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ABSTRACT Demand response (DR) is a voluntary program that encourages related stakeholders, in this case
electricity consumers, to cut down on usage during periods of high electricity load. One key to fully exploiting
DR is to encourage residential customers to join the DR program. Unlike in the DR programs for commercial
and industrial customers, for the successful operation of the residential DR program, several issues have to
be addressed, one of which is to provide a group-level incentive to participating customers. In particular,
the issue comes up when the incentive calculated for a group is not equal to the aggregated incentives for each
customer (i.e., non-equal incentive problem). The non-equal incentive problem deteriorates the successful
operation of residential DR by decreasing the motivation of DR operators and customers. We first prove the
non-equal incentive problem through mathematical and experimental methods. We then propose the novel
single group-based indirect incentive calculation method. The basic idea of our approach is to indirectly
calculate the incentive for each customer not using the customer’s data but using the data of other customers
of the same DR group. Through experiments involving the electricity usage data of 42,193 households and
the real DR events in Korea, we show that our method solves the non-equal incentive problem in most
cases. Furthermore, our method improves the accuracy of the baseline estimation (used for calculating the
contribution).

INDEX TERMS Demand response, residential, customer baseline load, aggregator, incentive-based DR
program.

I. INTRODUCTION
Demand response (DR) can handle the occasional high elec-
tricity load in an inexpensive manner [1], [2]. The DR
attempts to shift the electricity load of the end customer when
electricity demand surges through incentive- or pricing-based
policies [3], [4]. The DR can provide economic benefits to
related stakeholders: independent system operators (ISOs),
DR operators, and end customers. An ISO who coordinates,
controls, and monitors the operation of the electrical power
system can reduce the cost of the investment by lowering
the peak electricity load and enhancing the reliability of the
power system [5], [6]. The DR operators, located between
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ISOs and the end customers, ensure that the DR operates well,
adding to the benefits of the DR program. The end customers
can obtain incentives or reduce their electricity consumption
costs by reducing their electricity usage.

One promising way to increase DR capacity (i.e.,
the amount of electricity that can be reduced when requested)
is to include residential customers because they are respon-
sible for a considerable proportion of electricity usage and
have the most uncovered DR potential [7], [8].1 The DR
program intended for residential customers is the residential
DR program. Unlike the other DR programs for commercial

1 Throughout this paper, we are interested in the incentive-based DR
program. In the remainder of this paper, we use the term DR to indicate an
incentive-based DR.
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and industrial customers, the residential DR has unique
features and corresponding issues to be solved. Consider-
ing that electricity consumption of residential customers is
highly random in nature, traditional deterministic customer
baseline load (CBL) calculation methods are not effective
for residential DR [9]. Therefore, to provide stable incen-
tive to residential customers, CBL calculation methods suit-
able for residential customers are required. Considering that
the electricity consumption level of residential customers
is quite low [37], aggregation of residential customers is
inevitable. Regarding this aspect, we may have two issues.
First, an operation strategy for aggregating residential cus-
tomers is required to maximize the profit of DR operators.
Second, given a group-level incentive, a way to distribute the
incentives to residential customers is required.

Most of the existing work focuses on CBL calculation
methods for residential customers and operation strategies for
DR operators. The CBL calculation methods include direct
CBL calculation such as averaging methods [9], regression
[13], [14], deep learning [15]–[21], and probabilistic meth-
ods [7], [22]–[25] and indirect CBL calculation methods
such as control group methods [24], [26]–[35]. The operation
strategies for DR operators include optimal bidding strat-
egy [38]–[47] andmodeling of residential customers [8], [23],
[48]–[53]. However, to the best of our knowledge, none of
the existing work considers the incentive distribution in the
context of residential DR.

To this end, for a successful residential DR, we focus on
the incentive distribution problem. We first prove the prob-
lem, called non-equal incentive problem, mathematically and
empirically. Then, we propose a single group-based indirect
CBL calculation method. Our idea is to indirectly calculate
the contribution of each customer by utilizing data on the
other members of the same DR group, unlike the common
approach that calculates a customer’s contribution using the
data of that customer only or requires additional non-DR
groups. The rationale behind this approach is to overcome
the problem caused by the nonlinearity of the function used
for calculating the contribution (i.e., the main reason for the
non-equal incentive problem) through a single group-based
indirect calculation.

To examine our method, we conduct experiments using
electricity usage data on 42,193 households with six aver-
aging CBL calculation methods that are widely used in the
real world. First, we demonstrate that our method effectively
solves the problem caused by the nonlinearity of the func-
tion. Then, we show that our method greatly reduces the
gap between the incentive for a DR group calculated by
ISO and the aggregated incentive of each customer calcu-
lated by a DR operator, implying that the proposed method
effectively solves the non-equal incentive problem. Further-
more, our method improves the accuracy of the baseline
estimation used for calculating the contribution. Using the
real DR events data with six averaging CBL calculation
methods, we demonstrate that our method outperforms the
existing method in solving the non-equal incentive problem.

We also briefly discuss interesting aspects of the residential
DR program.

The contributions of this study are as follows.
1) We define the non-equal incentive problem as an essen-

tial issue for successful residential DR. We prove the
problem mathematically and empirically.

2) To the best of our knowledge, we are the first to
propose a method for the non-equal incentive prob-
lem. We prove the usefulness of our method in solv-
ing the non-equal incentive problem and calculating
group-level CBL accurately through extensive exper-
iments using real-world data including residential DR
events.

