
OR I G I NAL ART I C L E

DG-based SPO tuple recognition using self-attention M-Bi-
LSTM

Joon-young Jung

Artificial Intelligence Research
Laboratory, Electronics and
Telecommunications Research Institute,
Daejeon, Republic of Korea

Correspondence
Joon-young Jung, Artificial Intelligence
Research Laboratory, Electronics and
Telecommunications Research Institute,
Daejeon, Republic of Korea.
Email: jyjung21@etri.re.kr

Funding information
Electronics and Telecommunications
Research Institute, Grant/Award Number:
21ZS1100

Abstract

This study proposes a dependency grammar-based self-attention multilayered

bidirectional long short-term memory (DG-M-Bi-LSTM) model for subject–
predicate–object (SPO) tuple recognition from natural language

(NL) sentences. To add recent knowledge to the knowledge base autono-

mously, it is essential to extract knowledge from numerous NL data. Therefore,

this study proposes a high-accuracy SPO tuple recognition model that requires

a small amount of learning data to extract knowledge from NL sentences. The

accuracy of SPO tuple recognition using DG-M-Bi-LSTM is compared with that

using NL-based self-attention multilayered bidirectional LSTM, DG-based bidi-

rectional encoder representations from transformers (BERT), and NL-based

BERT to evaluate its effectiveness. The DG-M-Bi-LSTM model achieves the

best results in terms of recognition accuracy for extracting SPO tuples from NL

sentences even if it has fewer deep neural network (DNN) parameters than

BERT. In particular, its accuracy is better than that of BERT when the learning

data are limited. Additionally, its pretrained DNN parameters can be applied

to other domains because it learns the structural relations in NL sentences.

KEYWORD S
dependency grammar, information extraction, long short-term memory, SPO tuple

1 | INTRODUCTION

There is a large amount of information on the Internet,
and large-scale knowledge bases (KBs), such as DBpedia
[1], Wikidata [2], and Yago [3], have been built using this
information. These KBs are used in artificial intelligence
research, including natural language processing (NLP).
However, it is not easy to expand knowledge because the
cost and effort required to expand new knowledge manu-
ally are high. Because these KBs need to be expanded to
include new knowledge, despite the difficulty, research
on KB expansion at low cost has been conducted [4–6].

To add new knowledge to KBs at a low cost, KBs
should autonomously expand its knowledge. It is neces-
sary to extract knowledge from newly created data and
expand a KB with the extracted knowledge for autono-
mous knowledge growth. Therefore, it is essential to
extract knowledge from several data for autonomous
knowledge growth.

To extract knowledge from several data, it is neces-
sary to extract knowledge from structured and unstruc-
tured data. Because knowledge can effectively be
extracted from structured data, research has been con-
ducted to extract knowledge from such data [7–9].

Received: 7 December 2020 Revised: 8 July 2021 Accepted: 23 August 2021

DOI: 10.4218/etrij.2020-0460

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition +

Change Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).

1225-6463/$ © 2021 ETRI

ETRI Journal. 2021;1–12. wileyonlinelibrary.com/journal/etrij 1

https://orcid.org/0000-0001-6964-4005
mailto:jyjung21@etri.re.kr
https://doi.org/10.4218/etrij.2020-0460
http://www.kogl.or.kr/info/licenseTypeEn.do
http://wileyonlinelibrary.com/journal/etr2

However, a large amount of new and diverse knowledge
exists in the form of unstructured data. Although it is dif-
ficult to extract knowledge from unstructured data,
research on extracting knowledge from unstructured data
has been conducted [10–29]. Recent deep neural network
(DNN) models that improve the performance of knowl-
edge extraction from unstructured data require many
training data and have many DNN parameters to be
trained. Therefore, it takes a long time to train a high-
accuracy DNN model, such as bidirectional encoder rep-
resentations from transformers (BERT) proposed by
Devlin et al. [30]. To extract knowledge from unstruc-
tured data using the DNN model with a small amount of
training data and a small number of DNN parameters,
this study proposes a dependency grammar (DG)-based
self-attention multilayered bidirectional long short-term
memory (DG-M-Bi-LSTM) model. The proposed model
does not require complex DNN models and large learning
data because it uses nonvariable DG relations as inputs.
The parameter size of the proposed model is only 15 M,
whereas the parameter size of the BERT model is 340 M.
Additionally, the top-5 accuracies of the proposed model
and BERT are 0.948 and 0.705, respectively, using limited
learning data (10 000). The proposed method can apply
the pretrained DNN parameters to other domains by
learning the structural relations in sentences instead of
learning the semantic relations of specific words.

The remainder of the paper is organized as follows.
Section 2 describes related work. Section 3 describes the
DG-M-Bi-LSTM model for end-to-end subject–predicate–
object (SPO) tuple recognition. In Section 4, we present
the results of our experiments. Finally, Section 5 presents
the conclusion.

2 | RELATED WORK

Research on information extraction (IE) from natural
language (NL) sentences has been extensively conducted
in NLP. To increase usability in various domains, a
method for extracting a relational tuple from an open
domain instead of a specific domain is being studied. The
open IE methods are as follows. Mintz et al. [10] pro-
posed extracting tuples based on distance supervision
using an unlabeled corpus. However, the distance super-
vision method may yield low accuracy owing to noisy
patterns. Riedel et al. [11] reduced the relation extraction
error using a factor graph and constraint-driven
semisupervision. They generated latent feature vectors of
entity tuples and relations using a matrix factorization
model [12]. To improve the wrong label problem of dis-
tant supervision-based relation extraction, Zeng et al.
[13] proposed piecewise convolutional neural networks;

Lin et al. [14] proposed a sentence-level attention-based
model; and Zhou et al. [15] proposed a hierarchical selec-
tive attention network to reduce the high computational
cost of distant supervision-based relation extraction.

