided by the gait phases given in Table 4.

Table 4. Definition of gait parameters.

Gait Parameters Definition

Spatial-temporal Parameters

Cadence Number of steps acquired per minute
Stance phase (time) Percent (time) starting with HS and ending with TO of the same foot
Swing phase (time) Percent (time) starting with TO and ending with HS of the same foot

Single support phase (time) Percent (time) when only one foot is on the ground
Double support phase (time) Percent (time) when both feet are on the ground

Step time (length) Distance by which a foot moves in front of the other foot. The sum of two successive step
lengths corresponds to stride length

Stride length Distance starting with HS and ending with next HS of the same foot

Phase (time) dRL Absolute values of the difference between the right and left sides of the stance and swing
phases (time)

Speed Stride length/cycle time

Descriptive Statistical Parameters

Max Greatest values
Min Least or smallest values

Standard deviation (STD) Standard deviation of values
AbSum Absolute sum of values

Root-mean-square (RMS) Arithmetic mean of the squares of a set of values
Kurtosis Assesses whether the tails of a given distribution contain extreme values

Skewness A measure of the asymmetry of the probability distribution of a real-valued random variable
about its mean

MMgr Gradient from maximum to minimum of values
DMM Difference between max and min of values
Mdif Maximum for the difference between two successive values

To detect the spatial-temporal parameters, the HS, TO, opposite HS, and opposite
TO were detected. Acceleration increased rapidly when the swing phase was changed in
the stance phase but decreased gradually during the swing phase, and the acceleration
value was suddenly zero at HS. The time to return to zero near the minimum value of
acceleration ranged from 0.01–0.02 s and was detected at the HS. Given that the x-axis
acceleration signal has a minimum value before the stance phase, the minimum value of
the acceleration is detected within the interval, and the highest value of the derivative
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x-axis acceleration (change in acceleration) is then selected as the HS within 10 samples
(the minimum value of the acceleration along the x-axis).

TO detection occurred when a rapid rotational force about the y-axis was generated so
that the foot came off the ground during gait phases. This constituted a change associated
with the swing phase from the stance phase. The gyro sensor in the insole detected an
increase when the heel came off the ground and had the highest torque because the greatest
force was applied to the foot at TO. Therefore, the maximum value of the gyro y-axis signal
was used to identify TO.

To extract the stride and step lengths, we applied a distance estimation algorithm based
on zero velocity detection (zero-velocity update) with an extended Kalman filter [38,39].

3.3. Extraction of Gait Phase

To divide the gait into seven phases, heel rise (HR), feet adjacent (FA), and tibia vertical
(TV) were also detected.

The HR distinguishes the transition from the mid stance to the terminal stance and
depends on the individual and walking speed. In the mid stance phase, the angular
velocity of the gyro y-axis (pitch) is close to zero, and then increases to a value (in the
counterclockwise direction) as the heel falls off the floor. The mid stance appears at 32% of
the walking cycle, and the position where the y-axis angular velocity changes to 0.25 or
more was selected as the HR.

The FA values are in positions that separate the initial swing and the mid swing when
both feet cross the stance leg on the opposite side of the swing leg in the sagittal plane.
The FA occurs in 77% of the gait cycle. When both feet are adjacent, the body is in the
highest position and the toes are located closest to the ground [14]. In the case of the inertial
sensor attached to the insole, it is difficult to detect the exact point adjacent to the feet.
However, assuming that the foot moves the pendulum, the acceleration has a value of
zero at the lowest point. Therefore, the FA was detected as the point where the x-axis
acceleration became zero.

