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Abstract

Due to the limited availability of anomaly examples,

video anomaly detection is often seen as one-class classi-

fication (OCC) problem. A popular way to tackle this prob-

lem is by utilizing an autoencoder (AE) trained only on nor-

mal data. At test time, the AE is then expected to reconstruct

the normal input well while reconstructing the anomalies

poorly. However, several studies show that, even with nor-

mal data only training, AEs can often start reconstruct-

ing anomalies as well which depletes their anomaly detec-

tion performance. To mitigate this, we propose a temporal

pseudo anomaly synthesizer that generates fake-anomalies

using only normal data. An AE is then trained to maximize

the reconstruction loss on pseudo anomalies while minimiz-

ing this loss on normal data. This way, the AE is encour-

aged to produce distinguishable reconstructions for normal

and anomalous frames. Extensive experiments and anal-

ysis on three challenging video anomaly datasets demon-

strate the effectiveness of our approach to improve the basic

AEs in achieving superiority against several existing state-

of-the-art models.

1. Introduction

Anomaly detection in video sequences has recently at-

tracted significant attention because of its importance in

surveillance systems [37, 41, 18, 4, 16, 21, 19, 1, 46]. As

anomalous events occur rarely in real-life situations and col-

lecting plenty of anomalous examples can be cumbersome,

this task is extremely challenging. Therefore, anomaly de-

tection is often seen as one-class classification (OCC) prob-

lem in which only normal data is used to train a novelty

detection model [7, 18, 4, 35, 39, 17, 14]. At test time, the

events that do not conform to the learned representations are

considered anomalous.

One common way to tackle the OCC problem is by using

a deep autoencoder (AE) [8, 45, 39, 4, 21, 29, 20, 35, 7]. By

training to minimize reconstruction error on normal data,

the model is encouraged to extract the features represent-

ing normal data in its latent space. This way, at test time,

the network is expected to poorly reconstruct the anoma-

lous cases. However, as previously observed by several

researchers [47, 26, 39], AEs can also often successfully

reconstruct anomalous examples. In such cases, the re-

construction loss between normal and anomalous data may

not be discriminative enough to successfully identify the

anomalies.

Recently, a new addition to the field of OCC is the idea

of utilizing pseudo anomalies generated from the normal

training data. For example, Zaheer et al. [39] fuse two

random images from normal data to generate appearance

anomalies and use them to train an image classifier. How-

ever, this work needs old and new states of the reconstruc-

tor and trains in a two-phase scheme. Furthermore, the ap-

proach is limited to appearance and does not consider any

temporal information for anomaly detection. On the con-

trary, our work proposes a simple yet highly effective tem-

poral pseudo anomaly synthesizer to assist the training of an

AE in an end-to-end fashion without any bells and whistles.

For each pseudo anomaly example as input, our AE model

is trained to produce high reconstruction loss. This helps

in limiting the capability of AE to reconstruct anomalies at

test time.

We owe the inspiration of our approach to the intuition

that detecting fast or suddenly changing motion is signifi-

cantly important and closely related to detecting anomalies.

For example, it is a common observation that animals of-

ten associate strong motion with dangerous situations [6].

The case is similar for humans as well. For instance, people

running unusually may indicate life-threatening situations

nearby, such as fires [11, 5] or natural disasters [9, 15].

Moreover, fights or robberies may also be characterized

by sudden strong motions. Some other examples may in-

clude riding bikes or vehicles on pedestrian sidewalks, over-

speeding vehicles, etc. [2, 36, 27]. Therefore, we hypothe-

size that most of the anomalous events can be characterized

by the motion depicted.

To this end, we propose a temporal pseudo anomaly syn-

thesizer that injects synthesized anomaly examples into the

1207



Frame 1

Frame 1

Frame 1

Frame 2

Frame 2

Frame 3

Frame 3

Frame 3

Frame 5

Frame 4

Frame 4

Frame 7

Frame 5

Frame 5

Frame 9

N
o

rm
al

P
se

u
d

o
 

an
o

m
al

y
A

n
o

m
al

y

(a)

(b)

(c)

Figure 1. Visualization of normal, anomalous, and pseudo anoma-

lous frames. Given red lines as reference, (a) shows a normal

movement pattern in which humans are walking in a usual pace.

(b) shows an anomalous movement, i.e. the anomalous object

almost completely crosses the reference line within few frames.

