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The existing methods of ransomware detection have limitations. To be specific, static anal- 

ysis is not effective to obfuscated binaries, while dynamic analysis is usually restricted 

to a certain platform and often takes tens of minutes. In this paper, we propose a block- 

level monitoring system to detect potentially malicious cryptographic operations. We carry 

out statistical analysis to find heuristic rules to distinguish between normal and encrypted 

blocks. In order to apply the heuristic rule to the filesystem without kernel modification, we 

adopt Filesystem in Userspace (FUSE) and define our filesystem Rcryptect for real-time detec- 

tion of cryptographic function. We demonstrate the protection of well-known ransomware 

and show that various cryptographic functions can be detected with about 13% overhead. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 
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1. Introduction 

Cryptographic primitives providing confidentiality, integrity,
and availability can be used by ransomware for malicious pur-
poses. Recently, ransomware has become an increasingly at-
tractive business model for malicious attackers; the average
amount paid by victims was reportedly $1,077 Growth in ran-
somware . The first report of ransomware, which had a great
impact, was known as locker-ransomware that locks access
to a victim’s device. Since then, crypto-ransomware has be-
gun to replace locker-ransomware. This encrypts the victim’s
entire or some important files and demands ransom for the
∗ Corresponding authors. 
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decryption key. In general, in order to encrypt as many files
as possible within a short period of time, encryption is per-
formed by a symmetric key algorithm, and the secret key used
is protected by the attacker’s asymmetric key. Even though
there is no guarantee that the files or devices will be re-
stored, victims keep paying up; otherwise most people would
panic. 

Ransomware can infiltrate the victim’s computer by pos-
ing as an Adobe Flash installer like in the case of Bad Rabbit,
which targeted Russian media group Interfax and Fontanka as
well as public transportation targets in Ukraine Bad rabbit ran-
somware . It is also possible to use freeware such as CCleaner.
Of 130 million users, the attackers exploited CCleaner to af-
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ect more than two million computers Ransomware and free 
oftware . More seriously, large-scale ransomware can pene- 
rate through networks and use anonymous digital curren- 
ies such as bitcoin to demand ransom. WannaCry, for ex- 
mple, spread this way. It took advantage of security vul- 
erabilities in some Windows operating systems, infecting 
ore than 200,000 computers across 150 countries, with to- 

al financial losses to billions of dollars WannaCry and finan- 
ial loss . Microsoft released patches for the vulnerability, but 
npatched computers are still at risk. Recently, Kia Motors 
merica has allegedly suffered a ransomware attack by the 
oppelPaymer gang, demanding 20 million dollars Kia mo- 

ors and ransomware . If ransomware targets hospitals, more 
omputers can be damaged, and even life can be at risk. For 
xample, patient and doctor records at Hollywood Presbyte- 
ian Hospital in Los Angeles were infected by ransomware 
n February, 2016 Hospital and ransomware . In this case, the 
nly solution may be to pay the ransom and get the de- 
ryption key to restore the systems and administrative func- 
ions. For this reason, ransomware attacks and defense mech- 
nisms have been an attractive area of research in recent 
ears. 

Detection techniques for crypto-ransomware generally use 
ocal static, local dynamic, or network traffic information. Due 
o the main characteristic of crypto-ransomware, some static 
nd dynamic methods often aim to detect cryptographic func- 
ions based on an in-depth understanding of the target algo- 
ithm. Static analysis finds instruction chains, constant values 
nd signatures ( Matenaar et al., 2012; Wang et al., 2009 ) as well
s the data flow graph isomorphism ( Lestringant et al., 2015 ).
owever, such analysis often becomes expensive in terms of 

ime and shows little effect when analyzing obfuscated bina- 
ies ( Linn and Debray, 2003; Moser et al., 2007; Popov et al.,
007 ). 

To detect cryptographic functions in obfuscated bina- 
ies, CryptoHunt ( Xu et al., 2017 ), a dynamic method of a 
it-precise symbolic loop mapping, was proposed. Later, its 
omputational cost was reduced by 34 times using ATOS 
 Sun et al., 2019 ). CryptoHunt detects the target cryptographic 
ode inside a loop body. In particular, it compares the core 
ransformations with the reference implementations. So, the 
oop mapping methods can be bypassed by implementing a 
ryptographic algorithm in a different way than known ref- 
rence implementations. For instance, a table-based imple- 
entation in the presence of dummy operations ( Banescu and 

retschner, 2018 ) may be effective to make their mappings 
ostly. Specifically, a white-box cryptographic implementa- 
ion consisting of key-instantiated lookup tables ( Chow et al.,
002a,b ) can make it more difficult to analyze the internal 
lgorithm when combined with dummy tables and lookups.
n a technical point of view, the loop mapping is not ef- 
ective to detect unknown cryptographic functions. Also,
he detection takes tens of minutes to several hours, mak- 
ng it difficult to detect cryptographic functions immedi- 
tely, and the target binary has to be executed in a secure 
nvironment. 

