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Abstract: The goal of this study was to develop a framework to classify dependence in ambulation by
employing a deep model in a 3D convolutional neural network (3D-CNN) using video data recorded
by a smartphone during inpatient rehabilitation therapy in stroke patients. Among 2311 video clips,
1218 walk action cases were collected from 206 stroke patients receiving inpatient rehabilitation
therapy (63.24 ± 14.36 years old). As ground truth, the dependence in ambulation was assessed
and labeled using the functional ambulatory categories (FACs) and Berg balance scale (BBS). The
dependent ambulation was defined as a FAC score less than 4 or a BBS score less than 45. We
extracted patient-centered video and patient-centered pose of the target from the tracked target’s
posture keypoint location information. Then, the extracted patient-centered video was input in
the 3D-CNN, and the extracted patient-centered pose was used to measure swing time asymmetry.
Finally, we evaluated the classification of dependence in ambulation using video data via fivefold
cross-validation. When training the 3D-CNN based on FACs and BBS, the model performed with
86.3% accuracy, 87.4% precision, 94.0% recall, and 90.5% F1 score. When the 3D-CNN based on FACs
and BBS was combined with swing time asymmetry, the model exhibited improved performance
(88.7% accuracy, 89.1% precision, 95.7% recall, and 92.2% F1 score). The proposed framework for
dependence in ambulation can be useful, as it alerts clinicians or caregivers when stroke patients
with dependent ambulatory move alone without assistance. In addition, monitoring dependence
in ambulation can facilitate the design of individualized rehabilitation strategies for stroke patients
with impaired mobility and balance function.

Keywords: machine learning; stroke; rehabilitation; dependent ambulation; postural balance

1. Introduction

Stroke is the main cause of acquired disability in ambulation [1,2]. Impaired ambula-
tion can be caused by motor weakness, sensory deficits, imbalance, visual impairment, or
cognitive impairments following a stroke [3]. After rehabilitation, 64% of stroke survivors
achieve independent ambulation, while 36% require assistance or are unable to walk [4].
Stroke survivors with impaired mobility and balance function are at higher risk for falls
than healthy elderly individuals [5]. Most falls in stroke survivors occur while walking
because the asymmetrical loadings between the paretic and non-paretic lower limbs im-
pede balance control [6,7]. A recent cohort study found that dependence in ambulation is a
predictive factor of functional independence and quality of life for stroke survivors [8].

Dependence in ambulation following a stroke is clinically evaluated by clinicians or
physiotherapists relative to mobility and balance functions. Mobility function is commonly
used to assess how much dependence or assistance is required. The functional ambulatory
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categories (FACs) are a common clinical assessment tool first described by Holden et al. [9].
FAC assessment provides information to stroke patients and caregivers about how much
manual assistance by another person is required for walking [10]. Previous studies reported
clinically frequent use of FACs in post-stroke assessment dependence in ambulation [10–12].
A FAC score of 4 or greater indicates community-dwelling ambulation at 6 months after
a stroke [10], and a FAC score of less than 4 is a predicting risk factor of fear of falling at
12 months after stroke [12]. In addition, following a stroke, the balance function is evalu-
ated using the Berg balance scale (BBS), which is an assessment tool initially developed
to identify the risk of falls in the geriatric population [13]. The BBS provides information
to caregivers about how to safely manage stroke patients [14]. The BBS scores for stroke
patients have been shown to be strong predictors of the degree of dependence in ambula-
tion [15,16]. A BBS score of less than 45 indicates the need for dependence or assistance in
ambulation [15]. Therefore, determining independent or dependent ambulation using FAC
and BBS scores is effective in terms of evaluating a functional ambulator in community
return after stroke.