(c) shows the output of our pseudo anomaly synthesizer generated

from normal frames which mimics anomalous movements.

training of an AE. To simulate anomalous movements from

normal data, we arbitrarily skip few frames to generate

pseudo anomaly sequences as shown in Fig. 1. The over-

all training is then carried out to minimize the reconstruc-

tion loss of normal data while maximizing the reconstruc-

tion loss of synthesized anomaly data. Note that, unlike

existing motion tracking based anomaly detection meth-

ods [3, 32, 43, 24], our approach does not extract any

handpicked motion information. Rather, by complement-

ing a temporal pseudo anomaly synthesizer with a deep

AE, we harness the power of deep learning to detect a va-

riety of anomalous activities inside videos. Our extensive

experiments and analysis demonstrate the superior capabil-

ity of our approach in three challenging anomaly detection

datasets, i.e. Ped2 [16], Avenue [19], and ShanghaiTech

[21].

In summary, the contributions of this paper are as fol-

lows: 1) We propose to train one-class classifiers with the

assistance of temporal pseudo anomaly synthesizer to pro-

duce highly discriminative normal and anomalous recon-

structions. 2) Extensive experiments demonstrate the su-

periority of our method compared to a wide range of exist-

ing state-of-the-art (SOTA) works [12, 25, 22, 19, 44, 33, 8,

45, 20, 21, 34, 39, 1, 4, 18, 7, 29, 10] on three benchmark

datasets.

2. Related Work

Since it is not easy to obtain anomaly examples [31], a

popular approach for anomaly detection is one-class classi-

fication (OCC) in which the training is carried out using

only normal data. Several works train a one-class clas-

sifier using the features extracted through object trackers

[3, 24, 32, 43]. However, such handpicked features can of-

ten limit the generalization capability of the network on dif-

ferent kinds of activities.

With the recent popularity of deep learning, several re-

searchers [8, 45, 39, 4, 28, 21, 29, 20, 35, 7] utilize au-

toencoder (AE) based networks to learn normal data rep-

resentations. An AE is trained only on normal data for

reconstruction [7, 29, 8, 45, 35, 39] or prediction [29, 18]

tasks. At test time, the model is expected to produce poor

reconstructions of anomalous data, which correspond to

high anomaly scores. Some AE based approaches use ap-

pearance information only [35, 39] while several others use

both appearance and motion information [45, 4, 8, 28, 20].

However, AEs can often reconstruct anomalous data as well

[47, 26, 39]. Consequently, normal and anomalous data be-

come less distinguishable.

Several attempts have been made to limit the reconstruc-

tion capability of an AE on anomalous data. Memory-based

networks [7, 29] employ a memory mechanism over the la-

tent space between the encoder and the decoder of an AE.

The network is restricted to use only the memorized nor-

malcy definitions which limits its capability to reconstruct

anomalous data. However, such networks are highly depen-

dent on the memory size and a small-sized memory may

also limit their normal data reconstruction capability. In our

approach, we also attempt to limit the reconstruction capa-

bility of an AE on anomalous inputs. However, instead of

using a memory network, we utilize a pseudo anomaly syn-

thesizer to generate fake anomaly examples and encourage

the AE to produce high reconstruction loss on these exam-

ples.

The most related to our work is OGNet [39], which fuses

normal images to generate appearance anomalies and train

the network using both normal and fake anomaly examples.

Moreover, OGNet requires a two-phase adversarial training

scheme in which a discriminator is trained based on two

previously frozen generator models. On the other hand, our

approach of synthesizing anomalies is substantially differ-

ent. We propose to utilize temporal information rather than

appearance to synthesize anomalies. Moreover, our method

is end-to-end trainable and complements the conventional

training of an AE.

In order to enhance the discrimination of normal and

anomalous data, some researchers [26, 38, 41, 40, 46, 42,

37] propose to deviate from the fundamental definition of

OCC by using real anomaly examples during training. Our

method on the other hand utilizes only normal data to syn-

thesize pseudo anomaly examples for training, thus follow-

ing the conventional OCC protocol.