The virtual machine introspection (VMI) can provide an 

ut-of-VM solution of ransomware detection with memory 
orensics on the live guest OS ( Ajay Kumara and Jaidhar,
017; Tang et al., 2020 ). However, the slow performance of 
he guest OS is one of the serious drawbacks. In addition,
t imposes an engineering effort of setting virtual environ- 

ents. Park and Park (2020) proposed a hardware-assisted 

racing method, recording the change-of-flow instructions 
rom the CPU at run-time, for detecting symmetric-key cryp- 
ographic routines. There are also several techniques based on 

he avalanche effect of input-output dependencies ( Caballero 
t al., 2010; Li et al., 2014 ) and unique input-output rela- 
ions ( Calvet et al., 2012; Gröbert et al., 2011; Zhao et al., 2011 ).
owever, the input and output can be protected by simple 

echniques such as data encoding. 
There are also practical defense systems monitoring ab- 

ormal activities. Hosfelt adopted ( Intel Pin ) and machine 
earning in order to extract features and analyze the behav- 
or of the target binary at run-time ( Hosfelt, 2015 ). The au-
hors in Ahmed et al. (2020) also used machine learning tech- 
iques to propose a filter method, removing the noisy fea- 

ures and selecting the real behaviour of ransomware from 

indows API calls. Almgren et al., 2015 observed filesystem 

ctivities and filtered out particular I/O requests by hook- 
ng their method into the system service descriptor table. In 

harraz et al. (2015) , the authors suggested to monitor the 
hanges in Master File Table in the NTFS filesystem and sus- 
icious sequences of Windows API calls. Kharraz et al. intro- 
uced UNVEIL ( Kharraz et al., 2016 ). It utilizes an entropy- 
ased detection which compares the entropy of read and write 
equests at the same file offset to detect encryption using 
he Windows Filesystem Minifilter Driver framework FltMgr 
 Microsoft file driver ). Scaife et al. (2016) selected three indi- 
ators that broadly cover the transformation caused by ran- 
omware: changes in file formats, entropy of created files,
nd the number of deleted files and file formats accessed 

y a process. A drop-in driver ShieldFS for the Windows na- 
ive filesystem also monitors the entropy of write opera- 
ions and the frequency of read/write/list/rename operations 
s well as the memory pages of potentially malicious pro- 
ess ( Continella et al., 2016 ). While ShieldFS is not resistant to
nknown cryptographic functions, Redemption Kharraz and 

irda (2017) does not rely on cryptographic primitive iden- 
ification but requires modification of the operating system 

o perform behavioral monitoring on the common charac- 
eristics of ransomware. Most of the above countermeasures 
re restricted to a certain type of OS or CPU. Such Windows- 
ased analysis using API calls, drivers, and filesystem is ex- 
ected to be redesigned for other platforms. Although 85% 

f ransomware attacks target Windows systems, now ran- 
omware is adapting to compromise Linux servers that ad- 
inister enterprise networks, massive databases, and web 

ervices. Their owners, such as businesses or governmental 
nstitutions, are juicy targets because they can afford to pay 
ansom with sizeable budgets Linux ransomware character- 
stics; Linux ransomware threats . Depending on the CPU in 

he device, Intel PIN also needs to be replaced with other 
BI tools such as Valgrind Valgrind home page ; it is time 
onsuming. At the flash-based storage level, a new buffer 
anagement policy was proposed to detect the repetitive 

verwriting-following-reading access ( Paik et al., 2018 ). How- 
ver, it cannot detect ransomware that erases the origi- 
al file, nor can it distinguish between repetitive benign 

ncryption. 
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Fig. 1 – Structural diagram of FUSE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A network-based method for detecting command and con-
trol (C&C) severs in the black list was proposed ( Zahra and
Shah, 2017 ). However, fixing the address of the C&C server
in its binary is not a common practice for ransomware. Usu-
ally, ransomware locates C&C servers using the resolution
of a DNS name to avoid network filtering ( Cabaj and Mazur-
czyk, 2016; Quinkert et al., 2018 ). In addition, ransomware
can attempt to resolve dozens of pseudo-randomly gener-
ated domain names in case the specific domain names are
blocked. In Cabaj et al. (2018) , the sequences of the HTTP
messages and their respective content sizes were analyzed
based on software-defined networking. Another network-
based intrusion detection system was implemented by em-
ploying packet- and flow-level classifiers ( Almashhadani et al.,
2019 ). Although many ransomware families try to connect
to C&C servers, the network connection is not always avail-
able, and also ransomware does not always connect to the
outside. 

In this paper, we present a novel method, Rcryptect (Real
time + CRYPto + deTECT) to detect potentially malicious cryp-
tographic functions at run-time in the filesystem. This is an
entropy-based technique to filter out malicious blocks en-
crypted in the user-space filesystem. The file I/O in the user-
space filesystem consists of block I/O. Therefore, block-level
granularity allows us to take action at the earliest point in
time to determine whether a set of blocks is encrypted, regard-
less of the boundaries of the files; this will result in a minimal
loss of files. Our key idea is to observe the entropy of incom-
ing blocks that will be written because standard cryptographic
algorithms compute ciphertexts with outstanding random-
ness of 0 ’s and 1 ’s. To compute the entropy, we adapt the
NIST randomness test suite (NIST SP 800-22) ( Rukhin and oth-
ers. 2010 ), a set of statistical tests for the validation of random
and pseudo-random number generators. Since the frequency
test provides the most basic evidence for the existence of non-
uniformity among the 15 different types of tests, we utilize
the frequency test in our heuristic rules to distinguish normal
and encrypted blocks. If the suspicious blocks of high entropy
are detected, the permission of the writing or deleting process
is checked in order to distinguish between benign and ma-
licious operations. To implement these functionalities in the
filesystem without kernel modification, we use Filesystem in
Userspace (FUSE) Dokan FUSE; FUSE examples; Winfsp , which
is supported on various operating systems such as Linux, Win-
dows, and macOS. In short, the advantages of Rcryptect are as
follows: 

• Block-level detection of cryptographic functions 
• No kernel modification 

• Applicable to various operating systems 
• Effective to obfuscated ransomware 
• No need for the network connection 

The rest of this paper is organized as follows: Section 2 ex-
plains the basic concepts of FUSE and NIST randomness
test suite. Afterwards, Section 3 proposes Rcryptect with our
statistical analysis of normal and encrypted blocks. It also
provides details of implementation and evaluation. We dis-
cuss limitations and conclude this paper in Section 4 and 5 ,
respectively 
2. Preliminaries 

In this part, two open-source components coupled in the pro-
posed method are introduced. First, FUSE will be used to de-
fine our filesystem in the user space without having to update
kernel. Note that modifying kernel is not practical for industry
practitioners because it requires a lot of labor and cost. Sec-
ond, the NIST randomness test suite will evaluate the entropy
of the writing blocks. By detecting cryptographic primitives at
the block level, not at the file level, we can provide real-time
monitoring on the filesystem. In the connection with the en-
tropy test, the permission will also be checked by using FUSE
to prevent repetitive malicious attempts. 