Human activity recognition, i.e., interpreting human body gestures or motions to
determine human action, has received increasing attention in the field of computer vision
over the past two decades [17,18]. Human activity recognition involves video-based human
activity monitoring in various fields, e.g., healthcare [19], education [20], human–computer
interaction [21], video surveillance [22], and sports [23,24]. In recent years, automated
human activity recognition has been developed using machine learning and deep neural
networks [25]. Among machine learning techniques, analyzing video using deep neural
networks is a field that has received increasing attention [26–28]. According to a recent
study, several human pose estimation frameworks efficiently extract and identify human
joints from a given image of different people regardless of how many people are present
in the image [29]. For example, a deep neural network has been developed to extract
walking features, and this system performs well on untrained real-world data with high
accuracy [30]. It is helpful for disabled patients to follow a rehabilitation strategy and
monitor harmful situations in the community, e.g., the risk of falls [31]. However, to the
best of our knowledge, no study has investigated the detection of dependent ambulation in
a clinical setting. Thus, in this study, we used a deep neural network to classify dependence
in ambulation in disabled stroke patients using video data acquired by a smartphone
during inpatient rehabilitation therapy.

The purpose of this study was to determine dependence in ambulation of stroke
patients using video data acquired by smartphone based on a 3D convolutional neural
network (3D-CNN). Our primary contributions are summarized as follows:

First, the proposed framework can classify dependence in ambulation using video-
recorded data using a smartphone in a natural situation. Second, to train our deep model
on a small dataset, we applied feature extraction transfer learning from a trained model of
Mobile Video Networks (MoViNet) and reduce intraclass variance by removing regions
that are irrelevant to patients (e.g., the background). Third, to improve classification
performance, we measured swing time asymmetry by analyzing pose keypoints and using
them as supplementary results. Note that pose keypoints were already extracted to detect
and track patients; thus, this process did not increase computation time.

2. Materials and Methods

The flowchart diagram of the overall system design is presented in Figure 1. The
proposed system took video recordings from a smartphone as input. To extract the region
of interest, the pose estimation module extracted keypoints of persons, and the tracking
module tracks multiple persons simultaneously based on the locations of the keypoints
(Section 2.3). Then, a clinician manually identified a stroke patient as a target from tracking
multiple persons. The 3D-CNN took a patient-centered video of the target as input to clas-
sify the dependence in ambulation (Section 2.5). We measured the swing time asymmetry
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by analyzing step gait motion based on a patient-centered pose to improve classification
performance in uncertain scores of dependence in ambulation (Section 2.6).
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Figure 1. The design overview diagram for classification of dependence in ambulation in stroke patients.

2.1. Video Data Collection

The video data were collected from 206 patients diagnosed with ischemic or hem-
orrhagic stroke who had received inpatient rehabilitation therapy at the Department of
Rehabilitation Medicine at Kyungpook National University Chilgok Hospital from 7 Jan-
uary 2016 to 10 August 2019. In total, 351 videos were recorded by caregiver smartphones
while patients received inpatient physical therapy (oral consent was provided by the pa-
tients). The videos were recorded in 960 × 540 and 640 × 360 resolutions and at 30 fps, and
the length of each video ranged from 5.03 s to 135.8 s. The ambient light was fluorescent
because the video was filmed indoors without windows. Here, patient faces were blurred to
protect their identities. This retrospective study was approved by the Institutional Review
Board at the Kyungpook National University Chilgok Hospital (No. KNUCH 2019-09-006).

2.2. Assessment of Dependence in Ambulation

The dependence in ambulation in stroke patients was evaluated as mobility and
balance function by physiotherapists. Here, mobility function was assessed using the
FAC score, in which a score of 0 indicates a patient that cannot walk at all or requires
the help of two people; a score of 1 indicates a patient who requires continuous manual
contact to support their body weight and maintain balance; a score of 2 indicates a patient
who requires an intermittent or continuous light touch to assist balance or coordination; a
score of 3 indicates a patient who can ambulate on a level surface without manual contact
from another person but requires standby guarding against a person for either safety
or verbal cueing; a FAC score of 4 indicates a patient who can ambulate independently
on a level surface but requires supervision on stairs or uneven ground; lastly, a score of
5 indicates a patient who can walk independently in all environments, including stairs or
uneven ground [9]. In this study, we defined dependence in ambulation following stroke
as dependent ambulation with a FAC score of less than 4 and independent ambulation
with a FAC score of 4 or greater [10,12].

