IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 17, 2021, accepted September 30, 2021, date of publication October 8, 2021,

date of current version October 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3118731

Implementing Practical DNN-Based Object
Detection Offloading Decision for Maximizing
Detection Performance of Mobile Edge Devices

GIHA YOON, GEUN-YONG KIM, HARK YOO ™, SUNG CHANG KIM, AND RYANGSOO KIM

Honam Research Center (HRC), Electronics and Telecommunications Research Institute (ETRI), Gwangju 61012, Republic of Korea

Corresponding author: Ryangsoo Kim (rskim @etri.re.kr)

This work was supported by Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean government.
[21ZK1100, Honam region regional industry-based ICT convergence technology advancement support project]

ABSTRACT In the last decade, deep neural network (DNN)-based object detection technologies have
received significant attention as a promising solution to implement a variety of image understanding and
video analysis applications on mobile edge devices. However, the execution of computationally intensive
DNN-based object detection workloads in mobile edge devices is insufficient in fulfilling the object detection
requirements with high accuracy and low latency, owing to the limited computation capacity. In this paper,
we implement and evaluate a DNN-based object detection offloading framework to improve the object
detection performance of mobile edge devices by offloading computation-intensive workloads to a remote
edge server. However, preliminary experimental results have shown that offloading all object detection
workloads of mobile edge devices may lead to worse performance than executing the workloads locally. This
degradation is obtained from the inefficient resource utilization in the edge computing architectures, both for
the edge server and mobile edge devices. To resolve the aforementioned problem with degradation, we devise
a device-aware DNN offloading decision algorithm that is aimed to maximize resource utilization in the
edge computing architecture. The proposed algorithm decides whether or not to offload the object detection
workloads of edge devices by considering their computing power and network bandwidth, and therefore
maximizing their average object detection processing frames per second. Through various experiments
conducted in a real-life wireless local area network (WLAN) environment, we verified the effectiveness
of the proposed DNN-based object detection offloading framework.

INDEX TERMS Deep learning offloading, object detection, wireless edge computing, resource optimization.

I. INTRODUCTION

With an explosive increase of deep learning technologies
in the last decade, object detection with deep neural net-
works (DNNs) has made a great impact on performance
improvement in terms of detection accuracy and response
time [1]. Moreover, tremendous efforts have been made to
continuously improve the DNN-based object detection capa-
bilities of mobile edge devices to implement various image
and video analysis applications, including mobile augmented
reality, surveillance drones, and autonomous driving [2]. One
way to provide such capabilities is to execute the computa-
tionally intensive object detection workloads locally at the

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro R. M. Inicio

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

mobile edge devices. However, performing DNN inference
on mobile edge devices imposes a heavy computational
burden, resulting in insufficient object detection capabili-
ties. Therefore, various object detection offloading methods,
which offload computationally intensive workloads to remote
servers with high computing power, are proposed as promis-
ing solutions to overcome this limitation [3]-[5].

The traditional approach for providing powerful comput-
ing capabilities to mobile edge devices is to utilize cloud
computing services through wireless networks. However,
it requires a large volume of data transmission via a long
wide-area network, resulting in a long and volatile end-to-
end latency [6]. To address this certain drawback, the edge
computing paradigm has been employed in object detection
offloading strategies [7]. In the edge computing paradigm,

140199

https://orcid.org/0000-0002-6388-6510
https://orcid.org/0000-0002-1130-2755
https://orcid.org/0000-0001-8221-0666

IEEE Access

G. Yoon et al.: Implementing Practical DNN-Based Object Detection Offloading Decision

Remote Server

Q\',/Mobile edge device
— Ethernet(Wire)
D Wireless LAN

)

N

65Mbps A - <
% 866-7Mbps N)

FIGURE 1. Object detection offloading scenario in an edge-computing
architecture consisting of multiple mobile edge devices, a remote edge
server, and WLAN AP.

the computing capability is located from the network core
to the network edge that is in close proximity to the mobile
edge devices and is capable of providing low-latency object
detection services [8]. As a result, offloading computational
tasks to the remote edge server in edge computing archi-
tecture is the most promising method to bringing high-level
intelligence to the resource-constrained mobile edge devices
in various applications that requires DNN-based data anal-
ysis such as image classification, action recognition, speech
recognition, and anomaly detection [9]-[11].

In this paper, we implement an object detection offloading
framework to validate the effectiveness of the object detec-
tion offloading service in a real-world wireless local area
network (WLAN) environment. The proposed framework is
designed to execute computationally intensive workloads,
including the DNN inference and non-maximum suppres-
sion (NMS) filtering on the edge server, while relatively
lightweight workloads, including the resizing images and ren-
dering detection results, are running on mobile edge devices.
Furthermore, we apply the task-level pipeline parallelism pre-
sented in [12] to improve the computing resource utilization
on both the edge devices and edge server, reducing the overall
object detection latency.

Despite the enhanced object detection capabilities through
our object detection offloading framework, several issues still
exist to be considered before applying them to real-world sce-
narios where multiple mobile edge devices exist as depicted
in Fig. 1. The network and computing resource consumption
of the edge computing infrastructure worsens as the number
of mobile edge devices requesting object detection offload
services increases, resulting in an increase in the object
detection offload service latency. In addition, time-varying
wireless fading environments and unpredictable mobile edge
device locations cause irregular fluctuations in data rates,
resulting in deviations in the object detection offload service
latency among mobile edge devices. In the worst case sce-
nario, which has a relatively small data rate, executing object
detection workloads locally may have improved detection
performance than offloading them, indicating that offload-
ing object detection workloads of all mobile edge devices
does not guarantee the best performance in terms of average
frames per second (FPS). These problems are incurred by the

140200

inefficient resource utilization in the edge computing archi-
tecture, both for the edge server and mobile edge devices.
This emphasizes the need for object detection offloading
management that is capable of optimizing the resource uti-
lization of the edge computing architecture to maximize the
overall detection performance.

We concentrate our attention on the problem of how to
decide which mobile edge devices offload their workloads
for maximizing average FPS of all the mobile edge devices.
In this paper, we focus on a binary object detection offloading
method, in which the object detection workloads can be
fully offloaded to the edge server or executed locally at the
mobile edge devices. Then, we formulate the object detec-
tion offloading decision as a binary optimization problem,
for which the optimal solution can be obtained by a binary
combinatorial algorithm. Note that the binary optimization
problem is NP-hard, indicating that it is unable to find a
globally optimal solution in polynomial time. To resolve such
a drawback, we propose a greedy algorithm that iteratively
finds a suboptimal solution in polynomial time. In addition,
we mathematically prove a certain condition in which the
proposed greedy algorithm always finds the globally opti-
mal solution. We implement the proposed offloading deci-
sion algorithm on our object detection offloading framework
testbed and dem‘onstrate its effectiveness by presenting var-
ious experimental results.

The main contributions of this paper are as follows:

+« We implement an object detection offloading frame-
work, which is designed to parallelize the workload exe-
cution by distributing heavy and lightweight workloads
to the edge server and mobile edge devices simultane-
ously to improve the object detection performance, in a
real-world WLAN environment. In addition, we apply
object detection-specific task-level pipeline parallelism
proposed in our previous work [12] to improve the
computing resource utilization on both the mobile edge
devices and edge server, reducing the overall object
detection latency.

« We derive an object detection offloading decision prob-
lem as a simple binary optimization problem and pro-
pose a greedy algorithm to find the optimal solution in
polynomial time. In addition, we verify the effective-
ness of the greedy algorithm by mathematically deriving
a certain condition in which the proposed algorithm
always finds a globally optimal solution.