2.1. FUSE 

FUSE, a loadable kernel module, enables to develop a user-
space filesystem that supports personalized features and ex-
tended capabilities without having to modify filesystem in-
ternals or kernel modules. FUSE is available for various plat-
forms including Linux, FreeBSD, OpenBSD, OpenSolaris, Minix
3, Android, Windows, and macOS and is free software released
under the GNU General Public License and the GNU Lesser
General Public License. There are the reference implementa-
tions FUSE examples and a lot of open-source projects such as
GamilFS, SSHFS, and LoggedFS. 

To implement a new filesystem, a user has to first write a
handler program that specifies how the filesystem responds to
read/write/stat requests. This program linked to libfuse library
is also used to mount the filesystem and is registered with the
kernel when the filesystem is mounted. Upon receiving read-
/write/stat requests for the mounted file system, the kernel
forwards them to the handler and sends its response back to
the user-space program that originally made the request. Fig. 1
shows an example of how FUSE works. An ls command to list
files gets redirected by the kernel through VFS to FUSE which
in turn executes the registered handler example on the request
(ls -l /tmp/fuse). example then returns a response back to the
user through FUSE. To achieve this, the callbacks connected to
struct fuse_operations must to be written. 
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In the case of Rcryptect , the writing and deleting functions 
re customized and pointed by write and unlink , respectively.
he details will be explained later. After unmounting the FUSE 
lesystem, the files under the mount point can still be ac- 
essed by the underlying file operations. 

.2. NIST Randomness test suite 

ach test in the NIST randomness test suite includes relevant 
andomness statistics that were formulated to test a null hy- 
othesis (H0) that the sequence to be tested is random. The 
ntropy of binary sequences is tested with respect to the fol- 
owing assumptions: 

• Uniformity: The probability of occurrence of 0 or 1 at any 
point in the sequence to be tested is the same, and each 

occurrence probability is exactly one-half. Then we know 

that the expected number of zeros (or ones) is � /2, where � 
is the length of the sequence. 

• Scalability: Any test that can be applied to a sequence 
can be also applied to a randomly selected subsequence.
If a sequence is random, its subsequence must be ran- 
dom ( Rukhin and others, 2010 ). 

A theoretical reference distribution of a statistic under an 

ssumption of randomness is determined by mathematical 
ethods, and a critical value is selected from this reference dis- 

ribution. For each test, a test statistic value computed on the 
arget binary sequence is compared to the critical value. If this 
alue exceeds the critical value, H0 is rejected; otherwise it is 
ccepted. The level of significance , denoted as α, is the proba- 
ility that the test will conclude that the random sequence 
eing tested is not random. Commonly, α in cryptography is 
bout 0.01 ( Rukhin and others, 2010 ). For example, an α of 0.01 
ndicates that a sequence in 100 random sequences would be 
ejected by the test. The test statistic is used to calculate P- 
alue , a probability that a perfect random number generator 
roduces a less-random sequence than the sequence being 
ested. If P-value = 1, this implies that the sequence appears 
o be perfect random. In this test package, if P-value ≥ α, then 

0 is accepted; otherwise the sequence appears to be non- 
andom. For example, P-value ≥ 0.01 gives us that the sequence 
ould be random with a probability of 99%. 

As pointed out previously, the most basic evidence of non- 
andomness is supplied by the frequency test, often called 

he monobit test. For this reason, this is conducted before 
ny other tests are carried out. This test assesses whether or 
ot the numbers of zeros and ones in the tested sequence 
ppear with approximately the same probability. Our FUSE- 
ased filesystem will use it to distinguish encrypted and non- 
ncrypted bit streams. 

. Real-time detection of cryptographic 
unctions 

e aim to design a real-time solution to detect cryptographic 
unctions and variations in obfuscated binaries. Rather than 

pplying complex policies based on typical behaviors of ran- 
omware and providing a more fine-grained control over 
ackup and restore operations, this proposes a first line of de- 
ense against potentially malicious cryptographic operations.
o achieve it, we perform statistical analysis using the fre- 
uency test on various types of samples to distinguish the en- 
rypted blocks from benign ones. Based on the entropy statis- 
ics, we define a heuristic rule for reducing false positives and 

dapt it to the filesystem. We call our proposed method Rcryp- 
ect and explain how to customize it below. 