3. Methodology

In this section, we present our proposed STEAL

(Synthetic TEmporal AnomaLy guided end-to-end video

anomaly detection) network. Due to the unavailability of
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Figure 2. Our approach trains an autoencoder using normal as well as pseudo anomaly sequences. Pseudo anomalies are synthesized using

normal data only. The quantity of pseudo anomaly examples is regulated by the probability p. The overall configuration is trained to reduce

the reconstruction loss for normal inputs while increasing it for pseudo anomaly inputs.

anomalous examples during training, most of the AE based

anomaly detection approaches often fail to discriminate

anomalies from normal data at test time. Therefore, we

propose the utilization of fake anomaly examples, that are

generated by our pseudo anomaly synthesizer using only

normal training videos, to enhance the performance of AEs.

3.1. Architecture

Our overall architecture is shown in Fig. 2. We train a

conventional AE as our baseline, which takes a sequence of

normal frames as input and produces its reconstruction as

output. To complement the baseline training, we propose

a pseudo anomaly synthesizer that generates fake anomaly

examples. These examples are then used for training with

a probability p. This way, we limit the reconstruction capa-

bility of the AE by forcing it to increase the reconstruction

loss on these fake anomaly examples. Finally, the anomaly

score is computed using the frame-level reconstruction loss.

Each component of our architecture is discussed next:

3.1.1 Autoencoder

In order to capture robust representations, autoencoders

(AE) are often designed to take multi-frame inputs [7, 29,

8, 45]. Therefore, we set our AE model to take X as input

of size T × C × H × W , where T , C, H , and W are the

number of frames in the input sequence, number of chan-

nels, height of frames, and width of frames, respectively.

The reconstruction X̂ is then given as:

X̂ = D(E(X)), (1)

where E and D are the encoder and the decoder of our

model, respectively.

Conventionally, an AE is trained to reconstruct using

only normal data in the training set. At test time, it is

expected to well reconstruct the normal data while poorly

reconstruct the anomalous examples. However, this is not

always the case. AEs can often “generalize” too well and

reconstruct anomalous examples as well [47, 26, 39]. As

there are no anomaly examples utilized in the training time,

it can be difficult to train a reconstruction based anomaly

detection model [39]. To mitigate this problem, we pro-

pose a pseudo anomaly synthesizer that can provide fake

anomaly examples. These examples are then used to re-

strain the generation capability of the AE and encourage it

to produce high reconstruction loss on any kind of anoma-

lous inputs.

During training, a sequence of video frames X is given

to the network as:

X =

{

XN with probability 1− p,

XP with probability p,
(2)

where XP is a sequence of frames generated using our pro-

posed pseudo anomaly synthesizer, XN is a sequence of

frames from normal training data, and p is the probabil-

ity that defines the ratio of pseudo anomaly examples used.

Note that the pseudo anomalies are only introduced during

training. At test time, we simply input the original sequence

of video frames to AE.

3.1.2 Temporal Pseudo Anomaly Synthesizer

In our proposed approach, we follow the OCC protocols

by utilizing only normal data to carry out the training.

Therefore, in order to generate temporal pseudo anomalies,

we utilize the normal training videos only. Similar to the

common practices in training a conventional AE [8, 29],
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we extract sequences of frames XN from a training video

Vi = {I1, I2, ..., IKi
} of length Ki frames by randomly

selecting a frame index n from Vi and then taking a fixed

number of consecutive T frames thereafter, as described:

XN = (In, In+1, ..., In+T−1)

= (In+t)0≤t<T,n+T−1≤Ki
.

(3)

On the other hand, pseudo anomalies XP are synthesized

by introducing a skip frame parameter s to Eq. (3) as:

XP = (In, In+s, ..., In+(T−1)s)

= (In+ts)0≤t<T,n+(T−1)s≤Ki,s>1.
(4)

The skip frame parameter s controls the number of frames

we skip to generate temporal pseudo anomaly examples. An

example pseudo anomaly sequence with s = 2 is visualized

in Fig. 1(c).

3.2. Training

In order to learn normal representations, a conventional

AE is trained on XN by minimizing reconstruction loss be-

tween the input frame In+t and its reconstruction În+t as

follows:

LN =
1

T × C ×H ×W

T−1
∑

t=0

∥

∥

∥
În+t − In+t

∥

∥

∥

2

F
, (5)

where ∥.∥F means Frobenius norm.

For XP generated by our temporal pseudo anomaly syn-

thesizer, the loss can be similarly defined as:

LP = −
1

T × C ×H ×W

T−1
∑

t=0

∥

∥

∥
În+ts − In+ts

∥

∥

∥

2

F
. (6)

Note the negative sign in Eq. (6), which is introduced to in-

crease the reconstruction loss of pseudo anomaly examples.