« We present the experimental results in various scenar-
ios used in validating the effectiveness of the proposed
object detection offloading framework in a real-world
WLAN environment, where multiple mobile edge
devices are distributed geographically over a WLAN
coverage area.

The rest of this paper is organized as follows. Sev-
eral related works are presented in Section II, while an
overview of the proposed object detection offloading frame-
work and its preliminary experimental results are discussed in
Section III. The object detection offloading decision problem

VOLUME 9, 2021

G. Yoon et al.: Implementing Practical DNN-Based Object Detection Offloading Decision

IEEE Access

is formulated based on the preliminary experimental results,
and the object detection offloading decision algorithm is
proposed in Section I'V. In Section V, the experimental results
are presented to demonstrate the effectiveness of the proposed
object detection offloading framework in a real-world WLAN
environment. Finally, this paper is concluded in Section VI,
where the future work is also included.

Il. RELATED WORK

In this section, we discuss several previous studies involved
in deep learning offloading methods that provide more intelli-
gence to the lightweight and energy-constrained mobile edge
devices by exploiting the remote computing resources of
edge- and cloud-computing infrastructures.

A. OBJECT DETECTION OFFLOADING FRAMEWORKS
Various edge-assisted object detection offloading frame-
works were proposed to improve the deep-learning-based
object detection performance in terms of end-to-end latency,
detection accuracy, and energy consumption. Ran ef al. [3]
introduced a measurement-driven object detection offloading
framework, called the DeepDecision, that decides where and
which deep learning model is executed to fulfill the appli-
cation requirements, including the frame rate, accuracy, and
energy consumption. Based on the measured experimental
results, they argued that the network transmission latency is
the most critical factor that affects frame rates rather than
the deep learning processing time executed at the remote
server. DeepDecision is capable of determining the optimal
offloading decision policy under time-varying network con-
ditions. Liu et al. [4] proposed an object detection offloading
framework, which decouples the rendering workload from the
offloading pipeline to reduce the waiting time for the detec-
tion results, for real-time mobile augmented reality (MAR)
applications. In addition, another study proposed a split com-
puting framework that aims to reduce the amount of data to
be transmitted to the edge server [13]. The framework splits
the deep learning model into head and tail models, which are
executed at the mobile edge device and remote edge servers
in which the output data of the head model are quantized and
transmitted to the edge server to ensure that they can be used
as input data for the tail model, for a given deep learning
model. All frameworks significantly improve the end-to-end
latency at the mobile edge device by offloading the object
detection workloads to the edge server. However, all these
frameworks are designed to support only a single mobile
edge device, and thus cannot be easily extended to a more
complicated scenario, where multiple mobile edge devices
are presented.

Recently, various efforts to design deep learning offloading
frameworks have been made to support multiple mobile edge
devices. Zhou et al. [14] presented a vehicle-to-everything
(V2X) framework, called EEVEE, that aims to share aug-
mented contextual information among multiple vehicles on
the road by offloading their object detection workloads to the
roadside units (RSUs). They devised an edge server selection

VOLUME 9, 2021

algorithm operated in a distributed manner to alleviate the
latency required for collecting statistics from clients in V2X
wireless systems. Meanwhile, Wang et al. [5] introduced an
energy-aware edge-assisted MAR system that dynamically
changes the MAR client configuration parameters, including
the CPU frequency and computation model size, to minimize
the per-frame energy consumption without latency and accu-
racy degradation. They proposed a low-energy, accurate, and
fast (LEAF) optimization algorithm to determine the optimal
MAR configuration parameters and radio resource alloca-
tion for multiple MAR clients. Although the frameworks
presented in [5] and [14] were designed to find the optimal
offloading decision policy for supporting multiple mobile
edge devices, they still have several drawbacks that limit their
application in a real-world environment, where the network
bandwidth and local computing power of the mobile edge
devices are different. In this paper, we propose a device-aware
deep learning offloading framework that determines the opti-
mal offloading decision policy for multiple mobile edge
devices by considering their different network bandwidths,
local computing powers, and the degree of congestion at the
edge server. To the best of our knowledge, our work is the first
to implement a multi-user object detection offloading system
and analyze its performance through rigorous experiments
applied in the real-world WLAN environment.

B. COMPUTATION OFFLOADING DECISION ALGORITHMS
The increasing interest in edge computing architectures over
the past few years has led to the development of computa-
tion offloading decision-making algorithms, which consider
various requirements and constraints to find the optimal
offloading decision policy. In general, finding the optimal
computation offloading decision solutions can be formu-
lated as integer programming problems, which are NP-hard
and difficult to find a globally optimal solution in real-
time. To deal with the problems more tractable, various
research efforts have been existed to apply well-known
approximation algorithms [15]-[19] and machine learning
techniques [20]-[24].

Xu et al. [15] formulated the deep learning offload-
ing problem of 5G multicell MEC networks as an integer
linear program (ILP), and then applied random round-
ing techniques to find exact and approximate solutions to
ensure both efficiency and optimization with high prob-
ability. On the other hand, several researchers aimed to
jointly optimize the offloading decision and resource allo-
cation to minimize energy consumption and end-to-end
latency [16]-[19]. Chen et al. [16] formulated a joint opti-
mization problem as a non-convex quadratically constrained
quadratic program (QCQP) and devised a heuristic algo-
rithm by applying separable semidefinite relaxation (SDR).
Liu et al. [17] proposed a task offloading and resource alloca-
tion framework that minimizes a user’s energy consumption
with ultra-reliable and low-latency communication (URLLC)
constraints, including probabilistic and stochastic character-
istics. In addition, they proposed a two-timescale algorithm

140201

IEEE Access

G. Yoon et al.: Implementing Practical DNN-Based Object Detection Offloading Decision

by applying the Lyapunov stochastic optimization and match-
ing theory to find the optimal UE-server association, task
offloading, and resource allocation. Moreover, Gao et al. [18]
proposed a DNN inference delay prediction model to estimate
the processing delays that vary depending on the DNN model
partition pattern and then formulated the joint problem as a
mixed-integer linear programming (MILP) problem. Mean-
while, He et al. [19] formulated a joint optimization problem
as a mixed-integer nonlinear programming (MINLP) prob-
lem, decomposed the optimization problem into a computing
resource allocation (CRA) and a DNN partition deployment
(DPD), and then devised low-complexity algorithms using
the Markov approximation to find the suboptimal solution in
polynomial time.

In [20], Liu et al. proposed two decentralized data offload-
ing algorithms based on two different game theories, includ-
ing the multi-item auction (MIA) and congestion game
(COQ), that are applicable to a heterogeneous network con-
sisting of cellular and Wi-Fi networks. MIA maximizes the
payment of mobile operators, while COG minimizes the pay-
ment of mobile subscribers. In [21]-[24], the authors applied
deep learning approaches, supervised learning and reinforce-
ment learning to find the optimal offloading decision policy.
In [21], Ali et al. proposed an energy-efficient deep learning-
based offloading scheme (EEDOS) that trains the DNN
model to find the optimal decision policy without an exhaus-
tive decision-making process. Here, the DNN model consists
of two fully connected hidden layers and is trained through
an exhaustive dataset generated by a mathematical model.
Similarly, in a previous study conducted by Yang et al.,
another study [22] proposed a multi-task learning (MTL)-
based offloading framework that jointly finds the offloading
decision and resource allocation, which were formulated as
classification and regression problems, respectively, through
a single neural network model. Moreover, in [23] and [24],
the authors applied a deep Q-learning approach to find the
optimal offloading decision policy in a vehicular network
environment where the network connectivity between vehi-
cles and RSUs varies over time that was incurred by the
vehicle’s mobility.