.1. Threat model and assumptions 

any crypto-ransomware attacks, including samples used in 

he experiments below ( Section 3.5 ), encrypt files after check- 
ng the whitelist or blacklist of file extensions to prevent the 
ictim’s system from crashing during encryption WannaCry 
eport; Clop report; GandCrab report; JSWorm report; Ran- 
om X report; PXJ report . Based on this fact, we first assume
hat ransomware performs selective encryption on specific file 
ypes, such as text, MP3, JPEG, and ZIP. Above all, it helps to fin-
sh the attack quickly. Even from a business perspective, brute- 
orce encryption, which can destabilize the victim’s system, is 
nnecessary. It is also assumed that the user stores the files of 
hose extensions under the filesystem protected by Rcryptect .
y mirroring the entire filesystem, Rcryptect may counteract 
ansomware attacks encrypting arbitrary files. However, not 
nly does it increase the time required to attack, but it also 
educes the performance of the entire file system. This study 
nly considers attacks and defenses for limited file types and 

reas. 
Second, we assume that the administrator always re- 

ponds appropriately to vertical privilege escalation Privilege 
scalation toward a higher level of permission than the user 
lready has. Therefore, ransomware is supposed to be exe- 
uted with an account of non-root users. Based on this as- 
umption, the root privileges are trusted while the users are 
ot trusted. 



c o m p u t e r s  &  s e c u r i t y  1 1 2  ( 2 0 2 2 )  1 0 2 5 1 2  5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 – Sample size (KB) of the training and testing sets. 

Training Testing 
Average size (s.d) Average size (s.d) 

Text 7.7 (9.9) 7.2 (9.6) 
MP3 7922 (2946) 8557 (3011) 
JPEG 2829 (2814) 2605 (2091) 
ZIP 3695 (3600) 3652 (3323) 

Algorithm 1: Frequency test F . 

Input : buf, size 
Output: γ // high and low entropy signal 

1 α ← 0 . 01 

2 for i ← 0 to size − 1 do 
3 mask ← 0x 80 
4 for j ← 0 to 7 do 
5 if (∗( buf + i ) & mask ) then 

6 num_1s ← num_1s + 1 
7 else 
8 num_0s ← num_0s + 1 
9 end if 

10 mask ← mask � 1 

11 end for 

12 end for 

13 S obs ← | num_0s − num_1s | / √ 

size × 8 
14 P-value ← erfc (S obs / 

√ 

2 ) 

15 if ( P-value < α) then 

16 γ ← 0 // low entropy 
17 else 
18 γ ← 1 // high entropy 
19 end if 

20 return γ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Overview 

Rcryptect protects the files under the mount point in the fol-
lowing ways with respect to writing and deleting. It sets the I/O
size to 64KB, and thus each input/output block is not greater
than 64KB. For every incoming block to be written, Rcryp-
tect measures the entropy using the frequency test. If unen-
crypted, it is less likely that bit streams will appear to be ran-
dom. Based on this fact, the entropy of multiple blocks will be
analyzed to reduce false positives. By analyzing the statistics
of sample blocks, we will distinguish encrypted blocks, which
are called suspicious blocks. Based on the number of times
suspicious blocks appear, Rcryptect will adjust the writing per-
mission. As mentioned earlier, the root account is assumed to
be secure. If Rcryptect aims to defend against attacks by priv-
ilege escalation, the high-entropy writing can be blocked to
both root and non-root users after the first appearance of sus-
picious blocks. In this case, even benign encryption should
be performed outside the Rcryptect filesystem. Our work does
not take privilege escalation into account. Since the original
files can be overwritten by encrypted files or can be deleted
by ransomware, the file deletion is required to be customized.
For this purpose, Rcryptect only allows the file deletion to au-
thorized users once the writing of suspicious blocks takes
place. 

3.3. Statistical analysis of sample blocks 

Among the target file extensions in the whitelist of crypto-
ransomware, we chosen the four sample types: text files with-
out figures, MP3, JPEG, and ZIP. The last three formats are likely
to show relatively high entropy due to the use of statistic mod-
eling techniques to reduce repetitive patterns. In particular,
the MP3 and JPEG formats were chosen to test the entropy of
lossy compression, and the ZIP format was chosen to test the
lossless compression. 

For each type of files, we prepared 1000 files for training and
200 files for testing the entropy. First, we used a python crawler
(newspaper) to collect 1200 articles consisting of more than
1000 characters from BBC, BBC Sports, ABC, CNN, Slate, USA
TODAY, ESPN, and Sky Sports. Second, the MP3 files were 1200
songs of KPOP and POP. Third, we also used a python crawler
(google_images_download) collecting 1200 JPEG files of more
than 10 Megapixels with the following keywords: BTS, Maroon
5, Justin Bieber, Drake, Luke, Michael Jackson, Bruno Mars, Tay-
lor Swift, Billie Eilish, Beatles, Weeknd, and Arian Grande. Un-
like encryption, compression does not dramatically increase
the entropy of an original file. To test ZIP samples of relatively
high entropy, 1200 ZIP files were created by compressing JPEG
files collected in the same way as above using the following
keywords: cloud, flower, forest, mountain, river, rain, sky, sea,
and tree. 

Table 1 shows the average size and standard deviation of
the sample files. After checking the distribution of entropy for
each type without encryption, we will show the increase in en-
tropy after encryption. We analyzed the frequency test results
on each block of the sample files. From the frequency test im-
plementation, which is publicly available on Rukhin and oth-
ers (2010) , we slightly modified (flipped) the return value and
denoted this version by F as shown in Algorithm 1 . F takes
the input bit stream buf of size bytes and returns 0 if P-value <
α (0.01), which means the tested sequence is non-random; the
return value 1 means that the sequence is random. Hereafter,
high-entropy and low-entropy blocks indicate a set of blocks
that returns 1 and 0 from F , respectively. 

Table 2 summarizes the entropy of the samples. P-value
is indicated up to the fourth decimal place. Thus, P-value <
0.0001 is written as 0. The number of high-entropy blocks in
text and MP3 files is less than 1 percent of the total blocks. The
average P-value is less than α. In contrast, in the case of JPEG
and ZIP files, the portion of high-entropy blocks is around 8
percent, but the entropy of some blocks is very large. So the
average P-value is greater than α, and the standard deviation
becomes large. 