The TV corresponds to 86% of the gait cycle based on the division of the mid swing and
the terminal swing. The TV is a position between the dorsiflexion and the plantarflexion
before the subsequent HS [14]. Given that the joint angle is located immediately at zero,
the point where the joint angle is zero is defined as the TV. The joint angle is calculated by
integrating the angular velocity along the y-axis. However, the error is minimized by using
the minimum integration because the cumulative error occurs in obtaining the angle based
on integration. At the point at which the joint angle is zero, the x-axis speed is close to zero.
In the case of the detection method, when the foot rises to the maximum point after TO in
the swing phase, the x-axis speed becomes zero, and the angular rotation speed along the
y-axis also has a value of zero. The x-axis acceleration is integrated to obtain the velocity
from the point at which the y-axis angular velocity is zero. Accordingly, the point at which
the velocity becomes zero is detected by the TV.

3.4. Feature Selection

The detected gait parameters differ in their capacity to identify sarcopenia. Apply-
ing many dimensional parameters to the classifier can yield poor results. Therefore, it is
necessary to reduce the dimensions or select features and apply them to the classifier.
In recent years, XAI technology has been attracting attention as a method used to help
understand the classification result rather than simply reduce the dimension. XAI presents
predictive results for machine learning in a way that humans can understand [40]. Ma-
chine learning models based on trees are the most popular nonlinear models in use to-
day [41]. Extreme gradient boosting (Xgboost) proposed by Chen and Guestrin [42] is
one of the decision tree ensemble models. Xgboost is an algorithm that improves the
performance of the gradient boosting machine (GBM) in terms of speed. The boosting
model has a low-overfitting risk because it generates a powerful classifier by updating
the parameters of the former classifier iteratively to decrease the gradient of the loss func-



Sensors 2021, 21, 1786 8 of 17

tion [43]. By focusing on the model performance, Xgboost has become more complex and
lost its interpretability. These models provide an inconsistent measure depending on the
tree structure. It only shows the overall importance and not the effect of independent
variables. Shapley Additive explanation (SHAP) values are utilized with the intention to
improve these problems. The SHAP is a method used to interpret results from tree-based
models. The values are based on Shapley values from game theory. The main advantages
of the SHAP method are the local explanation and consistency in global model structure.
The SHAP value is a numerical expression of how much each feature contributed to creat-
ing the total outcome. The contribution of each feature can be expressed as the degree of
change in the total outcome when the contribution of that feature is excluded. Equation (1)
represents the SHAP value, where ∅i is the SHAP value for the data, n is the number
of feature, N is the set all n features, S is all features except the i-th feature, v(S) is the
contribution to the result without the i-th feature, and v(S ∪ {i}) is the contribution of all
features including the i-th feature. The degree of contribution of the i-th feature is the value
obtained by subtracting the sum of the contributions excluding the i-th feature from the
total contribution.

∅i(v) = ∑
SεN\{i}

|S|!(n− |S| − 1)!
n!

(v(S ∪ {i})− v(S)) (1)

Analysis of summary plot obtained by SHAP can provide the distribution of the impact
of each feature. The summary plot superimposes feature importance and feature effects.
Each point in the summary plot representsthe SHAP value and observation value for
the feature (gait parameters), where the x-axis represents the SHAP value from the scale
of negative factors to the scale of positive factors for sarcopenia identification, and the
y-axis represents the feature. The features are ordered according to their importance.
The color represents the feature value from low (yellow) to high (purple). Therefore, the
summary plot shows the magnitude of the positive or negative impact of the feature on the
identification of sarcopenia when the value of each parameters is high or low. The SHAP
summary plot can be seen in Figure 2 The parameter settings for the SHAP for Xgboost
are as follows: Objective: Binary logistic, nroonds: 20, max_depth: 15, gamma: 0.009,
and subsample: 0.98. The SHAP for Xgboost are implemented as an R package and is
available from Comprehensive R Archive Network (CRAN).

Figure 2. Summary plot of spatial-temporal parameters.
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3.5. Machine Learning

We explored the most suitable method for identifying sarcopenia using inertial signals
and gait parameters. RF, SVM, and multilayer perceptron (MLP) are the most popular ma-
chine learning methods in gait analysis and use feature parameters as input. Deep learning
models that do not require feature extraction, such as the CNN and LSTM, have yielded
the best results in various fields. RF is a decision tree ensemble classifier that combines
multiple single classifiers to finalize the results from each classification model through a
majority vote or a weighted average. The RF was constructed based on the decision tree
so it can classify various categories. It has a fast learning speed and big data processing
ability [44]. The number of RF trees was 50, and the number of features was selected to be
the square root of the gait parameter; the max depth of trees was 30, and the minimum leaf
size of the sample was 1.