In this paper, we formulated the problem of finding an
object detection offloading decision policy as a binary com-
binatorial optimization problem with an unconstrained condi-
tion, which is NP-hard. Moreover, we devised a greedy-based
offloading decision algorithm that iteratively finds the sub-
optimal solution in polynomial time unlike the previous
studies that are mentioned previously [15]-[24]. To verify
the effectiveness of the proposed algorithm, in this paper,
we mathematically prove that the proposed greedy algorithm
is able to find a globally optimal solution under certain
condition.

1lIl. PROPOSED OBJECT DETECTION OFFLOADING
FRAMEWORK

In this section, we introduce an overview of the proposed
object detection offloading framework that adopts an object

140202

detection-specific task-level pipeline parallelism proposed in
our previous work [12] to improve the computing resource
utilization on both mobile edge devices and an edge server.
Afterward, we discuss preliminary experimental results that
show possible problems arising in real-world object detection
offloading scenarios.

A. OVERVIEW OF OBJECT DETECTION OFFLOADING
APPLYING TASK-LEVEL PIPELINE PARALLELISM

Our DNN-based object detection offloading framework is
designed to parallelize the workload execution by distribut-
ing heavy and lightweight workloads to the edge server
and mobile edge devices simultaneously to improve the
object detection performance. The proposed framework is
adopted from our previous work [12], including the offload-
ing DNN inference and NMS filtering workloads to a
remote server. Figure 2 shows a block diagram that repre-
sents the proposed object detection offloading framework,
which applies task-level pipeline parallelism to improve the
computing resource utilization on both edge devices and a
server. We categorized the object detection workloads into
five tasks to apply the task-level pipeline parallelism, as
follows:

e READ: Capture images from the camera module.

e PRE-PROCESS: Resize the captured image to fit the
predefined input shape of the DNN model.

o INFERENCE: Execute data analysis based on pretrained
DNN model.

o« POST-PROCESS: Extract a set of object instances,
including the bounding box location and categories pre-
diction values, and apply NMS filter.

o WRITE: Render the detection results on the screen.

The detailed procedure is depicted in Fig. 3.

The proposed framework is working on the edge comput-
ing architecture consisting of three entities: the mobile edge
devices, remote edge server, and wireless AP. In mobile edge
devices, the image data are captured using a camera module
attached to the edge device. Subsequently, it is resized and
normalized to fit the predefined input shape of the object
detection DNN model. Then, the DNN inference, which
can be executed using two methods, is performed to detect
the location and classification of the objects included in
the image. First, the edge devices are capable of offload-
ing the DNN inference tasks to the edge server, which is
called DNN offloading. Second, edge devices are capable of
processing the DNN inference tasks under the assumption
that the edge devices are equipped with a lightweight GPU
hardware.

If the edge devices are decided to execute the DNN infer-
ence, the edge devices must apply an NMS filter to extract
the final detection results from the DNN inference output.
On the other hand, if the edge devices are chosen to offload
the DNN inference, the edge server applies the NMS filter
and returns the final detection results to the edge devices.
Afterward, the edge devices visualize the obtained object

VOLUME 9, 2021

G. Yoon et al.: Implementing Practical DNN-Based Object Detection Offloading Decision

IEEE Access

dMobllg SN WLAN AP Edge
edge device el Seol___ N server
wireless link
Capture image
Sendimage = = = g e s Uplink
T~ = " Imace subframe # o ——
T Tt Imagesubframe g3 — o _
M= = Image slbframe sy .
———— Receive image
Run DNN inference
(2)
Apply NMS Filtering
(b)
Downlink Detection . = = = =]
Receive detection results |g — — = — = * TResults Send detection results
Render on the screen
[

(@)

inputimage 1=-=--------- layers Detection layers

Rol pooling

(b)

FIGURE 2. A block diagram representing the processing flow of the proposed object detection offloading framework.

Mobile
edge device [: 1de state —> : Read from queue =+ : Response signal
[reap | | reap | | [reap | i | [reap | jf | [rean | |
cpU % \f 7 \e 7 %
PRE- PRE- PRE- PRE-
L] ol (S o T)
¥ Z, X Z, ¥
GPU | INFERENCE I] | INFERENCE i | | INFERENCE |
7 \4 7 4
[prOctss | | {§ le |
CPU 4 7
(@)
[:] :Idle state = : Read from queuc ---» :Response signal — :Uplink — : Downlink
[reap | [reap | | [reap] | [reap | | [reap | | [reap | |
s * \f 4 <
Mobile PRE- PRE- PRE- PRE- PRE-
edge device PROCESS L PROCESS l l J PROCESS l l J PROCESS l l JpROCESS I l ‘
[wrire | | [wrare | | [wrire | | WRITE
\ 1 L -y =~ AY T

\/ \/

—_—

—

By [\/
[\ [\

Edge server] INFERENCE |P{g§g-ss

\i
| mveerence [oR9ST<o

POST- POST-
INFERENCE |PROCESS INFERENCE |PROCESS

(b)

FIGURE 3. Block diagrams that represent the processing flow of the object detection that applies task-level pipeline parallelism when (a) the object
detection workloads are processed locally and (b) are offloaded to the edge server.

detection results by rendering the bounding boxes and their
instances to the image data.

The remote edge server is equipped with high-performance
CPUs and GPUs, allowing the acceleration of the object
detection tasks in comparison with edge devices that are
equipped with a lightweight hardware. After pretraining the
object detection DNN models, the edge server creates a DNN
runtime module that executes the DNN model inference by
sequentially processing micro-kernels generated by a deep

VOLUME 9, 2021

learning compiler such as the Nvidia TensorRT and Apache
TVM! [25]. Then, the edge server opens a port and waits
for an object detection offloading request sent by the edge
devices. Once the request arrives, the edge server executes the
DNN runtime to extract the detection results. Subsequently,

]Apache TVM is a domain-independent end-to-end optimizing compiler
stack that transfers pre-trained deep learning models to optimized low-level
codes executing on given hardware accelerators such as CPUs, GPUs, and
specialized accelerators like TPUs.

140203

IEEE Access

G. Yoon et al.: Implementing Practical DNN-Based Object Detection Offloading Decision

Mobile Edge Devices
Nvidia Jetson Nano /]~ Nvidia Jetson NX
S ;

(a) Object detection offloading testbed.

Edge Server
—~

20

—O— Offloading only (Edge server)
-~ Local computing (Xaiver NX)

—_
W

-~ Local computing (Nano)

Performance (FPS)
)

w

0
=)

2 3 4 5 6 7 8
Number of edge devices

=
m]

(b) Average FPS with respect to the number of mobile edge devices.

FIGURE 4. Preliminary experimental environment and results when the
multiple mobile edge devices are located near the WLAN AP.

the edge server applies the NMS filter to extract the final
detection results, which are eventually returned to the corre-
sponding edge device.

It is necessary to establish data communication between
the mobile edge devices and the edge server in the object
detection offloading framework. In particular, the latency
incurred by data communication affects the detection latency
of the object detection offloading method. Thus, a single-hop
WLAN is appropriate for establishing data communication
links to minimize the degradation. Here, the mobile edge
devices are associated with a single WLAN AP where the
remote edge server is attached. When the edge devices request
the object detection offloading, the frames including the
pre-processed image data are transmitted to the remote edge
server through the uplink transmission. Afterward, the frames
including the detection results are transmitted to the corre-
sponding mobile edge devices through the downlink trans-
mission when the detection results are delivered from the
remote edge server to the edge devices.