Table 3 shows the distribution of the length of consecu-
tive blocks of high entropy for each type of training samples.
Based on the entropy of the training set, we made a simple
rule on the benign files: less than 90% blocks of all 40 consec-
utive blocks in the every type were high entropy. To check its
correctness, we observed the testing set of each type. Table 4
shows the distribution of block entropy in the testing set, and
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Table 2 – Frequency test results on blocks of the sample files. 

Training Testing 

P-value avg. (s.d) High entropy (%) P-value avg. (s.d) High entropy (%) 

Text 0 (0) 0 0 (0) 0 
MP3 0.0002 (0.007) 0.1 0.0001 (0.01) 0.03 
JPEG 0.022 (0.11) 7.4 0.025 (0.11) 7.9 
ZIP 0.027 (0.12) 8.8 0.021 (0.1) 7 

Table 3 – Distribution (%) and the maximum value of the length of consecutive high-entropy blocks in the training set 
(cutting off after the second decimal place). 

Length 

1–5 6–10 11–15 16–20 21–25 26–30 30 - 35 max 

Text 100 - - - - - - 0 
MP3 100 - - - - - - 1 
JPEG 95.55 3.83 0.33 0.16 - 0.05 0.05 31 
ZIP 94.47 3.74 1.17 0.34 0.11 0.07 0.07 34 

Table 4 – Distribution (%) and the maximum value of the length of consecutive high-entropy blocks in the testing set 
(cutting off after the second decimal place). 

Length 

1–5 6–10 11–15 16–20 21–25 26–30 30 - 35 max 

Text 100 - - - - - - 0 
MP3 100 - - - - - - 2 
JPEG 98.14 1.58 0.26 - - - - 14 
ZIP 94.67 4.11 0.96 0.24 0.25 - 19 

Table 5 – Tested cryptographic building blocks. 

Type Primitive 

Block cipher AES-128 
Stream cipher RC4 
Asymmetric cipher RSA-2048 
Hash function SHA-256, MD5 
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here was no 40 consecutive blocks containing more than 36 
igh-entropy blocks. 

Let’s see how entropy changes when the cryptographic al- 
orithms listed in Table 5 are applied. AES is the most well- 
nown block cipher widely used by ransomware to encrypt 
ictim’s files. One of the software benchmarking results shows 
hat AES-128 has the lowest cycle-per-byte count, followed by 
PECK, TWINE, PRESENT, LED, and SIMON that are lightweight 
lock ciphers ( Diehl et al., 2017 ). This means that AES is a fast
nd secure block cipher. RC4 is the stream cipher candidate 
sed by standard network protocols such as wired equiva- 

ent privacy (WEP). This algorithm is optionally used by secure 
hell (SSH), remote desktop protocol (RDP), and Kerberos. RSA,
s an asymmetric cipher, is widely used for digital signatures,
ey exchanges, and encryption. In the case of ransomware,
he secret key used in the block cipher is often protected by 
he attacker’s public key. At last, SHA-256 and MD5 are hash- 
ng algorithms commonly used for the integrity checking in 

arious applications. For these cryptographic algorithms we 
dapted OpenSSL, a general-purpose cryptography library, be- 
ause this provides highly standardized and correct imple- 
entations and is also used by many programmers in prac- 

ice. 
We executed each cryptographic primitive with the train- 

ng set of JPEG files and analyzed the entropy of the output 
locks. As summarized in Table 6 , the listed cryptographic 
rimitives produced blocks with P-value of approximately 0.5,
nd about 99% of the output blocks were evaluated to be 
igh entropy by F . The maximum number of consecutive low- 
ntropy blocks was just 2, but hardly found. The encrypted (or 
igned, hashed) blocks of the corresponding testing set also 
ontained about 99% high-entropy blocks. Here we note that 
hese cryptographic primitives produce high-entropy outputs 
egardless of the entropy of the plaintext (or message) and the 
ecret key. Therefore, this entropy level should be considered 

ot to be significantly affected by the sample. 
By combining the statistics of the original sample blocks,

e made our heuristic rule: if 90% or more of the n consecu-
ive blocks are to be high entropy, the blocks are probably the 
utcome of a cryptographic function. Let m = � n × 0 . 9 � . Consid- 
ring the samples that contain high-entropy blocks, the can- 
idate pair of ( n , m ) includes 

n, m ) ∈ { (40 , 36) , (42 , 38) , . . . , (50 , 45) , . . . } . 
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Table 6 – Frequency test results on encrypted blocks of the sample files. 

Training Testing 

P-value avg. (s.d) High entropy (%) P-value avg. (s.d) High entropy (%) 

AES-128 0.49 (0.28) 98.9 0.49 (0.28) 99 
RSA-2048 0.48 (0.29) 98.7 0.48 (0.28) 98.76 
RC4 0.49 (0.28) 98.9 0.50 (0.28) 99.15 
SHA-256 0.49 (0.28) 99 0.49 (0.28) 98.88 
MD5 0.50 (0.28) 98.9 0.50 (0.29) 98.84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, the larger n , the lower false positives. Let’s call n consec-
utive blocks a window. In our samples, setting the window size
n to 40 could eliminate false positives/negatives for the every
type of files. If it is an IoT-like environment, where only text
or sound data is collected, setting n ∈ [10, 20] may not result in
false positives. 

3.4. Rcryptect implementation 

The FUSE library provides the communication with the socket
and forwards the requests to user-defined functions. This is
accomplished by using the callbacks, customized functions
for each file operation, and by filling fuse_operations , a set of
pointers to the callbacks. A callback function is called by FUSE
when the designated event occurs in the filesystem. For exam-
ple, when a user writes a chunk of data, the callback function
pointed by write will be called. 