3) Our method has high applicability. It utilizes only data
of the same DR group without requiring separate con-
trol groups. Furthermore, it can be easily applied to
the averaging methods, which are widely used in the
real-world.

The rest of this paper is organized as follows. In Section II,
we describe the background for our research. In Section III,
we describe related work. In Section IV, we describe our
method along with the non-equal incentive problem. In
Section V, we examine the feasibility of our method using
real data. Finally, in Section VI, we provide some concluding
remarks regarding this research.

II. BACKGROUND
A. INTRODUCTION TO DR
A DR program includes three stakeholders: ISOs, DR
operators, and customers. A typical DR procedure consists
of four steps. First, electricity customers including com-
mercial, industrial, and other types of customers join the
DR program (managed by an ISO) through DR opera-
tors, to reduce electricity usage when requested. Second,
ISO issues a DR event when electricity demand surges to
have the peak demand reduced. DR operators relay the DR
event from ISO to their customers. Third, customers try
to reduce their electricity consumption (e.g., by decreas-
ing the electricity consumption level of the devices and by
delaying their use). Finally, ISO provides incentives to cus-
tomers as much as they reduced through the corresponding
DR operators.

B. CUSTOMER BASELINE LOAD
In calculating incentives for customers as a reward for their
participation in DR events, we need to know how much
they saved by reducing electricity usage. CBL is used for
this purpose. CBL denotes the expected electricity usage
of the customer in the absence of a DR event. Therefore,
the incentive for a customer is calculated based on the amount
of reduction (i.e., the difference between the CBL and actual
electricity usage). Fig. 1 illustrates an example case. In Fig. 1,
the DR window indicates the duration of the DR event, and
the red dotted line indicates the CBL. In addition, the green
area indicates the amount of reduction used to calculate the
incentives.
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FIGURE 1. Calculation of incentive using CBL.

C. RESIDENTIAL DR IN KOREA
The residential DR began in December 2019, as a trial to
increase the nationwide DR capacity of Korea. Customers
of residential DR include electricity customers with contract
power less than 70 kW (regardless of the type of contract),
residential customers, and individual houses of collective
buildings. The minimum required DR capacity (i.e., the sum
of the DR capacity of individual customers managed by a DR
operator) is 1 MW, and the duration of a DR event is 1 h. Pre-
guidance for a DR event is issued 30min before the DR event.
The residential DR event occurrs when a particulate matter
warning is issued. One major goal of residential DR in Korea
is to reduce the degree of particulate matter by reducing the
operation of coal power plants. An incentive for residential
DR is purely performance based. The incentive is calculated
for a group of customers (i.e., a group of individual customers
managed by a DR operator). Therefore, DR operators need to
distribute the incentive among their customers. There is no
penalty for an unfulfilled reduction request.

D. REQUIREMENTS FOR SUCCESSFUL RESIDENTIAL DR
Residential DR holds the key to the potential growth of DR
capacity and DR benefits because residential customers are
responsible for a considerable proportion of the electricity
usage and have the most uncovered DR potential [7], [8].
To facilitate residential DR, we need to encourage DR oper-
ators as well as residential customers. For residential cus-
tomers, one simple and effective way is to provide incentives
commensurate with their contribution. But, one notable chal-
lenge in realizing this is the electricity consumption of res-
idential customers is highly random in nature. As a result,
traditional deterministic CBL calculation methods are not
effective for residential DR [9]. Thus, the first requirement
for successful residential DR (R1) is to determine CBL cal-
culation methods suitable for residential customers.

With residential DR, theDRoperator takes on a critical role
because the electricity consumption level of the residential
customer is considerably low [37]. In other words, a DR
operator provides DR services to ISOs and cost-beneficial
consumption opportunities to customers through aggregation
of customers. In this respect, the second requirement for
successful residential DR (R2) is an operational strategy to
maximize the profit of DR operators.

In adopting the aggregation-based approach, one inevitable
issue is how to distribute incentives to customers because
incentive is typically calculated for a group of residential
customers. Thus, one problem that may arise is when the
group-level incentive (i.e., incentive for a group of residential
customers calculated by ISO) and the sum of incentives for
individual residential customers (i.e., calculated by a DR
operator) are different. Please refer to section IV.A for a
detailed description of this issue. We call this the non-equal
incentive problem. Therefore, the last requirement for suc-
cessful residential DR (R3) is to determine a solution to the
non-equal incentive problem.

III. LITERATURE REVIEW
We divide existing studies into three subgroups and briefly
evaluate methods of each subgroup from the perspective of
the three requirements described in Section II.D.

A. DIRECT CBL CALCULATION
Direct CBL calculation methods use the data of target resi-
dential customers.

1) PERFORMANCE STUDY
In [10], the authors analyze the DR baselines for residen-
tial customers. They also propose a simple baseline method
called LowXofY. In [9], the authors conduct an error analysis
of CBL methods for residential customers both theoretically
and empirically. They demonstrate that the CBL methods
for commercial and industrial DR programs do not perform
efficiently for residential customers. A similar performance
study is also conducted in [11], in the particular context
of the South Korean and French DR programs. In [12],
the authors empirically evaluate the performance of CBL
estimation (including artificial neural network regression) for
residential customers.