SVM is a binary classifier that aims to find the optimal separation hyperplane that
maximizes the margin between the two classes. Kernel functions are used to map data
to a higher dimensional space, so SVM can compute nonlinear decision boundaries [45].
We explored the linear and RBF kernels, and the parameters were gamma = 1.0 and C = 5.0.

The MLP [46] is a feed-forward neural network with input, hidden, and output layers.
The hidden layer employs activation functions to be able to capture nonlinear associations.
This model is used for the classification based on feature inputs, unlike the deep learn-
ing method. The hyperbolic tangent sigmoidal function (tanh) is used as the activation
function in the hidden unit. The scaled conjugate gradient backpropagation algorithm is
used to train the network. We chose to use the MLP with two hidden layers that contained
20 hidden units and 70 epochs.

The CNN [47] is composed of one or more convolutional, pooling, and fully connected
(FC) layers. In the convolutional layer, the kernel extracts features while traversing the
input data at regular intervals. The output of this layer is the feature map. Distinct from the
standard ANN, CNN just needs to train the kernels of each convolutional layer. The con-
volutional operation acts as a feature extractor by learning from the diverse input signals.
The extracted features can be used for classification in subsequent layers. In the pool-
ing layer, this is a down-sampling layer. The samples of the most representative features
are extracted from the convolutional layer. The sampling method includes the max and
average pooling, which is performed by extracting the maximum or the average value of
each interval.

In the case of CNN, the raw data of the acceleration and angular velocity are used
as input data, and the length of the data is selected to include 100 samples. The CNN
architecture was initially implemented with a one-dimensional (1D) convolutional layer
with 64 filters, 1 stride, and a kernel size equal to 8. The next layer was a max-pooling
layer with a pooling size of 4 and with 4 strides. The third layer was the FC layer with
CNN feature inputs and 2014 neuronal outputs. The last layer was another FC layer with
neuronal outputs classes and a softmax function.

The recurrent neural network (RNN) [48] architecture was a highly preferred archi-
tecture for sequential data. This architecture has been successfully applied to many prob-
lems, such as natural language processing, speech recognition, prediction of stock market,
and machine translation. Unlike a traditional neural network, the RNN has a learning
structure in which all inputs and outputs are connected to each other, so it can memorize
previous data and be recursively used as input in the current state. This recurrent connec-
tion structure was developed in 1982 by Hopfield [49]. The LSTM network by Hochreiter
and Schmidhuber [50] emerged in sequential data analysis as the most extensively used
type of RNN architecture. The LSTM has the disadvantage that the input is heavily in-
fluenced by the previous input because the input value is time dependent. To eliminate
this disadvantage, Bidirectional LSTM (BiLSTM) [51] has been proposed. BiLSTM have
forward and backward hidden layers, which are not connected to each other. Thus, they can
learn both the prior and subsequent information. The BiLSTM architecture started with
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two BiLSTM layers with 64 and 32 filters. The layers after BiLSTM were the same as the
CNN architectures. The learning rate was 0.0005, and the dropout was 0.2.

The parameters of SVM, RF, MLP, CNN, and BiLSTM were obtained by grid search.
Optimal parameters were obtained for various input features; spatial temporal parameters,
descriptive statistical parameters for two phases and seven phases, and the parameters
that did not affect the results and classification accuracy were selected.