This helps in limiting the reconstruction capability of our

AE on anomalous inputs.

Then, the overall loss L for training takes the form:

L =

{

LN if X = XN ,

LP if X = XP .
(7)

3.3. Anomaly Score

At test time, concurrent to the existing approaches [7,

29, 18, 8, 45, 39, 41], we predict anomaly scores at frame

level. Moreover, we compute these scores by utilizing the

reconstruction based Peak Signal to Noise Ratio (PSNR).

According to Mathieu et al. [23], PSNR is often a better

assessment of image quality than the reconstruction loss it-

self. Recently, it has also been utilized in anomaly detec-

tion [29, 18] where PSNR between an input frame and its

reconstruction is used to calculate the anomaly score. In our

approach, we compute PSNR Pt as:

Pt = 10 log10
[M

Ît
]2

1
R

∥

∥

∥
Ît − It

∥

∥

∥

2

F

, (8)

where R is the total number of pixels in Ît, t is the frame

index, and M
Ît

is the maximum possible value of Ît.

Then, following [29, 18], we normalize the PSNR value

to the range of [0, 1] by a min-max normalization over all

the frames in a test video Vi as follows:

Qt =
Pt −mint(Pt)

maxt(Pt)−mint(Pt)
, (9)

where t is the frame index of Vi. In Eq. (9), a higher Qt

represents lower reconstruction loss compared to the other

frames in Vi and vice versa. Therefore, we calculate the

final anomaly score At as:

At = 1−Qt. (10)

4. Experiments

4.1. Datasets

We evaluate our approach on three widely popular video

anomaly detection datasets, i.e. Ped2 [16], Avenue [19],

and ShanghaiTech [21]. We utilize the standard division of

the datasets in which training splits consist of only normal

videos. Whereas, every video in each of the test sets con-

tains one or more anomalous portions.

Ped2. This dataset consists of 16 training and 12 test videos

[16]. Pedestrians dominate most of the normal frames

whereas anomalies include bikes, carts, or skateboards.

Avenue. This dataset contains 16 training and 21 test videos

[19]. Anomalies include abnormal objects such as bikes

and abnormal actions of humans such as unusual walking

directions, running, or throwing stuff.

ShanghaiTech. This is by far the largest one-class anomaly

detection dataset [21]. It consists of 330 training and 107

test videos. The dataset is recorded at 13 different locations

having complex lighting conditions and camera angles. In

total, the test videos contain 130 anomalous events includ-

ing running, riding bicycle, and fighting.

4.2. Experimental Setup

Evaluation criteria. To evaluate our approach, we follow

the widely popular frame-level area under the ROC curve

(AUC) metric [12, 25, 22, 19, 44, 33, 8, 45, 20, 21, 34, 39, 1,

4, 18, 7, 29, 10]. The ROC curve is obtained by varying the

threshold of anomaly scores to plot false and true positive

rates across the whole test set of each dataset. Higher AUC

values represent more accurate results.
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Parameters and implementation details. We adopt a gen-

erative architecture recently proposed by Gong et al. [7] as

our baseline that takes an input sequence X (Eq. (1)) of

size 16 × 1 × 256 × 256 and produces its reconstruction

of the same size. All 16 frames are used for computing the

reconstruction loss during training (Eq. (5) - (6)). At test

time, following [7], only 9th frame out of the 16 frames is

considered for anomaly score calculation (Eq. (8) - (10)).

However, differently from the original implementation, we

remove the memory network and utilize only the autoen-

coder part. Furthermore, we add Tanh output layer to have

the output range of [−1, 1].
The implementation of STEAL Net and the baseline is

done in PyTorch [30]. The training is carried out using

Adam [13] with a learning rate of 10−4 and the batch size

is set to 4. The skip frame parameter s in Eq. (4) is set to

{2, 3, 4, 5}, which means s can be randomly selected as 2,

3, 4, 5 each time we generate a pseudo anomaly sequence.

The probability p for pseudo anomaly in Eq. (2) is set to

0.01. The baseline in our results refer to the model trained

without pseudo anomalies, i.e. the probability p in Eq. (2)

is set to 0.