Rcryptect customizes write and unlink . The corresponding
callback functions are aptly named Rwrite and Runlink , respec-
tively. When Rcryptect is mounted with the allow_root option,
the user who mounts the filesystem and the root are allowed
to access the filesystem. This will be used as a means of access
control in connection with the writing of suspicious blocks or
the deleting operations. 

Implementing Rwrite . The write function defined in the
fuse_operations structure takes several parameters to write size
bytes from the buffer buf . This data will be written to the off-
set bytes of the file located in path . This returns the number
of the bytes written successfully. Rwrite adds our features to
these basic operations. 

First of all, high-entropy blocks created by cryptographic
operations will be detected by applying the parameters ob-
tained from the statistical analysis. For n = 40 and m = 36,
Rcryptect counts the number of high-entropy blocks that ap-
pear within 40 incoming blocks. Unless the current block
is not the 36th high-entropy block, Rcryptect writes it. If it
is the first time that a window contains the 36th high-
entropy block, Rcryptect enters the stage of suspecting cryp-
tographic operations, in which non-root users cannot com-
plete the writing of the second suspicious blocks. At this
stage, only the user with the root privilege will be allowed
to write the suspicious blocks. If non-root users try to build
the second suspicious blocks, Rcryptect considers it a mali-
cious attack and forces the process to terminate. As a re-
laxed countermeasure, this policy can be modified to allow
the process to write only low-entropy blocks instead of forc-
ing it to terminate. To achieve this strategy, the root can
be confirm by checking uid = 0 and gid = 0, and FUSE gets
the caller uid and gid by fuse_get_context()- > uid and
fuse_get_context()- > gid , respectively. After reaching
the end of a window or detecting suspicious blocks, Rcryp-
tect initializes to count the blocks of the next window and the
number of high-entropy blocks. Through this block-level de-
tection of cryptographic functions, Rcryptect prevents encryp-
tion by crypto-ransomware while allowing encryption by au-
thorized users. 

Fig. 2 shows three examples of incoming blocks to Rwrite .
Suppose the writer is a non-root user. In the first window,
more than 10% of the block elements are low entropy, and
hence Rcryptect initializes the counters for the next window
and high-entropy blocks. In the second window, Rcryptect en-
counters the 36th high-entropy block at the 38th block. This is
the first detection of suspicious blocks. Afterwords, the writ-
ing of suspicious blocks is only allowed to the root user, and
Rcryptect initializes the counters. In the third window, this user
tries to write the 36th high-entropy block again. This process
is now considered to be malicious. 

Implementing Runlink . In the FUSE functions, unlink re-
moves (deletes) the given file, symbolic link, hard link, or
special node. Before entering the stage of suspecting cryp-
tographic operations, the deletion is allowed to the mount
owner and the root users. After entering the stage, the dele-
tion is only allowed for the root users. By doing so, Rcryptect
protects data from ransomware, attempting encryption and
deletion. In addition, if encryption and deletion operations are
suspended, it will be impossible to establish a business model
for ransomware. 

Killing the suspicious process. A non-privileged pro-
cess can be terminated by using kill(pid, SIGKILL)
if it continues to encrypt up to the second suspicious
blocks, where the process ID ( pid ) can be obtained by
fuse_get_context()- > pid . The following experiments
demonstrate how it works against well-known ransomware
samples. Since Rcryptect detects malicious cryptographic func-
tions in the filesystem, the ransomware samples are chosen
based on encryption methods of ransomware. 

3.5. Experimental results 

First, we tested WannaCry WannaCry report , JSWorm JSWorm
report , PXJ PXJ report , and RansomEXX (also known as Ransom
X) RansomExx report , which use a combination of (standard
or customized) AES and RSA encryption. Many modern ran-
somware use the same hybrid encryption. The combination
of key sizes varies slightly from ransomware to ransomware,
but we have previously shown that AES-128 (smallest key size)
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Fig. 2 – Examples of incoming blocks in Rwrite . H: high-entropy block; L: low-entropy block. 

Fig. 3 – Brief description of the encryption by RansomEXX. Gray circle: incomplete writing of ! TXDOT_READ_ME ! . 

g
k
d  

w
F
s
a
c
i
g
a
w
c

p
r
w
e
t  

I
c
1
p
r
W

l
t
n
t  

i  

i
W  

O
d
fi
e
t

t
i
v
w
e
fi
f
p
a
n
t

uarantees high entropy. In particular, RansomEXX is the well- 
nown ransomware used by criminals to attack both Win- 
ows and Linux environments explained in Section 1 . Next,
e executed Clop Clop report on our filesystem. It appeared in 

ebruary 2019 and targeted companies with Active Directory 
ervers, not individuals. This ransomware encrypts with RC4 
nd protects keys with RSA-1024. Finally, we selected Gand- 
rab v5 GandCrab report; GandCrab victims , which appeared 

n January 2018, in order to test ransomware using crypto- 
raphic algorithms not covered by Table 5 . This is Ransomware 
s a Service (RaaS), which has infected over 500,000 victims 
orld-wide and uses a customized Salsa20 algorithm to en- 

rypt files and RSA-2048 to conceal the key. 
A new set of sample files (five for each type) has been 

laced under the Downloads directory for easy detection by 
ansomware during file scanning. The average size of the files 
as 2.4 MB. If ransomware overwrites the original files, the 

xpected loss of files is then approximately three, considering 
hat some encryption can start from the center of the window.
n the case of partial encryption, the number of losses can in- 
rease. The ransomware binaries were executed on Ubuntu 

8.04 by using Wine WineHQ home page , an open-source com- 
atibility layer that enables Unix-like operating systems to 
un Windows applications. Indeed, this is one of the ways the 

indows-based ransomware invades Unix-based systems. 
While scanning, WannaCry skips over files and folders re- 
ated to binaries, libraries, and their attack because it aims 
o encrypt user data. After finishing the configuration, Wan- 
aCry began to encrypt a text file by which Rcryptect has en- 

ered the stage of suspecting cryptographic operations. Next,
t encrypted an image file and was finally killed by Rcryptect . It
s noteworthy that the original files were not deleted because 

annaCry was terminated before the attack was completed.
f course, even if WannaCry tried, the file would not have been 

eleted because it did not have permission to delete. JSWorm 

rst encrypted two files and then forced to terminate while 
ncrypting the next file. PXJ was also killed while encrypting 
he third target file. 