3.6. Proposed Data Pipeline

The acceleration and angular velocity walking signals (12-axis) of 20 subjects were
detected by using the inertial sensors of both feet. HS, TO, opposite HS, and opposite TO
were detected from the inertial signals. Spatial-temporal parameters (23) were calculated
using the detected HS and TO of both feet, and HR, FA, and TA were additionally detected.
The gait phases were classified into either two or seven phases. The two phases were
classified into HS and TO, and the seven phases were classified into HS, opposite TO, HR,
opposite HS, TO, FA, and TA. Descriptive statistical parameters (10) were detected for
each inertial signal that was divided into two and seven phases. For descriptive statistical
parameters, 240 (12 × 2 × 10) parameters and 840 (12 × 7 × 10) parameters were detected
for the two and seven phases, respectively, as shown in Figure 3. Of the detected parameters,
only 50 were applied to the SHAP in the order of the lowest p-value resulting from the
independent t-test because the descriptive statistical parameters had too many features
compared with the data used to apply the SHAP. The 50 parameters were determined using
a grid search and the designer’s intuition, and this number did not generate big errors in
the results. Parameters 1–20, were used as inputs to RF, SVM, MLP, CNN, and BiLSTM
because the SHAP values were 0.002 or more within the top 20. Raw inertial signals
from the current to the next HS (one stride) were transformed into 100 samples by spline
interpolation because the number of samples for each stride was different, and the samples
were used as input for deep learning. For evaluation, nine subjects in each group were
used as training data, and one subject in each group was used as test data. Evaluation
results averaged the accuracy of 10 evaluations.

Figure 3. Data processing pipeline for the identification of sarcopenia.

4. Results
4.1. Gait Parameters

The detected spatial-temporal parameters and descriptive statistics parameters for two
and seven phases are outlined in the Appendix A. Since the proposed parameter accuracy is
calculated based on HS, opposite TO, HR, opposite HS, TO, FA, and TA, these seven events
should be accurately detected. HS and TO from the inertial sensor were detected with an
error of less than 0.03 s (3 samples) compared to the standard system. HR, FA, and TA
were calculated according to the proposed method from the detected HS and TO, and‘all
were detected without error. The results of the application of the SHAP with Xgboost to
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the spatial-temporal and descriptive statistical parameters for two and seven phases are
as follows:

• Spatial-temporal parameter (top 20): 5, 1, 22, 2, 8, 19, 18, 16, 10, 11, 17, 21, 15, 6, 9, 20,
12, 3, 4, and 7.

• Descriptive statistical parameters for two phases (top 20): 52, 126, 37, 97, 8, 51, 144,
211, 24, 3, 232, 115, 116, 31, 57, 50, 109, 43, 100, and 4.

• Descriptive statistical parameters for seven phases (top 20): 196, 524, 504, 97, 3, 231,
526, 507, 430, 187, 380, 8, 130, 57, 51, 200, 828, 283, 523, and 9.

Regarding the spatial-temporal parameters, the parameter for phase (%) was detected
as the most important parameter, and time dRL representing the balance of both sides
obtained high importance.

In the case of descriptive statistical parameters for two phases, the stance parameters
gained higher importance with 13 stance parameters and 7 swing parameters among
the top 20 important parameters. Regarding the parameter importance according to the
sensor type, the parameters of the gyro sensor were more important with 14 gyroscope
sensors and 6 acceleration sensors. The high importance parameters for seven phases
included 17 stance parameters and 3 swing parameters, and the stance parameters had
the same high importance as those of the two-phase case. In the stance phases, seven mid
stance parameters and six loading response parameters gained high importance. In the
case of the sensor type, the acceleration x-axis was six parameters, the gyroscope y-axis was
five parameters, and the parameter for the direction of the walking was highly important.

4.2. Identification of Sarcopenia

Twenty-three spatial-temporal parameters, 240 two-phase descriptive statistical pa-
rameters, and 840 seven-phase descriptive statistical parameters were applied as input
to the SVM, RF, MLP, CNN, and BiLSTM. In addition, the important parameters of the
top 20 of the two- and seven-phase descriptive statistical parameters were applied to each
classification algorithm, as shown in Tables 5 and 6. The application of the spatial-temporal
parameters yielded the best results in the MLP. When descriptive statistics were used,
sevens phases, which had more information than two phases, yielded outcomes with
good accuracy. The highest accuracy was obtained when the parameters detected by the
SHAP with the highest importance (ranked from 1 to 20) were used in conjunction with
the SVM. The results of using the raw signal, spatial-temporal parameters, and descriptive
statistics parameters for the top 20 importance parameters as inputs for deep learning were
better when gait parameters were used than when the raw signal was used.