2) AVERAGING METHODS
Averaging methods assume that CBL can be estimated based
on the average usage of recent days. HighXofY calculates
CBL as the average electricity usage of the top X days
of the recent Y non-DR days (e.g., days excluding holi-
days and weekends, and DR event days in Korea). Exam-
ples include High3of5 (SDG&E), High4of5 (PJM), and
High5of10 (NewYork ISO). MidXofY calculates CBL as
the average electricity usage of the middle X days of the
recent Y non-DR days. LowXofY calculates CBL as the
average electricity usage of the bottom X days of the recent Y
non-DR days.

3) REGRESSION METHODS
The regression methods fit a linear/non-linear function
to describe the relationship between electricity usage and
explanatory variables (e.g., temperature) [13], [14]. For
example, SDG&E applies regression to determine electricity
usage during an event window based on the weather and the
day of the week.
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4) DEEP LEARNING METHODS
To handle highly irregular and volatile load profiles of
residential customers, deep learning-based approaches are
proposed. In [15], [16], the authors utilize long short-term
memory (LSTM), which can effectively deal with time series
data such as electricity usage data. In [17], the authors utilize
the reconstruction capability of staked Autoencoder. In [18],
an ensemble model of multitask representation learning is
proposed to quantify the load uncertainties of individual cus-
tomers. In [19], the authors combine transfer learning and
meta learning. Bayesian deep learning is also used to handle
the uncertainty of residential customers [20], [21].

5) PROBABILISTIC METHODS
To handle the large uncertainty associated with residential
customers and overcome the inability of deterministic
approaches in capturing such uncertainty, probabilistic meth-
ods are studied. Gaussian process-based CBL calculation is
discussed in [7], [22] as a rewarding mechanism. Quantile
regression is used to generate the probabilistic CBL in [23],
[24]. In [25], the authors introduce a convolutional neural net-
work with squeeze-and-excitation modules for probabilistic
residential load forecasting.

6) LIMITATIONS
These methods consider R1, but have the following limitation
in satisfying R3. ISOs face challenges in applying the new
CBL methods for several reasons (such as policy and con-
flicting incentives of stakeholders). Although a DR operator
may be able to apply newCBLmethods for personalized CBL
calculation regardless of the CBL method of the ISO, even
the near-optimal CBL method does not satisfy R3. Please see
Section V.A.3) for the experimental results with real-world
data covering this. Therefore, we need to satisfy R3 without
changing the ISO’s CBL method while still considering R1.
This is the objective to be achieved through this study.

B. INDIRECT CBL CALCULATION
Indirect CBL calculation methods use the data of other resi-
dential customers related to the target residential customers.

1) CONTROL GROUP METHODS
Control group methods, as the name suggests, build a control
group (i.e., a group of non-DR residential customers or a
group of load patterns) to calculate the CBL of a test group
(i.e., a group of target residential customers). Therefore,
a main concern of these methods is how to generate the
control group. In [26], the authors transform electricity load
patterns using a self-organizingmap (SOM). Then, they apply
K-means clustering to find the load pattern that is similar
to the potential load pattern of the DR event day. In [27],
the authors apply K-means clustering with usage patterns
and usage levels. In [28], the authors utilize density-based
spatial clustering of applications with noise (DBSCAN) to
extract load patterns, and then apply K-means clustering to

group customers displaying similar load patterns. In [29],
the authors perform frequency response analysis using the
discrete Fourier transform (DFT) to calculate the predictabil-
ity index and further apply K-means clustering. In [30], using
a sequential algorithm and constrained regression methods,
the authors try to select a suitable control group by minimiz-
ing the distance between the load curves of the control and
DR groups on historical non-DR event days. In [31], control
group clusters are formed using K-means clustering based
on load patterns and then, each DR participant is matched to
the most similar cluster according to the similarity between
its load curve segments and cluster centroids of the DR
event day. In [24], the authors propose a deep embedded
clustering technique to convert the daily load pattern pool
into the clustered load patterns. Then, the optimal cluster with
the most similar daily load pattern for the target residential
customer is determined based on Euclidean distance. In [32],
the authors utilize the bias information of control customers
not participating in the DR program but displaying a bias
distribution similar to the DR group on the historical days
prior to the DR event day, to estimate the bias of the DR group
on the DR event day. In [33], the authors propose the concept
of a virtual control group. Using a mobile app for the DR
program, DR customers who do not want to join a specific
DR event are included as a virtual control group. In [34],
the authors utilize temporal features from the history of the
target customer and spatial features from the control group
that was formed by K-means clustering and load patterns.
In [35], the CBL estimation problem is converted into two
sub-problems: the estimation of actual load power and the
estimation of distributed photovoltaic system (DPVS) output
power. First, the actual load power of DR customers is esti-
mated based on the load power of the control group customers
(using matching nighttime usage). Then, the DPVS output
during the DR period is obtained based on the DPVS output
estimation model. Finally, CBL is estimated based on the
actual load power and DPVS output power.

2) LIMITATIONS
These methods consider R1. The control group method has
limitations [36] in addition to the limitation described in
Section III.A.6). One problem is that it works better with
large sample sizes and the DR operators may lack a sufficient
customer portfolio for the implementation. Another problem
is that customers of the control group may not receive a DR
incentive, and thus DR operators need to rotate the group peri-
odically to provide equal incentive to customers [36]. In this
study, we try to satisfy R3 without the specific requirements
of the control group. In particular, we only use the data of the
DR participants.