B. PRELIMINARY EXPERIMENTAL RESULTS
We performed various preliminary experiments to evaluate
the impact of various factors of the offloading performance
of the object detection in terms of average FPS based on the
object detection offloading framework described above. Note
that the experimental setups were similar to those used in the
experiments results, which is discussed in Section V and its
detailed specifications are listed in Table 1.

Figure 4 shows the experimental results to evaluate the
average FPS with respect to the number of mobile edge
devices requesting an object detection offloading service.

140204

Point-A
& |
a

e ngjb—u
o

= Point-B

(a) Experiment scenario for the distributed mobile edge devices located
on the 1st floor of ETRI Honam Research Center.

20
~15
%)
-9
=
3
g§10 —— Limited by 'tc'
§ 0O Point-A
E s Point-B
< Point-C
Point-D
0 0 50 100 150 200 250
Bandwidth (Mbps)

(b) Average FPS with respect to the network bandwidth and location of
mobile edge devices.

FIGURE 5. Preliminary experimental environment and results when the
multiple mobile edge devices are distributed over a WLAN coverage area.

In this experiment, all mobile edge devices were deployed
near the WLAN AP, as shown in Fig. 4(a), resulting in a sim-
ilar network bandwidth to each other. As shown in Fig. 4(b),
the average FPS decreases as the number of edge devices
requesting object detection offloading service increases. This
degradation is caused by an increase in the queueing delay,
which depends on the arrival offloading request and offload-
ing service rates, that occurs at the remote edge server. In our
experiment, the service time required for object detection
at the edge server was almost invariant, indicating that the
queueing delay solely depends on the number of edge devices
requesting an object detection offloading service. Moreover,
in the case of Jetson Xavier NX, the performance of the
object detection offloading to the edge server is worse than
processing at the edge devices when the number of edge
devices is greater than or equal to 5. The experiment results
show that offloading all the workloads to the edge server
results in performance degradation as the number of mobile
edge devices increases, because of the limited scalability of
the object detection offloading system. This emphasizes the
necessity of the object detection offloading decision policy by
considering the number of edge devices in order to enhance
overall object detection performance in terms of processing
frames per second.

Figure 5 shows the experimental results to evaluate the
average FPS with respect to the network bandwidth. In this
experiment, a traffic controller (tc) in the Linux kernel was
used to modify the network bandwidth, while a TCPdump

VOLUME 9, 2021

G. Yoon et al.: Implementing Practical DNN-Based Object Detection Offloading Decision

IEEE Access

library was used to measure the network bandwidth in a
real-world WLAN environment. Moreover, we geographi-
cally distributed multiple mobile edge devices within the cov-
erage area of the WLAN AP, as shown in Fig. 5(a), because
the network bandwidth varies over the deployed regions
of mobile edge devices. The experiment results depicted
in Fig. 5(b) show that the average FPS of the object detection
offloading service increases and gradually converges to the
maximum value as the network bandwidth increases.? Here,
the maximum FPS value is bounded by the number of input
image FPS captured by the mobile edge device. The results
show that the object detection offloading performance varies
with the location of the mobile edge devices. The network
bandwidth greatly depends on the signal-to-noise ratio (SNR)
at the receiver, which is affected by the relative geographic
location between the transmitter and receiver, such as the
propagation distance and path quality (LOS vs. NLOS). This
implies that the mobility of an unexpectable mobile edge
device affects the object detection offloading performance
because of the variation in the network bandwidth.

Through the preliminary experimental results, we found
that offloading all the object detection workloads to the edge
server may result in overall performance degradation of the
object detection service at the mobile edge devices. In addi-
tion, the performance of the object detection offloading sys-
tem is affected by the computational capacity of the edge
server and the network bandwidth of the mobile edge devices.
Therefore, the problem of deciding whether to offload the
object detection services to the remote edge server is the most
important issue for improving object detection offloading
efficiency.

IV. OFFLOADING DECISION ALGORITHM

A. SYSTEM MODEL AND PROBLEM STATEMENT

Consider an object detection offloading scenario of mobile
edge devices, in which the computing resources and net-
work capacity are different. Let N = {ny,--- , ny} denote
a set of mobile edge devices in which n; represents the ith
mobile edge device. All mobile edge devices are connected
to a WLAN AP to establish wireless communication links
to the edge server. In this paper, we considered the close-in
reference distance path loss model for the wireless signal
attenuation. Then, the received signal strength at the WLAN
AP transmitted from the ith mobile edge device is obtained
using the following equation:

PFSS — IOPL(dO)/IOPtdI-_Gi, (1)

where PL(dp) is the path loss at the reference distance dy in
the dB scale, P; is the transmission power, and d; and 6; are
the Euclidean distance and the path loss exponent between
the ith mobile edge device and the WLAN AP, respectively.

2Noting that the experiment results labeled Limited by ’tc’ is measured
by adjusting network bandwidths through Linux kernel tc, on the other
hand, the experiment results labeled Point-A~D do not adjust their network
bandwidths.

VOLUME 9, 2021

Then, the SNR at the ith mobile edge device is defined as

RSS
i= Pi—, 2

NoW
where Ny is the noise power spectral density and W is the
channel bandwidth. We assumed that the wireless channel
is invariant over a single data transmission time, and there-
fore, the SNR is also invariant within a single offloading
procedure.

The data rate in IEEE802.11 is closely related to the
modulation and coding rates scheme (MCS) index, which
is determined based on the SNR mapping method, such as
exponential effective SNR mapping (EESM). The WLAN AP
selects the appropriate MCS index to maximize the network
capacity once the SNR is measured. Let rl.UL and rl.DL denote
the uplink and downlink data rates of the ith mobile edge
device, respectively, which are determined using the best
MCS selection mechanism. Then, based on the object detec-
tion offloading procedure described in the previous section,
the end-to-end latency of the object detection offloading ser-
vice at the ith mobile edge device is given by

UL DL
DO = Aj’T +dgi+d0T + Af;ﬁ 3)
1 1
where MiUL and MiDL are the size of the uplink and downlink
frames of the ith mobile edge device, respectively, d;; is
the queueing delay of the edge server at the ith mobile edge
device, and dI9F F is the processing delay required to compute
the object detection workload at the edge server.

The size of the uplink and downlink frames depends on
the size of the input image and the number of detected
objects in the image, respectively. Based on our preliminary
experiments, we found that the size of the downlink frame
is relatively small (i.e., M,.UL > MPL) than that of the
uplink frame, indicating that the last term in (3) is negligible.
In addition, d,; can be treated as a constant based on the
assumption that the object detection workloads are static and
the edge server always operates at maximum performance.
Therefore, the offloading delay D?FF at the ith mobile edge
device depends on the uplink data rates rl.UL and the queueing
delay d,; incurred at the remote edge server. The queueing
delay d,; in (3) is obtained by the number of offloading
requests stored in the queue of the edge server and the
remaining time for the ongoing offloading service, which are
unknown in advance. It implies that the queueing delay can
be treated as a random variable with bounded support, that is,
0 <dy; < (NOFF —1)aP"F, in which NOF is the number of
mobile edge devices offloading object detection workloads.

B. DETERMINISTIC GREEDY OFFLOADING DECISION

The objective of the object detection offloading decision
problem is to maximize the average FPS of all mobile edge
devices. Let x = [x1,---,xy] be a binary decision vector,
where x; = 1 if the ith mobile edge device offloads object
detection workloads to the edge server, and x; = 0 otherwise.