Table 5. Evaluation result of support vector machines (SVM), random forest (RF), and multilayer
perceptron (MLP) (accuracy (standard deviation), %).

Parameters SVM RF MLP

Spatial-temporal (23) 65 (21.08) 75 (24.47) 77 (21.1)
Two phases descriptive statistics (2 × 12 × 10) 50 (27.76) 52.5 (24.47) 50 (11.25)

Two phases descriptive statistics (top 20) 80 (22.20) 77.5 (25.81) 77.5 (24.39)
Seven phases descriptive statistics (7 × 12 × 10) 48.75 (3.95) 60 (27.66) 66.3 (17.5)

Seven phases descriptive statistics (top 20) 95 (15.81) 85 (20.28) 90 (20)

Table 6. Evaluation result of deep learning models (accuracy (standard deviation), %).

Parameter CNN BiLSTM

Raw IMU data (100 × 12) 54.2 (20.72) 45.3 (17.50)
Spatial-temporal (23) 74.76 (24.01) 62.5 (30.33)

Two phases descriptive statistics (top 20) 69.75 (22.53) 56.25 (16.05)
Seven phases descriptive statistics (top 20) 87.5 (19.36) 86.26 (19.72)
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5. Discussion

To identify sarcopenia, existing studies involving the sarcopenia and normal groups
reported a decrease in walking speed [2,4] and a poor body balance [52]. In gait analysis
using inertial sensors, spatial-temporal parameters have traditionally been used as features
to conveniently identify diseases such as Faller, PD, and TPA in daily life. In this study,
23 spatial-temporal parameters used in existing disease recognition were detected to iden-
tify sarcopenia patients. As a result of detecting the importance of 23 parameters, the top
five were found to be single support phase right, stance phase right, stance time dRL,
stance phase left, and stance time right. As shown in Figure 2, the SHAP summary plot of
spatial-temporal parameters, the single support phase right decreased in the sarcopenia
group compared with the normal group and the negative effect (decreased probability of
classification as sarcopenia) increased when the single support phase increased. The de-
crease in the stance phase right and increase in the stance phase left increased the positive
effect of the SHAP value. The mean value of sarcopenia group was higher than that of
the normal group, but the opposite result of the two legs in the SHAP influence indicated
the imbalance of the two leg abilities in sarcopenia patients. When the speed decreased,
the single support phase decreased. Therefore, the same results were obtained as the results
of previous studies, i.e., muscle reduction decreased the walking speed. The stance time
dRL is the difference between the stance time of both feet and has a high value when
there is a large difference, indicating poor body balance. When the stance time dRL in-
creased, the effect of SHAP value also increased. The spatial-temporal parameters are
good for understanding the gait characteristics of sarcopenia; however, they do not yield
sufficient accuracy when used to identify sarcopenia. Therefore, to detect the acceleration
and gyroscope 3-axis signal characteristics obtained from the inertial sensor, descriptive
statistical parameters of the signal were extracted and used as inputs of the classifier.
The gait signal contained unique characteristics for each gait phase. As a result of sub-
dividing the gait phases, detecting descriptive statistical parameters, and applying them
to a classifier, a better identification result was obtained in seven phases compared with
two phases. There were 12 gait signals from the three-axis acceleration and gyroscope
sensor of both feet, and 10 descriptive statistical parameters of each signal were detected.
Increasing gait phases also created many parameters that are meaningless in identifying sar-
copenia. Among the detected parameters, high accuracy was obtained by detecting an
important parameter using the SHAP for identifying sarcopenia. The highest recognition
accuracy was obtained when the seven-phase descriptive statistical parameters were used
as input to the SVM, RF, and MLP, which were used as inputs for feature selection using
domain knowledge. When the top 20 parameters were used, the highest result was ob-
tained in SVM, which yielded the highest performance in binary classification. This can
explain why SVM was frequently used in other disease classifications.