C. OPERATION STRATEGIES OF DR OPERATORS
DR operators are actors, common to all DR programs, but
the DR operators for the residential DR program are criti-
cal because most residential customers have a low level of
electricity consumption [37]. Therefore, in the residential DR
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program, the operation strategies of the DR operators are
important for maximizing their profit.

1) OPTIMAL BIDDING AND COORDINATION STRATEGY
To DR operators, an important issue is how to bid accurately
in the electricity market and thereby maximize their profit.
In [38], the objective of the authors is to maximize the
profit of all stakeholders including DR operators. In [39],
the authors propose a two-stage stochastic optimization
model to minimize the net cost of the DR operator buying
and selling energy in the electricity market. In [40], DR oper-
ators divide residential loads into several categories. Then,
each load category is scheduled for distribution by grouping
aggregates to maximize the benefits in the electricity market.
In [41], using a mixed integer linear programming problem,
the authors propose an optimal bidding strategy model for a
DR operator to reduce the risk of financial loss caused by
price volatility. In [42], the authors propose a self-scheduling
framework for DR operators to consider the uncertainties
posed by customers and electricity market prices. In [43],
residential customers optimize their own household con-
sumption including their comfort preferences. Then, a DR
operator exploits this in implementing a coordination strategy
for the aggregated loads while preserving the privacy of the
users. In [44], considering the uncertainty in the electricity
market, the authors formulate the problem using stochastic
optimization and solve it using the sample average approxi-
mation method. In [45], the authors study an optimal bidding
strategy considering the uncertainty of customer participation
in DR events. In particular, they exploit the physical models
of flexible loads to evaluate the ideal DR capacity. In [46],
the authors propose the alternating direction method of mul-
tiplier (ADMM)-based approach to control and coordinate
residential components of devices of various scales. In [47],
the authors attempt to establish the customers’ responsiveness
function in relation to different incentives. Then, they let the
DR operator utilize this for the decision-making process to
formulate the optimal bidding strategy.

2) MODELING OF RESIDENTIAL CUSTOMERS
For a better aggregation of residential customers, the DR
operators need to understand the residential customers.
In [48], the authors propose the constrained non-linear pro-
grammingmodel to optimize residential consumption of elec-
tricity by reducing the load at peak times and increasing
the load at off-peak times. In [49], the authors propose a
meta-heuristic optimization-based two-stage residential load
pattern clustering approach to handle unreasonable typical
load pattern extraction. In [50], the authors propose a time-
frequency feature combination based household characteris-
tic identification approach using smart meter data. In [23],
the authors quantify the full probability distribution function
of flexibility in response to economic incentives considering
the surrounding variables through the quantile regression
method. In [8], the authors demonstrate that the identification
and extraction of features including the weather conditions

and monetary reward may have a noticeable influence on the
aggregated DR capacity. In [51], a hierarchical control strat-
egy via DR operators is proposed. In particular, an optimal
allocation model is built to determine the response status of
each residential load per minute, ensuring end-user satisfac-
tion and demand response requirements. In [52], [53], amulti-
agent-based optimization strategy is proposed to solve the
issue of requiring the load to be temporarily decreased.

3) LIMITATIONS
These methods focus on R2. Even for a DR group with max-
imum profit using these methods, DR operators still face an
incentive distribution issue (R3). A DR operator may be able
to distribute the given group-level incentive proportionally
based on the contribution of the residential customers (while
ignoring actual contributions). However, this method does not
allow the individual customers to be informed about their
specific CBL before DR events, which can be a bottleneck in
expanding residential DR participation. Therefore, to encour-
age the residential customers to participate in the residential
DR program, we need to reflect the actual contribution of
the customer in the group-level incentive distribution. This
is the objective to be achieved by our method. Our method
can be easily combined with the existing methods for DR
operators because it does not impose special conditions on
the aggregation of residential customers.

IV. SINGLE GROUP-BASED INDIRECT CBL CALCULATION
In this section, we first describe the non-equal incentive
problem and then introduce our solution.

A. NON-EQUAL INCENTIVE PROBLEM
1) NOTATIONS
Hereafter, we use CBL() to indicate High / Mid / LowXofY,
which are widely used in the real world. We use the sub-
script t for the target day of the CBL calculation and the
subscript t − k (1 6 k 6 Y ) to indicate Y recent non-DR
days. For brevity, we ignore the notation indicating the target
hour of the CBL calculation. We use USE it to indicate the
electricity usage on day t of the ith customer of a DR group.
Here, USE it−Y :t−1 indicates the electricity usage of Y recent
non-DR days of the ith customer of the DR group.

2) DESCRIPTIONS
An incentive for a DR group is calculated by an ISO as
follows. The CBL of a DR group is

CBLISOt = CBL(
∑
i

USE it−Y :t−1). (1)

The actual electricity usage of a DR group on day t is∑
iUSE

i
t . Then, the actual DR capacity of a group (used to

calculate an incentive) is

DR_CapISOt = CBLISOt −

∑
i

USE it . (2)
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Incentives for individual customers of a DR group are
calculated by a DR operator as follows. The CBL for the ith
customer of a DR group is

CBL i,OPt = CBL(USE it−Y :t−1). (3)

Given the actual electricity usage of the ith customer of the
DR group, which is indicated byUSE it , the actual DR capacity
of the ith customer in the DR group is

DR_Capi,OPt = CBL i,OPt − USE it . (4)

Therefore, the actual DR capacity of a DR group calculated
by a DR operator is

DR_CapOPt =
∑
i

(CBL i,OPt − USE it )

=

∑
i

CBL i,OPt −

∑
i

USE it . (5)

In distributing the incentive calculated by the ISO to
customers, a DR operator faces a practical issue when
DR_CapISOt and DR_CapOPt are not equal. In other words,
the amount of the incentive provided by the ISO to a group
of customers is not equal to the sum of the incentives of
individual customers calculated by a DR operator.