140205

IEEE Access

G. Yoon et al.: Implementing Practical DNN-Based Object Detection Offloading Decision

Then, the object detection offloading decision problem is for-
mulated as a binary optimization problem overx € {0, 1}V,
Moreover, let ; denote the average FPS at the ith mobile edge
device when it processes object detection workloads, and ||x||
denotes a function that returns the number in a binary vector
x. Then, the globally optimal offloading decision vector x* is
obtained by solving the following optimization problem:

N
X = argmax > L)+ (-), @)
xe{0,1}1xN i=1
where fi(x) is the estimated average FPS of the ith mobile
edge device when the ¥ number of devices is offloaded to
the edge server. Here, the achievable average FPS by offload-
ing the workloads greatly depends on the end-to-end object
detection offloading latency and the number of input image
frames captured by the edge device. Let y; denote the image
capture FPS of the ith mobile edge device. Based on (3), fi(k)
is given by

1
fi(K)=min{m,Vi],)

where o; = Ml.UL/ riUL is the time required for the uplink
data transmission at the ith mobile edge device. In addition,
based on (5), we applied the upper bound of the queueing
delay d, ;, that is, (||x|| — l)dIS)FF, to make the problem more
tractable.

The optimal offloading decision vector in (4) can be
obtained using a binary combinatorial algorithm. One may
attempt to apply a brute-search method that enumerates all
the possible candidates to find the best one. However, its com-
plexity grows exponentially as the number of mobile edge
devices increases. Therefore, we adopted a greedy algorithm
that iteratively finds a suboptimal solution xz by setting one
element of x to 1. Consider a set function for the objective
function A, (Ay) as follows:

1
ha(Ax) = + Zﬁmxn) + > B, (©)
ie Ax jely\Ax
where Ay = {i:x;=1,i =1,---,N} is the index set for
x; = 1 in x. Then, the algorithm selects one element k €

Aty \ Ax§ at each iteration that maximizes the increment of
the average FPS, that is, ha(Ax: U {k}) — ha(Axs), where 1y
is an all-ones vector with the size of N, until the increment is
less than zero. We devised a greedy algorithm based on the
following proposition:

Proposition 1: Let gr(c) = (ax + ¢)Bk. For a given set of
candidates k € Ay, \AXE and ¢ = ||x;|| + 1) dl(,)FF, a can-
didate k* that minimizes the function gi(c) also maximizes
the increment in the average FPS.

Proof: Appendix A]

We devised a greedy algorithm based on the propositions
above, where the detailed procedure is described in Algo-
rithm 1. First, X; = 0N is set, where 0!*¥ denotes the
zero vector with a size of N. At each iteration, the algorithm

140206

Algorithm 1 Proposed Offloading Decision Algorithm
1 x* = 01xN .
b ;

2: € =0;
3:t=0;
4: while ¢ > 0 do

5 t:=t+1;

6: c=1X d;)FF;

7. kT =arg minkeAlN\A,‘; (oi +¢) Bis
8 € = ga(AX§ U {k}) — ga(AxZ,);

9: if € > 0 then

10: x;[k] =1

11: end if

12: end while

Environment
variables

Mobile
edge device

P

OV [orFLoADING

DECISION
ALGORITHM

= policy
[PrE-PROCESS | (2) Queueing
delay Edge server
MUL
YES TTe--__TUL at
NO L T
. F
INFERENCE (1) Transmission [rostrrocEss | P‘ delay
B delay /.D

-4-- i

|
POST-PROCESS e
,,,,,,,,, e 7hL

WRITE

FIGURE 6. System model of the object detection offloading decision
problem for supporting multiple mobile edge devices.

selects one element k* € Ajp, \ sz that maximizes the
objective function in (9), as described in line 9. Subsequently,
the algorithm calculates the increment of the average FPS € to
check whether or not to add the selected candidate x; k] =1
to the optimal solution x;. Furthermore, the algorithm contin-
ues its iteration until € < 0, indicating that the average FPS
decreases as edge devices requesting an offloading service are
added to the solution Xg.

Generally, the greedy algorithm may fail in finding the
globally optimal solution because it is designed to find the
suboptimal solution in polynomial time. The performance of
this algorithm is evaluated using its derived approximation
factor w, which satisfies ha(sz) > wha(Ax+), where x* is
the globally optimal solution. There exist various approxima-
tion algorithms that guarantee constant approximation factors
when the objective function is a submodular set function.
The submodular function is a set function having a nature
of diminishing returns property, which implies that adding
an element to a small set achieves more incremental value
than adding the same element to a larger set. For example,
given the ground set \V, a real-valued set function g is called
submodular if it satisfies g(P Uu) — g(P) > g(QUu) — g(Q)
forall P € Q € N and u € N \ Q. However, the set
function in (6) does not hold the submodularity condition,
resulting in it being unable to derive the approximation factor
of the proposed greedy algorithm described in Algorithm 1.
Instead, we mathematically derived the conditions in which

VOLUME 9, 2021

G. Yoon et al.: Implementing Practical DNN-Based Object Detection Offloading Decision

IEEE Access

TABLE 1. Summary of the experimental setup.

[Component | Model | Specifications
- OS: Ubuntu 18.04.5 LTS
Remote edge server Desktop - CPU: Intel Xeon Silver 4214 x 2

- GPU: Nvidia Titan RTX
- d9FF 1 0.04

- Wireless module: Intel WAV654 chip 802.11a/n/ac/ax 2x2:2

WLAN AP NETGEAR Nighthawk RAX40 | \y AN TEEES02.11AC (80 MHz bandwidth & short-guard interval)
- CPU: Quad-core ARM A57@1.43GHz
Nvidia Jetson Nano - GPU: Nvidia Maxwell 128-cores
v - WLAN module: RTL8812BU chipset
Mobile edge device B=07

Nvidia Jetson Xavier NX

- CPU: 6-cores Nvidia Carmel ARM@v8.2 64-bit CPU 6MB L2 + 4MB L3
- GPU: Nvidia Volta architecture with 384 CUDA cores and 48 cores

- WLAN module: RTL8822CE-CG Single chip

-8 =5.0

Object detection model | YOLOv3

- Input size: 608 x 608
- Precision: FP32
- MYP =400 x 103

DNN inference engine Apache TVM

- Open source ML compiler
- Version: 0.7dev1
- URL: https://tvm.apache.org/

Input video source 720p MP4 file

- objects: vehicles, pedestrians, bycicles, etc.
-y =30

the proposed greedy algorithm finds a globally optimal solu-
tion based on the following proposition.

Proposition 2: Consider the arbitrary w; and w;, where
w;, w; € A1y and hy({w;}) = he({w;}). Then, for an arbitrary
set Q@ C Aj,, \ {{wi} U {w}}}, the proposed greedy algorithm
finds a globally optimal solution when the following condi-
tion holds:

ha({wi} U 2) = ha({wj} U Q). (N

Proof: Appendix B]
In Algorithm 1, the maximum number of iterations is
equal to N. In each iteration inside the loop, the minimum
from the vector of N is searched in worst case that incurs
the complexity of O(N). Then, the worst-case runtime com-
plexity of the proposed algorithm 1 becomes O(N?), which
is quadratic complexity with respect to the number of the
mobile edge devices. This implies that the proposed algo-
rithm is able to find an optimal offloading decision pol-
icy in polynomial time. Here, it is worth noting that the
proposed algorithm is running on the remote edge server
because it requires to gather all the environment variables
measured at the remote edge devices such as their networking
and computing resources as depicted in Fig. 6. In addition,
the proposed offloading decision algorithm is able to be
applied not only to the object detection field but also to other
related fields requiring computation workload offloading
services.