Additionally, raw gait signals and gait parameters were used as inputs for the CNN
and BiLSTM; however, the accuracy of the identification of sarcopenia and normal group
was lower than that of conventional classification methods. To compare the performance
of the model, we applied the identification of 20 subjects and obtained an accuracy of 97%
in the CNN. There are studies that have shown good performances using deep learning,
but exhibited better performances when parameters were used as inputs compared with
raw signals. We confirmed that better performance can be obtained when important
parameters are used for sarcopenia recognition using XAI rather than traditional deep
learning models.

6. Conclusions

Based on various classification algorithms, sarcopenia patients were identified by in-
putting signals from inertial sensors and gait parameters. The spatial-temporal parameters
used in the existing clinical evaluation and diagnosis represent a good tool for under-
standing gait. However, this does not include the features of kinematic signals during the
gait cycle. Therefore, the use of descriptive statistical parameters for each gait phase can
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yield higher accuracy. High performance can be obtained by selecting important descrip-
tive statistical parameters because the use of many parameters as inputs leads to overfitting
or to an excessive learning time. Recently, the SHAP received tremendous attention as a
feature selection method. Unlike the conventional feature selection method, which selects
features with high accuracy, the SHAP has the advantage of lowering the importance of
parameters if similar features exist among parameters with high importance. The input
that applied the SHAP to the descriptive statistical parameters of sevens phases yielded the
best performance. Specifically, it was shown that the signal of the inertial sensor contained
abundant information on gait. Therefore, it is possible to diagnose and manage sarcopenia
in daily life with a smart insole and not with an expensive clinical tool. Deep learning did
not extract effective features from inertial signals. However, large amounts of data and the
selection of different deep learning models and parameters can yield good results. There-
fore, additional research on deep learning methods used for the identification of sarcopenia
using inertial sensors is needed. We will apply various deep learning techniques and
deep learning-based XAI techniques in future research to understand the inertial signals of
sarcopenia patients. Further, analysis using deep learning requires a large amount of data;
therefore, additional clinical evaluations will be conducted to obtain and analyze data of
sarcopenia patients by age and dominant leg.
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Appendix A

Table A1. Spatial-temporal parameters.

Number
Subject Normal Sarcopenia Normal Sarcopenia T-Test (Mean)

Parameter Mean Mean STD STD p-Value Statistic

1 Stance phase_right (%) 60.263 60.432 0.683 0.925 0.697 −0.358
2 Stance phase_left (%) 59.870 60.808 0.772 1.042 0.014 −2.250
3 Swing phase_right (%) 39.736 39.567 0.683 0.925 0.697 0.358
4 Swing phase_left (%) 40.129 39.191 0.772 1.042 0.014 2.250
5 Single support phase_right (%) 40.182 39.141 0.926 1.202 0.006 2.486
6 Single support phase_left (%) 39.826 39.633 0.901 1.169 0.657 0.439
7 Double support phase (%) 19.975 21.101 2.149 4.038 0.142 −1.347
8 Stance time_right (s) 0.604 0.615 0.013 0.017 0.323 −0.615
9 Stance time_left (s) 0.600 0.618 0.013 0.017 0.091 −1.250

10 Swing time_right (s)
(stride time) 0.415 0.417 0.009 0.012 0.588 0.180
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Table A1. Cont.