Let us examine the problem in detail through the following:

DR_CapISOt 6= DR_CapOPt
⇒ CBLISOt −

∑
i

USE it 6=
∑
i

CBL i,OPt −

∑
i

USE it

⇒ CBLISOt 6=

∑
i

CBL i,OPt

⇒ CBL(
∑
i

USE it−Y :t−1) 6=
∑
i

CBL(USE it−Y :t−1) (6)

Equation (6) shows why DR_CapISOt and DR_CapOPt are
not equal. CBL() is a nonlinear function, and thus, equality
between CBL(

∑
) and

∑
CBL() is not guaranteed.

Let us describe Equation (6) differently. The CBL of the
ith customer of a DR group can be expressed as

CBL(USE it−Y :t−1) =

∑
c∈Dia

USE ic
X

, (7)

where Dia is the selected X days of Y recent non-DR days
for the ith customer in the DR group. Then, the CBL of a
DR group (calculated by a DR operator) can be expressed as
follows:∑

i

CBL(USE it−Y :t−1) =

∑
i
∑

c∈Dia
USE ic

X

=

∑
c∈Dia

∑
i USE

i
c

X
. (8)

The CBL of a DR group calculated by ISO can be
expressed as

CBLISOt = CBL(
∑
i

USE it−Y :t−1)

=

∑
c∈Db

∑
iUSE

i
c

X
, (9)

where Db is the selected X days of the Y recent non-DR days
for the DR group. Equations (8) and (9) differ when Dia of
Equation (8) and Db of Equation (9) are different. In other
words, the X days selected for

∑
i USE

i
t−Y :t−1 and X days

selected for USE it−Y :t−1 may be different.
For the successful operation of the residential DR program,

incentives need to be assured for both DR operators and
customers, failing which, nobody would join the residential
DR program. In this respect, we may have two problem-
atic cases: overestimation and underestimation of CBL [35].
Overestimation (i.e., DR_CapISOt < DR_CapOPt ) may attract
more residential customers to the residential DR programs,
but the interest of the DR operator to run the residential DR
programs will diminish. Meanwhile, underestimation (i.e.,
DR_CapISOt > DR_CapOPt ) will decrease the motivation of
the customer to participate in the residential DR program
because the effort of the customer to reduce the electricity
load is not appreciated. Therefore, for a successful operation
of the residential DR program, DR_CapISOt and DR_CapOPt
need to be equal or similar, to provide stable incentives to
both DR operators and customers.

Our goal is to propose a method to guarantee the similarity
of DR_CapISOt and DR_CapOPt without changing the ISO’s
CBL method (i.e., DR_CapISOt is fixed). So, our concern is to
find a method to calculate DR_CapOPt .

B. PROPOSED METHOD
Our idea is to calculate CBL it (i.e., CBL for the ith customer
of a DR group) indirectly using the data of the other DR
customers in the same DR group as follows.

CBL i,Prot = CBL(
∑
k

USEkt−Y :t−1)

−CBL(
∑
k(6=i)

USEkt−Y :t−1)

= CBLISOt − CBLISO,∼i
t . (10)

Thus, CBLt for a DR group using our method is written as

CBLProt =

∑
i

(CBLISOt − CBLISO,∼i
t ). (11)

To examine our method in detail, let us rewrite CBLISO,∼i
t

in Equation (11) as follows:

CBLISO,∼i
t =

∑
c∈Dic

∑
k(6=i)USE

k
c

X
, (12)

where Dic is the selected X days from among the Y recent
non-DR days, for the DR group, excluding the ith cus-
tomer. Then, CBL it , using our method can be expressed as
follows.

CBL i,Prot = CBLISOt − CBLISO,∼i
t

=

∑
c∈Db

∑
iUSE

i
c

X
−

∑
c∈Dic

∑
k(6=i)USE

k
c

X
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≈

∑
c∈Db (

∑
i USE

i
c −

∑
k(6=i)USE

k
c )

X

=

∑
c∈Db USE

i
c

X
. (13)

In Equation (13), the transformation from
∑

c∈Db

∑
i USE

i
c

X −∑
c∈Dic

∑
k(6=i) USE

k
c

X to
∑

c∈Db
(
∑

i USE
i
c−

∑
k(6=i) USE

i
c)

X is allowed
only when Db and Dic are the same or similar. Fortunately,
customers of the residential DR program have low electricity
usage and thus the portion of electricity usage for the ith
customer is marginal compared to the aggregated electric-
ity usage of a DR group. As a result, Db and Dic are the
same or similar in most cases. This will be demonstrated in
Section V.A.3).