V. PERFORMANCE EVALUATION

In this section, we present various experimental results to
evaluate the effectiveness of the proposed object detection
offloading decision algorithm in real-world scenarios.

VOLUME 9, 2021

A. EXPERIMENT SETUP

We used two different types of edge devices (i.e., Nvidia Jet-
son Xavier NX and Nvidia Jetson Nano embedded boards) to
evaluate the impact of local computing power on the offload-
ing performance. Specifically, the Nvidia Jetson Xavier NX
is equipped with more powerful computing resources, which
is equipped with 6-core Nvidia Carmel ARM CPUs and
384-core Nvidia Volta GPU, than the Nvidia Jetson Nano,
which has 4-core ARM Cortex-A57 CPUs and a 128-core
Nvidia Maxwell GPU. On both platforms, the CUDA
10.2 library and Apache TVM runtime were installed and
used to process the DNN model inference workloads locally.
In addition, we used the Netgear RAX40 Wi-Fi router to
provide IEEE802.11AC-based wireless connectivity oper-
ated in unlicensed 5 GHz bands to the mobile edge devices.
Meanwhile, the edge server was directly attached to the
router through a 1 Gbps ethernet link. Moreover, we used
a desktop computer as a remote edge server equipped with
Intel Xeon Silver 4214 CPU and Nvidia Titan RTX GPU.
In these experiments, we used YOLOvV3 (608 x 608, FP32)
that was pre-trained using the COCO dataset as the object
detection model. According to our experiments, the Nvidia
Jetson Xavier NX and Jetson Nano require approximately
200 and 1,400 ms to execute the DNN model inference
workloads, respectively, once the YOLOv3 model was locally
processed. On the other hand, the edge server requires only
approximately 40 ms to execute DNN model inference work-
loads. Furthermore, we considered a naive method with-
out an offloading decision control that allows all mobile
edge devices to always offload the object detection work-
loads to the edge server. In the experiment, we considered
two object detection offloading scenarios that depend on

140207

IEEE Access

G. Yoon et al.: Implementing Practical DNN-Based Object Detection Offloading Decision

20 20

—O— Naive method
—>— Proposed algorithm

<@
w

Performance (FPS)
S
Performance (FPS)
=

w
w

20

—0— Naive method
—%— Proposed algorithm

—0— Naive method
—>— Proposed algorithm

v

"""" Local process

Performance (FPS)
=

w
(e}

Number of edge devices

(a) Nvidia Jetson Nano (rJ > 2 x 108)

10

Number of edge devices

(b) Nvidia Jetson Xavier NX (rJ& > 2 x 10%)

Number of edge devices

(c) Nvidia Jetson Nano + Nvidia Jetson Xavier NX
(B; ={0.7,5.0}, 7% > 1 x 10%)

Local
8 Hl Offload
n
&
g 6
=
£
5 4
5
-9
2
0 0 1 2 3 4

Number of offloaded devices

(d) Nvidia Jetson Nano (3; = 0.7,79 = 2 x 108)

10

Local
8 HEl Offload
@
&
E’ 6
=1
£
5 4
5
A~
2
0 0 1 2 3 4

Number of offloaded devices

(e) Nvidia Jetson Xavier NX (8; = 5.0, 7L = 2 x 108)

FIGURE 7. Average FPS with respect to the number of mobile edge devices that are located near the WLAN AP as shown in Fig. 4(a).

whether the network bandwidth of the mobile edge device is
balanced.

B. EXPERIMENTAL RESULTS FOR BALANCED NETWORK
BANDWIDTH CASE

Figure 7 shows the experimental results that represent the
average FPS with respect to the number of mobile edge
devices when the network bandwidth is evenly shared among
all mobile edge devices. All mobile edge devices were
deployed close to the Wi-Fi AP to evenly distribute the net-
work bandwidth, as shown in Fig. 4(a).

Figure 7(a) shows the average FPS with respect to the
number of mobile edge devices, which use Nvidia Jetson
Nano embedded boards. In the figure, the performances of the
naive method and the proposed algorithm gradually decrease
as the number of mobile edge devices increases. The degra-
dation that is observed in the naive method is caused by an
increase in the queueing delay incurred by the concurrent
offloading decision requests, while the degradation in the
proposed algorithm is caused by an increase in the number
of mobile edge devices that execute object detection work-
loads locally. The results show that the performances of the
proposed algorithm and naive method are nearly equal to
each other. The proposed object detection offloading deci-
sion algorithm is designed to maximize its detection perfor-
mance by exploiting all available computing resources of the
remote edge server and mobile edge devices. As a result,
we found that the performance enhancement obtained by

140208

applying the proposed algorithm decreases when the local
computing power of the mobile edge devices is relatively
low.

On the other hand, Fig. 7(b) shows the average FPS with
respect to the number of mobile edge devices, which are
Nvidia Jetson Xavier NX embedded boards. The perfor-
mances of both methods decrease as the number of mobile
edge devices increases, which is similar to the previous
results. However, the performance difference between the
naive method and the proposed algorithm increases as the
number of mobile edge devices increases. An improved per-
formance can be achieved by enabling some devices to run
computationally intensive workloads locally without offload-
ing them to the remote edge server. Specifically, the improve-
ment of the performance of the proposed algorithm is greater
than that of the previous results, which is shown in 7(a).
In addition, Figs. 7(d) and (e) show the average FPS with
respect to the number of offloading mobile edge devices,
which are Nvidia Jetson Nano and Nvidia Jetson Xavier
NX boards, respectively. It is worth noting that the com-
puting power of the Nvidia Jetson Xavier NX is superior
than that of Nvidia Jetson Nano, as shown in Fig. 4, imply-
ing that the proposed algorithm leverages more local com-
puting capabilities to increase the detection performance.
Therefore, the proposed offload algorithm leverages all avail-
able resources in the edge computing infrastructure to max-
imize the average FPS performance of all mobile edge
devices.

VOLUME 9, 2021

G. Yoon et al.: Implementing Practical DNN-Based Object Detection Offloading Decision

IEEE Access

12
10 IEl Naive method
I Proposed algorithm
é\ 3 Local process
Z
3
g6
g
S
5 4
=¥
0 NX Nano NX Nano NX Nano NX Nano
Average Point-A Point-B Point-C Point-D

FIGURE 8. Average FPS of mobile edge devices distributed at the location marked in Fig. 5 (a).

Figure 7(c) shows the average FPS with respect to the
number of mobile edge devices, consisting of Nvidia Jetson
Nano and Nvidia Jetson Xavier NX boards. The figure shows
that the proposed algorithm also achieves better detection per-
formance compared with the naive method, which is similar
to the previous results shown in Fig. 7(b). This result indicates
that the proposed algorithm finds the optimal offloading deci-
sion algorithm by considering the different local computing
power of the mobile edge devices to maximize the overall
detection performance.