When testing RansomEXX, four files were encrypted, and 

wo files were corrupted before its termination. As illustrated 

n Fig. 3 , approximately one-third of the first window was de- 
oted to writing low-entropy blocks for attack setup; the first 
indow becomes low entropy. RansomEXX conducted two file 

ncryption in parallel and encrypted only the first 1MB of each 

le. For optimization, ransomware often encrypts only the first 
ew K/M bytes of large files. The first suspicious blocks ap- 
eared while encrypting the third and fourth files. The fifth 

nd sixth files were not encrypted completely, but the begin- 
ing parts were corrupted by RansomEXX, which overwrites 

he original files. 
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Table 7 – Increase in the time for writing on Rcryptect . 

Elapsed time increase (%) 

Text 12.3 
MP3 15.1 
JPEG 15.3 
ZIP 12.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clop, which started encrypting files at 3/4 of a window, cre-
ated the first suspicious blocks in the next window. At this
point, encryption of the first file was not complete, and unau-
thorized users were unable to delete files. In the next window,
the first file was encrypted, and ransomware was forcibly ter-
minated in the process of encrypting the second file. Since it
created a copy to be encrypted, the original files remained in-
tact. In the case of Gandcrab v5, if an Internet connection is
not provided, it is deleted by itself. Unlike RansomEXX con-
ducting partial encryption for all types, Gandcrab v5 fully en-
crypted the first text file (approx. 2.4MB). While encrypting the
first file, it entered the stage of suspecting cryptographic oper-
ations. The following window finished this encryption which
overwrites the original file. The deletion operation was not in-
volved. The second file was an MP3 file, and only the first 1MB
part was encrypted. The ransomware was then forcibly termi-
nated, encrypting the third file. 

To put it simply, approximately 3 - 6 files were fully or par-
tially corrupted when overwriting the original file with en-
crypted data, while no file loss occurred when creating an en-
crypted copy and erasing the original file. Considering the size
of the encrypted blocks, it lost approximately less than 6MB. 

3.6. Overhead 

So far, we have proposed Rcryptect to mitigate ran-
somware attacks in the user-space filesystem. According
to Vangoor et al. (2017) , the performance of a FUSE-based
filesystem is dependent on storage devices and FUSE config-
urations. In the case of writing, the performance is known
to be degraded by less than 5%. The performance of write
workloads on SSDs may improve in some cases. 

When writing each type of samples on the proposed
filesystem ( n = 40) using 3.4GHz Core and 4GB RAM, the delays
are shown in Table 7 . The writing time was increased by about
10–15%, compared to a naive FUSE filesystem. This overhead
was similar on other platforms including macOS and Win-
Table 8 – Comparison of Rcryptect with existing research work. T
Kirda (2017) ; Tang et al. (2020) are extracted from the respective

Rcryptect ShieldFS 
Continella et al. (2016) 

Kernel updates No Yes 
OS dependency No Yes 
Target activity Filesystem Filesystem 

Loss of data/files 3 0 
Bypass possibility Yes Yes 
Overhead 13% 30 - 380% 
dows 10. There was no noticeable proportional or inversely
proportional relationship when changing n in the range of 30
- 50. The entropy level of each type does not also seem to have
an impact on the overhead. 

Table 8 shows the comparison results with existing work
based on behavioral monitor introduced in Section 1 . Like
Rcryptect , ShieldFS and Redemption are end-point solutions
whereas Ransomspector is one of VMI-based inspectors. The
main advantages of Rcryptect are that it does not require ker-
nel modification and can be easily applied to a variety of oper-
ating systems. In comparison, the other methods require en-
gineering efforts (redesign or development) to apply them to
different platforms. Note that the median (average) loss of files
from Rcryptect includes the partially corrupted files. ShieldFS
and Redemption provide minimal data loss using data back-
ups. The overhead indicates how slow the performance of
the filesystem has been due to the use of each solution. Our
method imposes overhead only on write operations on the
FUSE file system. When it comes to performance metrics in
VMI environments ( Tang et al., 2020 ), it should be considered
that the guest OS is bound to have inherently slow perfor-
mance. According to Zhang et al. (2010) , the throughput of
sequential block writes on the kernel-based virtual machine
(KVM) turns out to be only about a half compared to the na-
tive machine. On the other hand, our work is not dependent
on a virtual environment. Importantly, there is little or no per-
formance degradation by FUSE in SSD-enabled environments.
The downsides of Rcryptect are that it does not provide full
data recovery and can be vulnerable when the root privilege
is stolen. 