Number
Subject Normal Sarcopenia Normal Sarcopenia T-Test (Mean)

Parameter Mean Mean STD STD p-Value Statistic

11 Swing time_left (s) 0.418 0.414 0.009 0.012 0.250 1.713
12 Single support_left (s) 0.401 0.391 0.006 0.008 0.013 2.300
13 Double support (s) 0.200 0.210 0.018 0.034 0.186 −1.216
14 Single support_right (s) 0.397 0.395 0.006 0.007 0.642 0.459
15 Stride length (m) 0.954 0.915 0.132 0.148 0.149 1.297
16 Step length_right (m) 0.483 0.467 0.141 0.147 0.226 1.050
17 Step length_left (m) 0.471 0.448 0.123 0.148 0.107 1.482
18 Step time_right (s) 0.515 0.523 0.009 0.011 0.262 −0.697
19 Step time_left (s) 0.501 0.506 0.009 0.011 0.531 −0.114
20 Cadence (steps/min) 123.331 121.978 0 0 0.399 0.251
21 Stance phase dRL 1.224 1.812 0.007 0.011 <0.001 −3.973
22 Stance time dRL 0.014 0.021 1.025 1.405 <0.001 −3.846
23 Swing time dRL 0.012 0.019 0.901 1.319 <0.001 −4.032

Table A2. Two phase descriptive statistical parameters.

Right Left

Parameter Max Min STD AbSum RMS Ku Ske MMgr DMM Mdif Max Min STD AbSum RMS Ku Ske MMgr DMM Mdif

Stance
phase

AccX 1 2 3 4 5 6 7 8 9 10 121 122 123 124 125 126 127 128 129 130
AccY 11 12 13 14 15 16 17 18 19 20 131 132 133 134 135 136 137 138 139 140
AccZ 21 22 23 24 25 26 27 28 29 30 141 142 143 144 145 146 147 148 149 150

GyroX 31 32 33 34 35 36 37 38 39 40 151 152 153 154 155 156 157 158 159 160
GyroY 41 42 43 44 45 46 47 48 49 50 161 162 163 164 165 166 167 168 169 170
GyroZ 51 52 53 54 55 56 57 58 59 60 171 172 173 174 175 176 177 178 179 180

Swing
phase

AccX 61 62 63 64 65 66 67 68 69 70 181 182 183 184 185 186 187 188 189 190
AccY 71 72 73 74 75 76 77 78 79 80 191 192 193 194 195 196 197 198 199 200
AccZ 81 82 83 84 85 86 87 88 89 90 201 202 203 204 205 206 207 208 209 210

GyroX 91 92 93 94 95 96 97 98 99 100 211 212 213 214 215 216 217 218 219 220
GyroY 101 102 103 104 105 106 107 108 109 110 221 222 223 224 225 226 227 228 229 230
GyroZ 111 112 113 114 115 116 117 118 119 120 231 232 233 234 235 236 237 238 239 240

Table A3. Seven phase descriptive statistical parameters.

Right Left

Parameter Max Min STD AbSum RMS Ku Ske MMgr DMM Mdif Max Min STD AbSum RMS Ku Ske MMgr DMM Mdif

Loading
re-

sponse

AccX 1 2 3 4 5 6 7 8 9 10 421 422 423 424 425 426 427 428 429 430
AccY 11 12 13 14 15 16 17 18 19 20 431 432 433 434 435 436 437 438 439 440
AccZ 21 22 23 24 25 26 27 28 29 30 441 442 443 444 445 446 447 448 449 450

GyroX 31 32 33 34 35 36 37 38 39 40 451 452 453 454 455 456 457 458 459 460
GyroY 41 42 43 44 45 46 47 48 49 50 461 462 463 464 465 466 467 468 469 470
GyroZ 51 52 53 54 55 56 57 58 59 60 471 472 473 474 475 476 477 478 479 480

Mid
stance

AccX 61 62 63 64 65 66 67 68 69 70 481 482 483 484 485 486 487 488 489 490
AccY 71 72 73 74 75 76 77 78 79 80 491 492 493 494 495 496 497 498 499 500
AccZ 81 82 83 84 85 86 87 88 89 90 501 502 503 504 505 506 507 508 509 510