In addition, balance function was assessed as the BBS score. The 14 items in the BBS are
ordered according to increasing difficulty. The performance for each item is ranked on an
ordinal scale from 0 to 4 with a maximum total score of 56 points. For each item, a score of 0
reflects the need for dependence or assistance to even minimally perform the requirements
of the task, and a score of 4 reflects independence in maximal task performance [13]. A BBS
score of less than 45 indicates the need for assistance or dependence during ambulation,
and a BBS score of 45 or greater indicates independent ambulation [15].
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2.3. Pose Estimation and Tracking for Region-of-Interest Extraction

We employed OpenPose, a real-time multi-person pose estimation library, to detect and
track multiple persons [29]. Among tracked multiple persons, a clinician manually labeled a
stroke patient as a target, the cropped videos of the target were used for classification of a
dependent or independent ambulator based on video data acquired by a smartphone.

First, the poses of all people in the video were estimated using a pose estimation
framework for each frame in the video. Then, we applied the simple online and real-time
tracking (SORT) method, which is a simple and efficient tracking method that is based
on bounding boxes obtained from each person’s pose keypoints [32]. Here, to reduce
person identity switch errors due to occluded objects, we adapted the object model using
the representations of keypoint locations. Then, a clinician manually identified a stroke
patient as a target from tracking multiple persons. We extracted patient-centered video
and patient-centered pose of the target from the tracked target’s posture keypoint location
information. Finally, the extracted patient-centered video was input in the 3D-CNN, and
the extracted patient-centered pose was used to measure swing time asymmetry. Note that
the proposed method is a pose-based detection and tracking method; thus, the soft image
registration effect occurred.

2.4. Video Pre-Processing for Deep Learning

We split the videos acquired during inpatient rehabilitation therapy into multiple 5 s
clips. As a result, we generated a total of 2311 clips. Here, 1218 cases (52.7%) involved the
“walk” action, 690 cases involved the “stand” action, 260 cases involved the “sit” action,
and 143 cases involved the “stair up” action. In further processing, we only used “walk”
action cases because it represented the largest proportion of data with the most balanced
independence/dependence during ambulation.

2.5. The 3D Convolutional Neural Network

Our solution provides a real-time determination of dependence in ambulation from
video data of stroke patients walking. Therefore, MoViNet, which has demonstrated
outstanding performance in terms of processing time and accuracy in a recently developed
3D-CNN, was used as the basic structure of our 3D-CNN [33].

MoViNet provides six sub-models (i.e., A0, A1, . . . , A5) according to image resolution
and fps values. The A0 is the smallest model, and A5 is the largest model. We adapted
a mid-size A2 model of the input of 224 × 224 pixels and 5 fps with the modification of
input frame length from 10 s to 5 s. It was worth noting that the base model required 4.8 M
parameters, and the amount of computation was 10.3 GFLOPS.

The adapted model took as input a 4D tensor (25 × 128 × 128 × 3; time × width ×
height × color) constructed from patient-centered video segments with a uniform sampling
rate of 5 Hz, which allowed us to optimize the size and quality of the video segments.
Following the input layer, seven 3D convolutional blocks were connected in series. Each
3D convolutional block contained various combinations of 3D convolutional filters of
1 × 1 × 3, 1 × 3 × 3, 1 × 5 × 5, 3 × 3 × 3, 5 × 3 × 3, and 1 × 1 × 1 in series. After the
convolutional blocks, a global averaging pooling layer summarized the feature maps over
space and time. Then, three fully connected (dense) layers were used to output the binary
classification decision of the dependence in ambulation of the patient in the video segment
(Figure 2).
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2.6. Swing Time Asymmetry Measurement

Stroke patients have asymmetry loadings between the paretic and non-paretic lower
limbs while walking [7]. This feature is an important factor when determining dependence
in ambulation. Thus, in this study, swing time asymmetry was used as an additional
judgment basis of our framework. Swing time is defined as the time from the foot first
leaving the ground (toe-off) to the time at which the same foot touches the ground (heel-
strike). Here, the time was measured by tracking the position of the heel and toe keypoints
of each foot in the patient-centered pose. To compute the time of heel strike and toe-off,
we utilized the heel and toe keypoints, respectively, and determined the frame where
the change in the sum of X-squared and Y-squared values was minimum across two
consecutive frames.