4. Discussion 

Attack variant. Ransomware attackers can make a variant in
order to mitigate the protection of Rcryptect . For example, low-
entropy cryptographic primitives may be chosen to bypass
entropy-based detection. It should be noted that low-entropy
primitives do not imply lightweight ones ( Isa and Z’aba, 2012;
Isa and Z’aba, 2014; Risqi and Windarta, 2017 ). Because reduc-
ing the entropy of the ciphertext also means that encrypted
files are more likely to be recovered over time, an attacker will
not be able to significantly lower the entropy of ciphertexts.
Another possibility is to encrypt only certain parts of the file
or pad low-entropy blocks at certain intervals. This variant
can be detected with high probability by checking if the high-
entropy block appears t times at a certain offset of the win-
he numbers shown for Continella et al. (2016) ; Kharraz and 

 papers. 

Redemption 

Kharraz and Kirda (2017) 
Ransomspector 
Tang et al. (2020) 

Yes No 
Yes Yes 
Filesystem Filesystem & Network 
0 2.67 
Yes Difficult 
3 - 9% 4.96% + KVM overhead 
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ows. However, it takes longer to detect. In the experiments 
bove, such partial encryption overwrites the front part of the 
riginal files. As a result, only encrypted blocks were written 

onsecutively in windows, making them “suspicious blocks”. 
False positive. There may be a false positive problem that 

enign write workloads of applications can be considered ma- 
icious. Since the proposed method takes parameters obtained 

rom heuristic analysis of training and testing samples, it may 
ndicate false positives for benign blocks with high entropy 
hat were not found in our samples. For example, if a portion 

f a compressed file includes two or more windows consisting 
f 36 or more high-entropy blocks, it results in false positives.
ne of the simple solutions is to increase n , e.g., n = 50 or 60.
ased on the ratio and density of high entropy in the benign 

locks shown in Table 2 - 4 , the parameters ( n, m ) = (60, 54) will
educe the probability of false positives compared to (40, 36).
dditionally, based on our statistical analysis, the heuristic 

ule is still valid even if we increase the size of m a little more
han � n × 0 . 9 � . This is because the standard cryptographic al- 
orithms guarantee nearly 99% of high-entropy blocks. For ex- 
mple, the parameter set (60, 56) may detect encrypted blocks 
hile reducing false positives. Of course, the drawback is an 

ncreased time required for detection. 
Loss of the first few files. As shown in the experiments,

ome files can be damaged before Rcryptect terminates ran- 
omware. There are two main reasons. First, Rcryptect sets the 
/O block size to 64KB in order to reduce the number of file 
ccesses. Based on scalability of the frequency test described 

n Section 2 , a block size of 4KB probably results in the simi-
ar level of entropy on the output blocks of cryptographic al- 
orithms. Thus, the use of 4KB blocks and small n can con- 
ribute to an early detection. Since it requires to use the root 
ccount for benign writing operations, this does not seem to 
e practical. Next, the second appearance of suspicious blocks 
etermines whether the process is ransomware. The first ap- 
earance is currently an intermediate stage to make a careful 
ecision. To reduce the loss of files, Rcryptect can make an early 
ecision on the first suspicious blocks. 

IoT. Our method can be effective to low-cost devices in 

he consideration of ransomware threats in Internet of Things 
IoT) context ( Humayun et al., 2020; Zahra and Shah, 2017; 
ahra and Ahsan Chishti, 2019 ). Since low-cost IoT devices 
ay have security flaws, ransomware will have catastrophic 

mpacts that not only result in financial losses but also privacy 
iolations and life risks. Because IoT data is periodically trans- 
itted to the cloud storage there is not much incentive to pay 

o recover data that has already been backed up. However, ran- 
omware is still notorious due to the characteristics of the IoT.
or limited resources and computing power, real-time data is 
ransmitted to the cloud at pre-defined time intervals from 

inutes to days Amano et al., 2020; IoT transmission interval,
020 . Without full-fledged protection against various threats,
he interval can a security hole. 

Fortunately, the IoT device has only a few missions, so it is 
elatively easy to manage the files by observing a few areas of 
he filesystem. Currently, it is not common to encrypt all data 
artly because they are implemented cheaply and also partly 
ue to the lack of computing power. For this reason, most IoT 

evices collect sensing data in the filesystem without encryp- 
ion and periodically send to the cloud over secure channels.
rom this real-world perspective, the detection of unautho- 
ized cryptographic functions in the filesystem of IoT devices 
eads, with high probability, to the protection of ransomware. 

. Conclusion and future work 

here is a need for a first line of defense that can be easily ap-
lied before the files are lost due to indiscriminate attacks by 
ansomware. In summary, we propose Rcryptect , a FUSE-based 

lesystem that examines the entropy of blocks to detect cryp- 
ographic operations in ransomware. With the frequency test 
efined in the NIST randomness test suite, we test whether 
r not a set of blocks has problematic entropy larger than the 
hreshold. Because some compressed type of files may show 

elatively high entropy, multiple blocks are analyzed to make 
 right decision. Based on our experimental results, Rcryptect 
an detect cryptographic functions by using suspicious blocks 
uch that 90% or more of n consecutive blocks appear to be 
igh entropy. After the first detection of suspicious blocks,
on-root users are not allowed to write the next suspicious 
locks, and only the root user can execute the file deletion. We 
emonstrate that Rcryptect can detect and prevent the well- 
nown ransomware. This can be applied to various platform 

ithout installing kernel update, and the additional cost is ap- 
roximately a 13% increase of the writing time in the filesys- 
em. 

In addition to detection, an in-depth analysis sometimes 
equires identification of cryptographic functions. However,
ur experimental result indicates that the modern crypto- 
raphic functions produce the similar level of entropy on the 
utput. For this reason, it cannot identify the cryptographic 
lgorithm inside ransomware. Our future work is possibly to 
ombine a set of indicators of well-known ransomware be- 
aviors in order to distinguish benign cryptographic functions 

rom malicious ransomware. 
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