The actual DR capacity of a DR group when applying our
method is written as

DR_CapProt =

∑
i

(CBL i,Prot − USE it )

=

∑
i

CBL i,Prot −

∑
i

USE it

≈

∑
i

∑
c∈Db USE

i
c

X
−

∑
i

USE it

=

∑
i
∑

c∈Db USE
i
c

X
−

∑
i

USE it

=

∑
c∈Db

∑
iUSE

i
c

X
−

∑
i

USE it . (14)

As a result, DR_CapProt becomes approximately equal to
DR_CapISOt , which can be expressed as

DR_CapISOt = CBLISOt −

∑
i

USE it

=

∑
c∈Db

∑
i USE

i
c

X
−

∑
i

USE it . (15)

V. EXPERIMENTS
A. FEASIBILITY STUDY
We first examine the feasibility of our method using data
without any DR events.

1) CBL METHODS
We consider the averaging methods widely used in the
real world. In particular, we consider Mid8of10, Mid4of6,
High4of5, High5of10, Low4of5, and Low5of10. We ignore
the regression methods because we do not have explanatory
variables (e.g., temperature).We also ignore the control group
methods because our method only utilizes data of the same
DR group.

2) DATA
We use hourly electricity usage data of households
in 40 apartment complexes geographically distributed

throughout Korea. The number of households of an apartment
complex ranges from 13 to 4,210 (Fig. 2). The total number
of households is 42,193. The data covers the time period from
November 2016 to November 2019. We consider households
in the same apartment complex as a DR group. We consider
all available days (excluding weekends) as the target days of
the CBL calculation and conduct experiments for the CBL
calculation of various hours. We share the results of the
CBL calculations for the period between 5 and 6 PM, as a
representative case.

FIGURE 2. The number of households in apartment complexes.

3) RESULTS
a: SELECTION SIMILARITY
We first examine the fundamental aspect of our method.
In Section IV.B, we argue that the transformation in Equa-
tion (13) is possible when Db and Dic are the same or similar.
To examine this, we define a particular metric, called selec-
tion similarity (SS), as follows:

SS =
1
N

N∑
i

SUM (|mb − mic|), (16)

where N is the number of households of a DR group, and
mb and mic are Y -digit arrays showing the selection infor-
mation of CBLISOt and CBL i,OPt or CBL i,Prot in choosing X
days from Y non-DR days, respectively. In Equation (16),
the subtraction is an element-wise operation. When Y digits
for Y recent non-DR days are used, the digits corresponding
to the selected X days are set to 0 and the other digits are set
to 1. For example, if the last 8 days, among the 10 recent non-
DR days are selected for CBLISOt , mb is [1,1,0,0,0,0,0,0,0,0].
Therefore, SS is close to zero when Db and Dic are similar.

Fig. 3 displays SS as a function of the size of the
DR groups for various CBL methods. The existing method
(i.e., CBL i,OPt ) displays high SS values. In the case of
Mid8of10, Mid4of6, High4of5, High5of10, Low4of5, and
Low5of10, the average SS across all DR groups are 2.97,
2.47, 1.43, 4.23, 1.36, and 4.24, respectively. This result
shows that Db (for CBLISOt ) and Dic (for CBL i,OPt ) are sig-
nificantly different, implying that the non-equal incentive
problem is a natural result of the personalized direct CBL
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FIGURE 3. Selection similarity with regard to the size of DR groups.

FIGURE 4. The group-level CBL differences to CBLISO
t .

calculation using the averaging methods. In contrast, our
method (i.e., CBL i,Prot ) displays low SS values, close to 0.
In the case of Mid8of10, Mid4of6, High4of5, High5of10,
Low4of5, and Low5of10, the average SS values across all DR
groups are 0.05, 0.04, 0.02, 0.05, 0.02, and 0.05, respectively.
This result demonstrates that the fundamental assumption
in deriving Equation (13) is valid, implying that the non-
equal incentive problem primarily caused by the selection
difference can be solved by our method.

b: CLOSENESS TO ISO’S CBL
We examine the feasibility of our method in terms of differ-
ence between the group-level CBL (i.e.,

∑
CBL()) and ISO’s

CBL (i.e., CBL(
∑

)). Furthermore, the CBL function used

by ISO is fixed as described in Section IV.A. To examine
the feasibility of our method, we compare the differences of
CBLOPt and CBLProt to CBLISOt (Fig. 4). In Fig. 4, CBLDIFF
of the Y-axis is calculated as

CBLDIFF = CBLISOt − CBLOPt (orCBLProt ). (17)

With CBLOPt , one common observation is that the differ-
ence increases as the size of DR groups increases. This is
because errors in calculating CBL i,OPt for customers in the
same DR group are cumulated. In the case of Mid8of10,
Mid4of6, Low4of5, and Low5of10, CBLOPt demonstrates
positive values for CBLDIFF . This implies that user par-
ticipation is underestimated. Conversely, in the case of
High4of5 and High5of10, CBLOPt shows negative values
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FIGURE 5. The group-level CBL differences to
∑

i USE i
t .

for CBLDIFF . This implies that user participation is over-
estimated. In the case of Mid8of10, Mid4of6, High4of5,
High5of10, Low4of5, and Low5of10, the average CBLDIFF s
across all DR groups are 17.33, 19.37, −27.46, −88.75,
42.53, and 88.75, respectively.