4.3. Quantitative Results

Table 1 shows the AUC comparisons of our proposed

STEAL Net on Ped2 [16], Avenue [19], and ShanghaiTech

[21] datasets. Our approach yields better performance than

the baseline on all three datasets. Specifically, our approach

demonstrates an absolute gain of 5.9%, 5.6%, and 2.4%
AUC on Ped2, Avenue, and ShanghaiTech datasets respec-

tively. This shows that our approach successfully improves

the capability of the baselines on several diverse datasets.

Comparing the performance with existing approaches,

we achieve superior performances on all three datasets. Al-

though MNAD-Prediction [29] achieves better performance

on Avenue compared to our method, its superiority may

be attributed to different base architecture as well as train-

ing settings, i.e., prediction task. Nevertheless, compared

with MNAD-Reconstruction, which has a similar base ar-

chitecture as ours and performs the same task of reconstruc-

tion, our model yields noticeably better performance, thus

demonstrating the superiority of our approach.

Overall, the superior performance of STEAL Net vali-

dates our hypothesis that several different kinds of anoma-

lies may be characterized by the motions present within.

Therefore, by utilizing a temporal pseudo anomaly synthe-

sizer, we unleash the potential of a deep autoencoder for

more accurate anomaly detection.

4.4. Qualitative Results

Input images and the comparisons of their reconstruc-

tions produced by STEAL Net and the baseline are shown

in the first three columns of Fig. 3. In addition, reconstruc-

Table 1. AUC performance comparison of our approach with sev-

eral SOTA methods on Ped2, Avenue (Ave), and ShanghaiTech

(Sh). Best performances in each dataset are highlighted as bold

whereas second best are highlighted as underlined.

Methods Ped2 [16] Ave [19] Sh [21]

MPPCA [12] 69.3% - -

MPPC+SFA [12] 61.3% - -

Mehran et al. [25] 55.6% - -

MDT [22] 82.9% - -

Lu et al. [19] - 80.9% -

LSHF [44] 91.0% - -

Ramachandra and Jones [33] 88.3% 72.0% -

AE-Conv2D [8] 85.0% 80.0% 60.9%

AE-Conv3D [45] 91.2% 77.1% -

AE-ConvLSTM [20] 88.1% 77.0% -

TSC [21] 91.0% 80.6% 67.9%

StackRNN [21] 92.2% 81.7% 68.0%

AbnormalGAN [34] 93.5% - -

OGNet [39] 98.1% - -

LSA [1] 95.4% - 72.5%

Cluster AE [4] 96.5% 86.0% 73.3%

Frame-Pred [18] 95.4% 85.1% 72.8%

MemAE [7] 94.1% 83.3% 71.2%

MNAD-Prediction [29] 97.0% 88.5% 70.5%

MNAD-Recontruction [29] 90.2% 82.8% 69.8%

TAM-Net [10] 98.1% 78.3% -

Baseline 92.5% 81.5% 71.3%

STEAL Net 98.4% 87.1% 73.7%

(a)

(b)

(c)

Input frame𝐼𝑡 Recon. መ𝐼𝑡
(STEAL Net)

Recon. error

(STEAL Net)

Recon. መ𝐼𝑡
(baseline)

Recon. error

(baseline)

Figure 3. Reconstruction comparison between our approach and

the baseline on normal and anomalous frames from Ped2, Avenue,

and ShanghaiTech datasets. Our approach specifically attempts to

distort the anomalous objects thus producing more discrimination.

Anomaly ground truths are marked as red boxes.

tion error heat maps are visualized in the last two columns.

These heat maps are generated by computing the squared

error of each pixel between the reconstruction and the in-

put frame followed by min-max normalization. As our ap-

proach is specifically trained to produce high reconstruc-

tion loss on anomalous inputs, it consequently attempts to

satisfy this condition by distorting the anomalous regions.

On the other hand, concurrent with the reports in several

research works [47, 26, 39], the baseline reconstructs the
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anomalies well, thus often failing to produce noticeable dis-

crimination.

5. Conclusion

We proposed the utilization of pseudo anomalies, that

are generated using only normal data, to assist the training

of an autoencoder (AE) for video anomaly detection. In ad-

dition to the conventional training of AEs where a network

only attempts to minimize reconstruction error on inputs,

we further encourage the network to maximize this loss on

pseudo anomalies. The effectiveness of our approach in

complementing the AEs to achieve superiority against sev-

eral existing state-of-the-art models is extensively analyzed

on three challenging video anomaly datasets.
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