The output of the deep model (3D-CNN) had a value between 0 and 1 through a
sigmoid function, as we trained our deep learning model with the sigmoid cross-entropy
loss. The closer the value was to 1, the more dependent ambulation was, and the closer the
value was to 0, the more independent ambulation was. However, a problem arose when this
output was approximately 0.5, i.e., the uncertainty about the result was significant. In such
cases, swing time asymmetry was measured, and the patient’s dependency was determined
based on the measured swing time asymmetry value. In this study, we selected an optimal
range value for deep model output ambiguity through experiments. When the range was
0.4 to 0.6, the accuracy rate was the lowest, and the re-decision by considering swing
time asymmetry improved overall system accuracy (Figure 3). Swing time asymmetry is
measured as follows:

Swing time asymmetry =
Swing timeparetic

Swing timenon−paretic

When the patient’s swing time asymmetry value was close to 1.02, the system identi-
fied independent ambulation, and when the patient’s swing time asymmetry value was
close to 1.24, the system identified dependent ambulation [7].
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2.7. Training and Testing

To demonstrate the generalizability of the proposed model, we performed fivefold
cross-validation for all experiments. Here, approximately 80% of the data were used as a
training set, and the remaining data were used as the testing set. For example, the number
of usable walking instances was 168; thus, the number of testing data was 34, and the
number of the training data was 134. In addition, 25 consecutive frames were sampled
uniformly from a long video sequence as input in the training phase. In the testing phase,
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the entire frames were used as input. The training module used stochastic gradient descent
learning with cyclic learning rates [34]. The initial learning rate and the initial number
of epochs were 5 × 10−4 and 10, respectively. The number of epochs was increased by
a factor of two after each cycle. After performing three cycles, all models were trained
for 70 epochs. Here, we employed binary cross-entropy as the loss function. The ground
truth of the dependence in ambulation was confirmed from the FAC and BBS scores. If
the FAC score was less than 4 or the BBS score was less than 45, the ground-truth label of
the dependence in ambulation was positive (i.e., dependent ambulation); otherwise, the
ground truth label was negative (i.e., independent ambulation).

2.8. Evaluation Metrics

To evaluate classification performance, accuracy, precision, recall, and F1 score values
were measured. A correctly classified dependent patient and correctly classified indepen-
dent patient were considered to be true positive (TP) and true negative (TN), respectively.
A false positive (FP) was an independent patient classified incorrectly as a dependent
patient, and a false negative (FN) was a dependent patient classified incorrectly as an
independent patient.

The accuracy rate is the proportion of all correctly classified samples out of all samples,
and it is defined by

Accuracy =
TP + TN

TP + TN + FP + FN
Precision is the proportion of TPs out of all samples predicted as dependent samples,

and it is defined by

Precision =
TP

TP + FP
Recall is the proportion of TPs out of all ground truth dependent patients, and it is

defined by

Recall =
TP

TP + FN
In addition, the F1 score is the harmonic mean of precision and recall, and it is defined by

F1 =
2

Precision−1 + Recall−1 =
2·TP

2·TP + FP + FN

We applied fivefold cross-validation; thus, we also present both the mean and standard
deviation of each evaluation result.

3. Results

The demographic and clinical characteristics of 206 stroke patients who received
inpatient rehabilitation therapy are shown in Table 1. The patients were 23 to 89 years old
(mean age 63.24 ± 14.36 years; 108 males and 98 females). The number of ischemic stroke
patients was 113 (54.9%), and the number of hemorrhagic stroke patients was 93 (45.1%).
The time from stroke onset to video recording was 120.17 ± 281.52 days. During video
recording, clinical assessments of dependence in ambulation were used as ground-truth
labels when training the 3D-CNN framework. Based on the FAC score, the number of
patients with dependent ambulation was 158 (76.7%), and the number of patients with
independent ambulation was 48 (23.3%). Based on the BBS score, the number of patients
with dependent ambulation was 152 (73.7%), and the number of patients with independent
ambulation was 54 (26.3%).