By contrast, with CBLProt , CBLDIFF is close to 0 regardless
of the CBL method. In the case of Mid8of10, Mid4of6,
High4of5, High5of10, Low4of5, and Low5of10, the average
CBLDIFF s across all DR groups are 0.09, 0.04, 0.31, 0.66,
−0.25, and −0.66, respectively. The above results demon-
strate that our method performs well in calculating a group-
level CBL close to CBLISOt , and thus it adequately solves the
non-equal incentive problem.

c: CLOSENESS TO ACTUAL GROUP-LEVEL USAGE
We examine the feasibility of our method in terms of dif-
ference between the group-level CBL and group-level usage.
The accuracy of CBL should be considered, additionally, as
it is important for both DR operators and customers. The
incentive is calculated based on DR_Capt = CBLt − USEt .
An inaccurate CBL calculation may lead to problems. If the
calculated CBLt is greater than the actual value, the DR oper-
ator must pay more money than prescribed. If the calculated
CBLt is less than the actual value, the user participation is
underestimated. To examine this, we compare the differences
of CBLOPt and CBLProt to

∑
iUSE

i
t . In Fig. 5, USEDIFF

representing the Y-axis is calculated as

USEDIFF =
∑
i

USE it − CBL
OP
t (CBLProt ), (18)

The data for the experiments described in this subsection
do not include DR events, and thus

∑
i USE

i
t indicates the

actual electricity consumption without a reduction prompted
by a DR event.

One common observation for both CBLOPt and CBLProt
is that they tend to have positive values for USEDIFF in
the case of Mid8of10, Mid4of6, Low4of5, and Low5of10.
This implies that the actual usage is underestimated, but the
difference in CBLProt is much smaller than that of CBLOPt .
In the case of Mid8of10, Mid4of6, Low4of5, and Low5of10,
the average USEDIFF s across all DR groups for CBLOPt
(CBLProt ) are 31.88 (14.64), 27.88 (8.54), 60.03 (17.26), and
131.55 (42.14), respectively. Furthermore, both CBLOPt and
CBLProt tend to have negative values for USEDIFF in the case
of High4of5 and High5of10. In this case, the users’ actual
usage is overestimated. But, the difference inCBLProt is much
smaller than that of CBLOPt . In the case of High4of5 and
High5of10, the average USEDIFF s across all DR groups
for CBLOPt (CBLProt ) are −35.18 (−7.41) and −109.75
(−20.34), respectively. These results demonstrate that our
method displays much better performance than the existing
method in estimating the actual group-level CBL.

d: EFFECTIVENESS OF OPTIMAL CBL METHOD
In Section III.A.6, we mentioned that even the optimal CBL
calculation method may not solve the non-equal incentive
problem if we do not change the ISO’s CBL method. Here,
we examine the effectiveness of the optimal CBL method in
solving the non-equal incentive problem. The optimal CBL
method calculates the actual usage of the customer accurately,
without any error (i.e., CBLOPt is equal to

∑
iUSE

i
t ). ISO’s

CBL (i.e., CBLISOt ) is calculated by one of the averaging
methods. Fig. 7 displays the group-level CBL differences to
CBLISOt . When the ISO adopts High4of5 or High5of10 as its
CBL method, user participation is overestimated. When the
ISO adopts Mid8of10, Mid4of6, Low4of5, or Low5of10 as
its CBL method, user participation is underestimated. This
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FIGURE 6. The group-level CBL differences to CBLISO
t (with DR events data).

FIGURE 7. Group-level CBL differences versus CBLISO
t with the optimal

CBL calculation method.

demonstrates that the non-equal incentive problem cannot be
solved by simply changing CBLmethods for customers (even
with the optimal CBL method) if the ISO’s CBL method
is fixed. Given that ISO’s CBL method cannot be changed
easily, a solution that does not require a change in the ISO’s
CBL method is needed. As illustrated in Fig. 4, the proposed
method solves the non-equal incentive problem to address
this issue.

e: EXECUTION TIME
To derive the group-level CBL, CBLOPt and CBLProt , the
CBL calculations should be personalized for all customers.
To examine the scalability of this approach, we measure the
average execution time. Fig. 8 displays the average execution
time as a function of the size of the DR groups for the
case of Mid8of10. The results are averaged across 10 runs.
The other CBL averaging methods show similar results.
CBLISOt considers less than two seconds to handle a group

FIGURE 8. The execution time as a function of the size of DR groups.

of 4,210 customers. On the contrary, the execution time of
CBLOPt and CBLProt increases linearly as the size of the DR
group increases. When handling a group of 4,210 customers,
the time involved is approximately 50 s. But, CBL calcula-
tions do not need to be carried out in real-time. The group-
level CBL can be calculated in advance before the DR event.
Alternatively, after the DR event, the group-level CBL can be
calculated when settling the incentive for user participation.
Therefore, we believe that CBLOPt and CBLProt do not have a
scalability issue in real-world applications.

B. APPLICATION TO DR EVENTS
We examine our method using real DR event data.

1) DATA
We use the data of real DR customers managed by Paran
Energy, one of the largest DR operators in the residential
DR program in South Korea. The residential DR customers
include individual households of apartment complexes,
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TABLE 1. Results with the real residential DR events (part 1).

offices, and stores. We examine the DR events that occurred
from December 2019 (when the residential DR program
began) to December 2020. Table 1 briefly summarizes the
data. The number of residential DR events examined in this
study is 28. Most residential DR events occurred during
Spring and Winter when the particulate matter concentration
is strong. Residential DR events occurred in the morning (i.e.,
9-11 AM), late afternoon (i.e., 4-6 PM), and in the evening
(i.e., 6-8 PM).