C. EXPERIMENTAL RESULTS FOR IMBALANCED
NETWORK BANDWIDTH CASE

We evaluated the performance of the proposed object detec-
tion offloading decision algorithm when mobile edge devices
have imbalanced network bandwidths. In this experiment,
we used eight mobile edge devices that were geograph-
ically distributed over the 1st floor of the ETRI Honam
Research Center, as described in Fig. 5 (a). At each location,
Nvidia Jetson Nano and Nvidia Jetson Xavier NX boards
were deployed close together, enabling them to exploit the
network bandwidth in balance. Figure 8 shows the average
FPS of the mobile edge devices, and the proposed decision
algorithm achieves better performance. The proposed algo-
rithm allowed only two mobile edge devices to offload their
object detection workloads, while the others were allowed
to execute the workloads locally. Particularly, the algorithm
selected two Nvidia Jetson Nano boards located in Point-A
and Point-B with higher network bandwidth than the other
positions, as shown in Fig. 5(b), indicating that offload-
ing computationally intensive workloads of a mobile edge
device with lower computing power and higher network
bandwidth improves the average FPS. Therefore, the pro-
posed object detection offloading decision algorithm makes
the edge computing infrastructure fully utilize their comput-
ing and networking resources to provide the best detection
performance.

VOLUME 9, 2021

VI. CONCLUSION

In this paper, we introduced a DNN-based object detection
offloading framework in an edge computing infrastructure
consisting of multiple mobile edge devices and a remote
edge server. Through the preliminary experimental results,
we verified that the proposed object detection offloading
framework enhances the performance of the object detec-
tion in terms of average FPS by offloading computation-
ally intensive workloads from mobile edge devices to the
remote edge server connected through one-hop wireless links.
Moreover, we found that the overall performance of the
object detection service at the mobile edge devices may be
degraded by offloading all the object detection workloads to
the edge server because of its limited computing resources.
We formulated the offloading decision problem as a binary
combinatorial optimization problem and proposed an algo-
rithm that finds the optimal solution in polynomial time.
In addition, we mathematically analyzed the effectiveness
of the proposed algorithm by deriving a certain condition
when the algorithm always finds a globally optimal solution.
Furthermore, we performed various experiments in real-life
WLAN environments to verify that the proposed offloading
decision algorithm maximizes the average FPS. In future
work, we will extend our object detection offloading frame-
work and offloading decision algorithm by applying them
in more realistic scenarios, where multiple edge servers can
provide object detection offloading services with various
DNN-based object detection models. In addition, we will
upgrade the proposed offloading decision algorithm to jointly
optimize offloading decision and resource allocation, and
then compare its performance with the other offloading deci-
sion algorithms in order to evaluate the objective performance
of our algorithm.

APPENDIX A PROOF OF PROPOSITION 1
In(5), 1/{o; +]| |x§ | |dI9FF} decreases as the number of ones in

XZ increases. Therefore, the function fi(||x;||) may return to

140209

IEEE Access

G. Yoon et al.: Implementing Practical DNN-Based Object Detection Offloading Decision

1/{oi+]| |XZ | |d19FF} as the iteration increases. Then, the incre-
ment in the average FPS for an arbitrary edge device k €
Ay \ Ax; is arranged as follows:

ha(Agg U (k) -

=}V{ YooAIKI+D. A+ > ﬂi}

hu (-Axg,)

i€ Ay Ulk}) jeAny (A ULk
1
ﬁ{ PN A(THDEE ﬁi}

ZEAZ']eAlN\AX§

1
= ﬁka(IIXZII + 1)—.3k}

+{ Zﬁ<||x;||+1>—ﬁ<||x§||>H.

iG.Ax;

In the equation, the first term represents the increase in the
FPS at the kth device by setting x;[k] = 1, while the second
term represents the decrease in the FPS for all edge devices in
i € Axx. The second term remains constant regardless of the
selection of k, implying that the edge device k € Ay, \ sz
that maximizes the first term also maximizes the increment
of the average FPS, that is, ha(Ax* U {k}). Then, the optimal
candidate k* is obtained by solvmg the following:

1
k* = argmax min Vi [— P
ke'AlN\AXZ, {ak + ([Ix*{| + l)dlg)FF

®

By substituting ¢ = (| x|+ 1) d9™F and multiplying
o; + ¢ to the nominator and denominator of the first term of
the objective function, the optimal candidate k* is selected by
the following minimization problem:

k* = argmin (o +¢) Bi. 9)

kE.AlN \.ijgk

APPENDIX B PROOF OF PROPOSITION 2

Suppose that X, starts from all zero vector O such that sz =
?. When the wth element of X; is changed from O to 1, the
variation of the objective function ha(.sz U{w}) — ha(Axg) is
Jfw(1) — By, This implies that, at the first iteration, the greedy
algorithm described in Algorithm 1 finds w* maximizing
the variation and changes its value from O to 1, i.e., o* =
arg max e 4 , fw(l) Bo- In other words, for all w € Ay, \

{w*}, the followmg holds:

ha({@™) —ha(fo}) = Y filh+ > B

ic{w*} jeAlN \{w*}

—{pr<1>+ 3 ﬂq}

pelw) gediy \(w}
= Jor(1) = fo(1) = Bw+ + Bw = 0.
(10)

140210

Then, for an arbitrary Q@ € Aj,, \ {&*} in which [|Q|| = «
and w € Ay, \ {{0*} U 2}, the following holds:

ha({0*} U Q) — ha({w} U Q)

Yo fikk+D+ Y B

ie{w*}UQ je.AlN\{w*UQ}

—{ Yo ohe+D+ > ﬂq}

pe{wU} qEAlN\{a)UQ}
= for(c + 1) —folec + 1) — B + B = 0. (11)

Let & = B, — Bw- Then, the condition in (7) is always true

when f«(k +1)—f,(k +1) > O forallk =0, --- , N. Based
on (5), it can be rewritten by
Jor(k + 1) = fo(k + 1)
For — %o >0 (12)

(@ + (k + DAITF) (e + (c + DI =

Let n = a,+ — a. It is worth noting that the left term
of (12) increases as k increases if n < 0. In contrast, the left
term of (12) decreases as « increases when 1 > 0. Therefore,
if & < 0, the above condition always holds regardless of
the value of 1 but may not hold when 6 > 0. By reorga-
nizing (12), we have

0((c + DAITF)? + (1 + 6 - (k 4 1))
1= 0((k + D)dOF +)

(13)

Qo >

The right term of the above equation increases as «
increases in the range of k = 0, - -, [(1 -6 - a})/(0 ~dI9FF)
— 1] because «+ is invariant over x. Note that o, =
MSL/rPt, we can derive the following condition:

UL MIEA = 6((kc + 1P +)
"0 0+ DAY + e (1 +0 - (+ DO’
MIEA = 0(dP™ +)
e(dOFF)2 + @+ (1 + 6 - dPFF)

=W, 0. (14)

This implies that for an arbitrary w € Ajy \ {2 U {0*}},
it is unable to hold h,({w}) < h,({w*}) and B, < B+
simultaneously if its uplink transmission rate rJ is greater
than W, ,+. In other words, the condition in (12) always
holds if there exists at least one element v whose uplink
transmission rate is greater than W, .. Consequently, for
a given w*, the greedy algorithm finds the globally optimal
solution if there exists at least one element w that satisfies
rU > W, o and B, < Bor.

REFERENCES

[1] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object detection with deep
learning: A review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30,
no. 11, pp. 3212-3232, Nov. 2019.

[2] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu,
“A survey of deep learning-based object detection,” IEEE Access, vol. 7,
pp. 128837-128868, 2019.

[3] X.Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A mobile
deep learning framework for edge video analytics,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2018, pp. 1421-1429.

VOLUME 9, 2021

G. Yoon et al.: Implementing Practical DNN-Based Object Detection Offloading Decision

IEEE Access

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

L. Liu, H. Li, and M. Gruteser, ‘““Edge assisted real-time object detection for
mobile augmented reality,” in Proc. 25th Annu. Int. Conf. Mobile Comput.
Netw., Aug. 2019, pp. 1-16.