Table 2 shows the detection performance using the 3D-CNN according to whether
dependence in ambulation was determined using either FAC, BBS, or both. When training
the 3D-CNN based on the FAC score, the model obtained 84.5% accuracy, 85.3% precision,
92.8% recall, and 88.8% F1 score. When training the 3D-CNN based on the BBS score,
the model obtained 85.1% accuracy, 86.3% precision, 91.6% recall, and 88.6% F1 score. In
addition, when training the 3D-CNN based on both the FAC and BBS scores, the model
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shows improved performance (86.3% accuracy, 87.4% precision, 94.0% recall, and 90.5% F1
score). The area under the curve (AUC) was 0.93 for dependent ambulation and 0.93 for
independent ambulation, as shown in Figure 4a.

Table 1. Demographic and clinical characteristics of stroke patients.

Parameters Patients (n = 206)

Age (mean ± SD, years) 63.24 ± 14.36
Sex (male: female, n) 108:98
Stroke (ischemic: hemorrhagic, n) 113:93
Involved stroke lesion

Right: left:both hemisphere (n) 82:105:19
Supratentorial: infratentorial lesion (n) 156:50
Vascular territory in ischemic stroke (n = 113)

(ACA:MCA:PCA:BA/SCA/PICA/AICA/VA, n) 0:81:3:29

Classification of hemorrhagic stroke (n = 93)
(ICH:IVH:SAH:SDH, n) 69:1:18:5

Time from stroke onset to recorded video (mean ± SD, days) 120.17 ± 281.52
Level of dependence in ambulation when recording video

FAC score (mean ± SD) 1.73 ± 1.82
FAC < 4 (dependent):FAC ≥ 4 (independent) (n, %) 158 (76.7):48 (23.3)

BBS score (mean ± SD) 23.75 ± 20.56
BBS < 45 (dependent): BBS ≥ 45 (independent) (n, %) 152 (73.7):54 (26.3)

ACA, anterior cerebral artery; AICA, anterior inferior cerebellar artery; BA, basilar artery; BBS, Berg balance
scale; FAC, functional ambulatory category; ICH, intracerebral hemorrhage; IVH, intraventricular hemorrhage;
MCA, middle cerebral artery; SAH, subarachnoid hemorrhage; SCA, superior cerebellar artery; SDH, subdural
hemorrhage; PCA, posterior cerebral artery; PICA, posterior–inferior cerebellar artery; VA, vertebral artery.

Table 2. The detection scores (accuracy, recall, precision, and F-1 score) of dependence in ambulation
using a trained 3D-CNN model.

3D-CNN When
Training Based on
Assessment Scores

Accuracy Precision Recall F-1 Score

FAC 0.845 ± 0.065 0.853 ± 0.057 0.928 ± 0.055 0.888 ± 0.050
BBS 0.851 ± 0.037 0.863 ± 0.065 0.916 ± 0.046 0.886 ± 0.032

FAC and BBS 0.863 ± 0.032 0.874 ± 0.024 0.940 ± 0.035 0.905 ± 0.022
BBS, Berg balance scale; FAC, functional ambulatory category.
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To improve detection performance, we extracted and calculated swing time asymmetry
in the patient-centered module. Then, the result from the 3D-CNN was combined with
the swing time asymmetry values, as shown in Table 3. When the 3D-CNN based on both
the FAC and BBS values was combined with swing time asymmetry, the model improved
performance (88.7% accuracy, 89.1% precision, 95.7% recall, and 92.2% F1 score). Here, the
AUC curve was 0.94 for dependent ambulation and 0.94 for independent ambulation, as
shown in Figure 4b.

Table 3. The detection scores (accuracy, recall, precision, and F-1 Score) of dependence in ambulation
using a trained 3D-CNN model combined with measurement swing time asymmetry.