2) RESULTS
a: CLOSENESS TO ISO’S CBL
With CBLOPt , the difference (i.e., CBLDIFF ) increases as the
size of theDR groups increases (Fig. 6). This is because errors
in calculating CBL i,OPt for customers in the same DR group
are cumulated. In all CBL methods, CBLOPt displays positive
values forCBLDIFF , implying that user participation is under-
estimated. In the case of Mid8of10, Mid4of6, High4of5,
High5of10, Low4of5, and Low5of10, the average CBLDIFF s
across all DR groups are 1.05, 1.58, 3.86, 10.06, 4.72, and
10.06, respectively. By contrast, with CBLProt , CBLDIFF is
much lower than that of CBLOPt and close to 0 in many cases.
In the case of Mid8of10, Mid4of6, High4of5, High5of10,
Low4of5, and Low5of10, the average CBLDIFF s across all
DR groups are 0.28, 0.92, 0.47, 1.36, 0.68, and 1.36, respec-
tively. The above results confirm that our method adequately
solves the non-equal incentive problem for residential DR
events all around the real-world.

Table 1 and Table 2 display results in detail. The Y or N
inside the parentheses in the ISO columns indicate whether

the DR event has been successful or not. BetweenCBLOPt and
CBLProt , the better performing method is highlighted in bold.
The last row of the tables display the number of successful
DR events, the number of best-performing cases of CBLOPt
and CBLProt . Among 28 DR events, our method outperforms
the existing methods in 19, 16, 28, 28, 28, and 28 events
with Mid8of10, Mid4of6, High4of5, High5of10, Low4of5,
and Low5of10, respectively. Here, there are two main obser-
vations. First, our method is not as effective with MidXofY
as with the other CBL methods. Second, with MidXofY,
our method is not that effective when the size of the DR
group is small. Please note that our method is effective when
electricity usage by the ith customer is marginal compared to
the aggregated electricity usage of a DR group, as described
in Section IV.B. By contrast, given DR groups with a suffi-
cient number of customers, our method exhibits noticeable
improvements. As the number of customers of a DR group
increases, our method demonstrates greater improvement
(Fig. 6).

b: INTERESTING OBSERVATIONS
Examining the DR events in detail, we made some interesting
observations (Fig. 9 to Fig. 11). First, not all customers
were successful in reducing electricity usage. Comparing
Fig. 9 to Fig. 11, positive values indicate a successful reduc-
tion of electricity usage. For all events, the successful and
non-successful cases are mixed. This may be because some
customers do not try to reduce electricity usage. There is
no penalty for the residential DR program in Korea, and
the incentive for participation may be extremely low for
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TABLE 2. Results with the real residential DR events (part 2).

FIGURE 9. User-level contribution of the successful DR event happened in December 24, 2020.

FIGURE 10. User-level contribution of the non-successful DR event happened in November 26, 2020.

them. The incentive is approximately 1.15 US dollars per
1 kWh. For example, for the DR event that occurred on
December 24, 2019, the incentive for the customer was just

0.0288 US dollars. This incentive may be extremely low
to encourage users to willingly inconvenience themselves
to reduce their electricity usage. Non-successful cases may
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FIGURE 11. User-level contribution of DR events that occurred on December 7, 2020 (successful case, left) and December 23, 2019
(non-successful case, right).

have also occurred because the CBL for a residential cus-
tomer was inaccurate. As described in Section III.A, typical
deterministic CBL methods designed for commercial and
industrial customers are unsuitable for residential customers
who display highly dynamic load patterns.

Second, the success of aDR event could be heavily affected
by a few customers in most cases. Fig. 9, Fig. 10, and
Fig. 11 illustrate representative examples of successful and
non-successful DR events. The DR event that occurred on
December 24, 2020 (Fig. 9) was successful because of a
few good contributors (i.e., customers 4th, 5th, 6th, and
403rd) who considerably reduced their electricity usage (i.e.,
by 44.6 kWh in total). The remaining customers contributed
to a marginal reduction or increase in electricity usage.
Another successful DR event (December 7, 2020) is dis-
played on the left-hand side of Fig. 11. In this case, two
main contributors were 2nd and 7th customers, who reduced
their electricity usage by 15.83 kWh, and one opposer, who
increased his/her electricity usage by 3.15 kWh. By contrast,
the DR events that occurred on November 26, 2020 (Fig. 10)
and December 23, 2019 (the image on the right side of
Fig. 11) were unsuccessful because of the few opposers.
In the case displayed in Fig. 10, there are three opposers
(i.e., the 3rd, 78th, and 315th customers), who increased their
electricity usage by 11.15 kWh, and two contributors (i.e.,
the 1st and 2nd customers), who reduced their electricity
usage by 5.32 kWh. Another opposer case is displayed on
the right side image of Fig. 11; we see that the opposer has
increased electricity usage by 1.26 kWh.

VI. CONCLUSION
DR programs have several attractive benefits. The residential
customers are key to fully exploiting such programs. In this
study, to realize the successful operation of the residential
DR program, we attempted to solve the non-equal incentive
problem, not addressed in the existing literature, through
a single group-based indirect CBL calculation. The experi-
mental results using real data demonstrate that our method
solves the non-equal incentive problem and improves the
accuracy of the CBL estimation. As a future study, we plan to
extend our research to develop a method to adaptively apply
indirect CBL calculation given a targeted DR group. It would

also be interesting to study methods to solve residential
DR program-related issues including customer incentive and
customer grouping.
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