GyroX 91 92 93 94 95 96 97 98 99 100 511 512 513 514 515 516 517 518 519 520
GyroY 101 102 103 104 105 106 107 108 109 110 521 522 523 524 525 526 527 528 529 530
GyroZ 111 112 113 114 115 116 117 118 119 120 531 532 533 534 535 536 537 538 539 540

Terminal
stance

AccX 121 122 123 124 125 126 127 128 129 130 541 542 543 544 545 546 547 548 549 550
AccY 131 132 133 134 135 136 137 138 139 140 551 552 553 554 555 556 557 558 559 560
AccZ 141 142 143 144 145 146 147 148 149 150 561 562 563 564 565 566 567 568 569 570

GyroX 151 152 153 154 155 156 157 158 159 160 571 572 573 574 575 576 577 578 579 580
GyroY 161 162 163 164 165 166 167 168 169 170 581 582 583 584 585 586 587 588 589 590
GyroZ 171 172 173 174 175 176 177 178 179 180 591 592 593 594 595 596 597 598 599 600

Pre
swing

AccX 181 182 183 184 185 186 187 188 189 190 601 602 603 604 605 606 607 608 609 610
AccY 191 192 193 194 195 196 197 198 199 200 611 612 613 614 615 616 617 618 619 620
AccZ 201 202 203 204 205 206 207 208 209 210 621 622 623 624 625 626 627 628 629 630

GyroX 211 212 213 214 215 216 217 218 219 220 631 632 633 634 635 636 637 638 639 640
GyroY 221 222 223 224 225 226 227 228 229 230 641 642 643 644 645 646 647 648 649 650
GyroZ 231 232 233 234 235 236 237 238 239 240 651 652 653 654 655 656 657 658 659 660
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Table A3. Cont.

Right Left

Parameter Max Min STD AbSum RMS Ku Ske MMgr DMM Mdif Max Min STD AbSum RMS Ku Ske MMgr DMM Mdif

Initial
swing

AccX 241 242 243 244 245 246 247 248 249 250 661 662 663 664 665 666 667 668 669 670
AccY 251 252 253 254 255 256 257 258 259 260 671 672 673 674 675 676 677 678 679 680
AccZ 261 262 263 264 265 266 267 268 269 270 681 682 683 684 685 686 687 688 689 690

GyroX 271 272 273 274 275 276 277 278 279 280 691 692 693 694 695 696 697 698 699 700
GyroY 281 282 283 284 285 286 287 288 289 290 701 702 703 704 705 706 707 708 709 710
GyroZ 291 292 293 294 295 296 297 298 299 300 711 712 713 714 715 716 717 718 719 720

Mid
swing

AccX 301 30 303 304 305 306 307 308 309 310 721 722 723 724 725 726 727 728 729 730
AccY 311 312 313 314 315 316 317 318 319 320 731 732 733 734 735 736 737 738 739 740
AccZ 321 322 323 324 325 326 327 328 329 330 741 742 743 744 745 746 747 748 749 750

GyroX 331 332 333 334 335 336 337 338 339 340 751 752 753 754 755 756 757 758 759 760
GyroY 341 342 343 344 345 346 347 348 349 350 761 762 763 764 765 766 767 768 769 770
GyroZ 351 352 353 354 355 356 357 358 359 360 771 772 773 774 775 776 777 778 779 780

Terminal
swing

AccX 361 362 363 364 365 366 367 368 369 370 781 782 783 784 785 786 787 788 789 790
AccY 371 372 373 374 375 376 377 378 379 380 791 792 793 794 795 796 797 798 799 800
AccZ 381 382 383 384 385 386 387 388 389 390 801 802 803 804 805 806 807 808 809 810

GyroX 391 392 393 394 395 396 397 398 399 400 811 812 813 814 815 816 817 818 819 820
GyroY 401 402 403 404 405 406 407 408 409 410 821 822 823 824 825 826 827 828 829 830
GyroZ 411 412 413 414 415 416 417 418 419 420 831 832 833 834 835 836 837 838 839 840
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