3D-CNN with Swing
Time Asymmetry

Accuracy Precision Recall F-1 Score

0.887 ± 0.044 0.891 ± 0.041 0.957 ± 0.028 0.922 ± 0.029

4. Discussion

We proposed a deep learning framework for the classification of dependence in
ambulation using video data acquired by a smartphone during inpatient rehabilitation
therapy for stroke patients. The proposed framework demonstrated a high detection
accuracy for both dependent and independent ambulation via transfer learning of a state-
of-the-art 3D-CNN and efficient combination of swing time asymmetry analysis. The results
of this study provide information that we expect to be valuable in fall prevention when
stroke patients with dependent ambulation attempt to move independently. To the best of
our knowledge, no previous study has investigated the use of machine learning analysis
to determine dependence in ambulation in stroke patients using video data acquired by
a smartphone.

There was a high correlation between the FAC and BBS scores; thus, the F1 score
demonstrated good performance at 83% and 86%, respectively, when analyzed using each
score. However, we found that the FAC and BBS scores were not completely consistent;
thus, we combined the FAC and BBS scores, and we obtained an F1 score of 90%, which was
an improvement of approximately 2%, compared when using each score independently.

We found that clinical assessments, e.g., the FAC and BBS scores, help measure a
stroke patient’s ability to walk; however, there are two main problems to address. First,
clinical assessments should be performed by trained clinicians or physiotherapists with
sufficient time. Second, even if the FAC and BBS scores are measured, identifying a patient
found in CCTV to retrieve clinical assessment scores is not permitted in many countries due
to privacy issues. Our proposed framework can estimate dependence in ambulation from
video data without extracting personal information. Furthermore, most studies on falls
were collected retrospectively through questionnaires. This retrospective data collection
did not fully reflect the risk of falls or fall incidence in the community. Given the high
incidence of falls in elderly and stroke survivors, classifying dependence in ambulation in
our framework can be important to prevent falls.

In research settings, machine learning techniques have been used in qualitative anal-
yses during walking, thus modeling biomechanical systems by determination of the re-
lationship between input data and outputs [35]. The input data were primarily collected
using a motion capture system and electromyography, including kinematics, kinetics, or
neuromuscular signals from the trunk and lower limb movements during walking [36,37].
Recent machine learning studies have analyzed various sensor data from infrared cameras,
accelerometers, inertial measurement units, and pressure as input data [38–41]. Although
qualitative data were not included in this study, we also proposed a method to measure
swing time asymmetry during walking in real time using video trained using a pose esti-
mation module. It can be used to quickly measure asymmetric temporal parameters when
walking using only video data without various sensor data.

In addition, several limitations need to be addressed. First, we did not apply image
pre-processing; however, performing a denoising technique can improve the system’s



J. Pers. Med. 2021, 11, 1080 9 of 11

performance if the images are noisy [42]. Second, as only swing time asymmetry was
analyzed, we did not investigate other spatiotemporal parameters during walking, e.g., step
length and velocity. In the future, we aim to estimate various spatiotemporal parameters
during walking using 3D pose estimation. Third, we only analyzed video data; however,
it may be beneficial to also analyze audio data because smartphones record both audio
and video, and audio data can be robust to occlusion. Finally, we extracted the rectangular
bounding box of the persons, but the segmentation of images related to the regions of
interest can provide relevant information on the posture of the patients [43,44].

5. Conclusions

In this study, we proposed a deep learning framework that can classify the dependence
in ambulation in stroke patients with high performance. The trained 3D-CNN performed
with 86.3% accuracy, 87.4% precision, 94.0% recall, and 90.5% F1 score. The trained 3D-CNN
combined with measuring swing time asymmetry improved performance in 88.7% accuracy,
89.1% precision, 95.7% recall, and 92.2% F1 score. The proposed framework can be easily
used in hospitals or local communities because it uses video captured by a smartphone.
This system can alert medical staff and caregivers in real time when a stroke patient with
dependent ambulation moves alone without any assistance or supervision. These warnings
will help prevent falls in stroke patients. Furthermore, monitoring ambulation using videos
may facilitate the design of personalized rehabilitation strategies for stroke patients with
ambulatory and balance deficits in the community.
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