H. Wang and J. Xie, ““User preference based energy-aware mobile AR sys-
tem with edge computing,” in Proc. IEEE Conf. Comput. Commun. (INFO-
COM), Jul. 2020, pp. 1379-1388.

E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge Al: On-demand accelerating
deep neural network inference via edge computing,” IEEE Trans. Wireless
Commun., vol. 19, no. 1, pp. 447-457, Jan. 2020.

J. Chen and X. Ran, “Deep learning with edge computing: A review,” Proc.
IEEE, vol. 107, no. 8, pp. 1655-1674, Aug. 2019.

Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and
J. Zhang, “Edge intelligence: Paving the last mile of artificial intelligence
with edge computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738-1762,
Aug. 2019.

J. Shuja, S. Mustafa, R. W. Ahmad, S. A. Madani, A. Gani, and M. K. Khan,
“Analysis of vector code offloading framework in heterogeneous cloud and
edge architectures,” IEEE Access, vol. 5, pp. 24542-24554, 2017.

E. Ahmed, A. Ahmed, I. Yaqoob, J. Shuja, A. Gani, M. Imran, and
M. Shoaib, “Bringing computation closer toward the user network: Is
edge computing the solution?”” [EEE Commun. Mag., vol. 55, no. 11,
pp. 138-144, Nov. 2017.

S. Zhou, W. Jadoon, and J. Shuja, “Machine learning-based offloading
strategy for lightweight user mobile edge computing tasks,” Complexity,
vol. 2021, Jun. 2021, Art. no. 6455617.

R. Kim, G. Kim, H. Kim, G. Yoon, and H. Yoo, “A method for optimizing
deep learning object detection in edge computing,” in Proc. Int. Conf. Inf.
Commun. Technol. Converg. (ICTC), Oct. 2020, pp. 1164-1167.

Y. Matsubara and M. Levorato, ‘“Neural compression and filtering for
edge-assisted real-time object detection in challenged networks,” in Proc.
25th Int. Conf. Pattern Recognit. (ICPR), Jan. 2021, pp. 2272-2279.

P. Zhou, T. Braud, A. Zavodovski, Z. Liu, X. Chen, P. Hui, and
J. Kangasharju, “Edge-facilitated augmented vision in vehicle-to-
everything networks,” IEEE Trans. Veh. Technol., vol. 69, no. 10,
pp. 12187-12201, Oct. 2020.

Z. Xu, L. Zhao, W. Liang, O. F. Rana, P. Zhou, Q. Xia, W. Xu, and
G. Wu, “Energy-aware inference offloading for DNN-driven applications
in mobile edge clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 4,
pp. 799-814, Apr. 2021.

M.-H. Chen, B. Liang, and M. Dong, ‘“Joint offloading decision and
resource allocation for multi-user multi-task mobile cloud,” in Proc. IEEE
Int. Conf. Commun. (ICC), May 2016, pp. 1-6.

C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, ‘“Dynamic task offload-
ing and resource allocation for ultra-reliable low-latency edge computing,”
IEEE Trans. Commun., vol. 67, no. 6, pp. 4132-4150, Jun. 2019.

M. Gao, W. Cui, D. Gao, R. Shen, J. Li, and Y. Zhou, “Deep neural
network task partitioning and offloading for mobile edge computing,” in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1-6.
W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint DNN partition deploy-
ment and resource allocation for delay-sensitive deep learning infer-
ence in IoT,” IEEE Internet Things J., vol. 7, no. 10, pp. 9241-9254,
Oct. 2020.

D. Liu, L. Khoukhi, and A. Hafid, “Decentralized data offloading for
mobile cloud computing based on game theory,” in Proc. 2nd Int. Conf.
Fog Mobile Edge Comput. (FMEC), May 2017, pp. 20-24.

Z. Ali, L. Jiao, T. Baker, G. Abbas, Z. H. Abbas, and S. Khaf, “A deep
learning approach for energy efficient computational offloading in mobile
edge computing,” IEEE Access, vol. 7, pp. 149623-149633, 2019.

B. Yang, X. Cao, J. Bassey, X. Li, T. Kroecker, and L. Qian, “Compu-
tation offloading in multi-access edge computing networks: A multi-task
learning approach,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2019,
pp. 1-6.

T. He, N. Zhao, and H. Yin, “Integrated networking, caching, and
computing for connected vehicles: A deep reinforcement learning
approach,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp.44-55,
Jan. 2018.

K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Deep
learning empowered task offloading for mobile edge computing in urban
informatics,” IEEE Internet Things J., vol. 6, no. 5, pp. 7635-7647,
Oct. 2019.

Apache TVM. Accessed: Sep. 1, 2021. [Online]. Available: https://tvm.
apache.org/

VOLUME 9, 2021

GIHA YOON received the B.S. degree in infor-
mation and communications engineering from
Mokpo National University, Jeollanam-do, South
Korea, in 2012, and the M.S. degree in electronic
computer engineering from the Graduate School,
Chonnam National University, Gwangju, South
Korea, in2017. He is currently a Senior Researcher
with Honam Research Center, Electronics and
Telecommunications Research Institute, Gwangju.
His research interests include efficient data pro-

cess for edge computing devices and FPGA-based digital logic design and
implementation for immediate processing systems.

GEUN-YONG KIM received the B.S. degree in
electronics engineering from Kwangwoon Univer-
sity, Seoul, South Korea, in 2004, and the M.S.
and Ph.D. degrees from the School of Electri-
cal Engineering and Computer Science, Gwangju
Institute of Science and Technology, Gwangju,
South Korea, in 2006 and 2017, respectively. Since
2006, he has been with Honam Research Cen-
ter, Electronics and Telecommunications Research
Institute, Gwangju. His recent research inter-

ests include edge computing software framework, ML inference, and

5G networks.

HARK YOO received the B.S. degree in electri-
cal engineering from Yonsei University, in 1998,
and the M.S. and Ph.D. degrees in communica-
tions engineering from Korea Advanced Institute
of Science and Technology (KAIST), in 2000 and
2005, respectively. In 2005, he joined Honam
Research Center, Electronics and Telecommunica-
tions Research Institute (ETRI), Gwangju, South
Korea. His research interests include medium
access control for next generation optical access

networks and time-sensitive networking and hardware and software plat-
forms for edge computing nodes for the Internet of Things (IoT), industrial
10T (IIoT), and artificial intelligence of things (AIoT).

SUNG CHANG KIM received the B.S.E.E. degree
from Inha University, in 1999, and the M.S.E.E.
and Ph.D. degrees from Korea Advanced Institute
of Technology (KAIST), South Korea, in 2002 and
2006, respectively. In 2006, he joined Honam
Research Center, Electronics and Telecommuni-
cations Research Institute (ETRI), as a Principle
Researcher, working on optical network technolo-
gies. He is currently the Director of the Edge
Computing Application Service Research Section,

ETRI. His research interests include time sensitive network algorithm and
multi-access edge computing technology.

P

=

-

<>

4

RYANGSOO KIM received the B.S. degree in
information and communications from Chung-
nam National University, Daejeon, South Korea,
in 2010, and the M.S. and Ph.D. degrees from
the School of Electrical Engineering and Com-
puter Science, Gwangju Institute of Science
and Technology (GIST), Gwangju, South Korea,
in 2012 and 2017, respectively. He is currently a
Researcher with Honam Research Center, Elec-
tronics and Telecommunications Research Insti-

tute (ETRI), Gwangju. His research interests include online learning algo-
rithm for resource management, network protocol design and performance
analysis for wired/wireless networks, and edge computing-based deep learn-
ing inference optimization.

140211