Banko et al. [16] proposed TextRunner to extract
many relational tuples from the corpus through a three-
step pipeline structure. TextRunner is limited in that it
extracts incorrect tuples due to incoherent and uninfor-
mative extractions. Fader et al. [17] proposed a syntactic
and lexical constraint added method (ReVerb) to extract
correct tuples. However, ReVerb is limited in that it
extracts only relations according to verbs and extracts
tuples that are not true because it ignores context.
Schmitz et al. [18] extracted relations according to nouns
or adjectives and added a context-analysis step to over-
come ReVerb’s limitation.

Corro et al. [19] proposed ClausIE to analyze clauses
in a sentence and extract relations and arguments from
NL sentences using dependency paths. Gashteovski et al.
[20] improved overly specific extractions in ClausIE and
provided semantic annotations for each extraction to
increase precision and recall performance. Angeli et al.
[21] proposed extracting clauses from a long sentence
using a clause splitter with distant training and extracting
a triple by running natural logic inference over these
extracted clauses.

Recently, relation extraction using DNNs has been
studied. Stanovsky et al. [22] extracted open IE tuples by
supervised learning using a bidirectional long short-term
model (Bi-LSTM) and semantic role labeling models.
Cui et al. [23] proposed a neural open IE using an
encoder–decoder framework. Sun et al. [24] proposed an
end-to-end neural model using the sequence-to-sequence
paradigm to convert NL sentences into facts. Jia et al.
[25] proposed a hybrid neural sequence-tagging model
using Bi-LSTM, a convolutional neural network, and a
conditional random field for relation extraction. Jiang
et al. [26] proposed an iterative rank-aware learning
method to increase the precision and recall of extraction
tuples. Trisedya et al. [27] proposed an end-to-end rela-
tion extraction model for KB enrichment using a neural
encoder–decoder model. Shi et al. [28] used BERT and
LSTM models to extract relations and label semantic
roles. Papanikolaou et al. [29] proposed a method to
extract relations in unsupervised scenarios using a
pretrained BERT model.

In recent studies, complex DNN models, such as
BERT, are trained using a large amount of training data
to improve the accuracy of tuple extraction. However,
this study proposes DG-M-Bi-LSTM, which extracts SPO
tuples from NL sentences with high accuracy even
though the training dataset is small, and the DNN model
is not complex.

2 JUNG

3 | DG-BASED SELF-ATTENTION
M-BI-LSTM

The DNN model for recognizing SPO tuples consists of
DG embedding, multilayered bidirectional LSTM (M-Bi-
LSTM), self-attention, and SPO tuple classification
(Figure 1).

The DG embedding parses the DG for NL and embeds
the generated DG relations. M-Bi-LSTM receives the DG
embedding as input vectors and performs deep learning
using multilayered bidirectional LSTM. Self-attention cal-
culates the attention scores for each step of M-Bi-LSTM
and generates attention values. The SPO tuple classifica-
tion determines the SPO tuples of the NL sentences. The
details of each module are as follows.

3.1 | DG embedding

To extract knowledge from NL sentences, it is necessary to
understand NL sentences through syntactic and semantic
analysis. The syntactic analysis of NL sentences can be used
to extract knowledge regardless of the semantic meaning of
the NL sentences. The pretrained DNN parameters can be
used in different domains for knowledge extraction if the
DNN model is trained using syntactic analysis data. There-
fore, research is underway to understand the syntactical
structure of NL sentences [31–34]. The DG is a syntactic
parsing that returns a parse tree for a sentence. A parse tree
has directed syntactic relationships between words in a sen-
tence. It means that directed links represent the lexical
dependencies between words in a sentence. Chen et al. [35]
proposed a fast and accurate dependency parser using a
greedy, transition-based method. This dependency parser is

used to discover the syntactical structures of NL sentences.
Figure 2 shows the DG relations in the NL sentence
(Google has announced their Android platform for mobile
devices). Universal dependencies provide an inventory
of DG relations and contain 40 DG relations between
words [32].

To learn knowledge extraction based on DG, the learn-
ing data in the form of DG should be generated. Then, the
DNN model for NLP should be trained using the generated
DG relations. Therefore, the generated DG relations using a
dependency parser should be embedded. Several methods
have been proposed for word embedding. Cbow [36] and
Skip-gram [37] used n-grams, and GloVe [38] used the
probability of co-occurrence of words. Skip-gram is used for
DG embedding because DG relations are not diverse, and
Skip-gram works well even though it is not complicated.

3.2 | M-Bi-LSTM

The recurrent neural network (RNN) was proposed for
sequential data [39]. In RNN, the input is a sequence of
vectors, and the output represents some information
about the sequence at every step in the input. Because
RNN maintains a vector of activation for each timestep, it
is used for NLP applications [40,41]. However, the output
sequence of RNN is biased toward the most recent inputs
in the sequence [42]. To overcome this vanishing gradi-
ent problem in RNNs, the LSTM network is used to
obtain long-range dependencies. The initial version of
the LSTM consists of memory cells, input gate, and out-
put gate. However, it excludes the forget gate and peep-
hole connections [43]. Gers et al. [44] proposed an LSTM
architecture that includes the forget gate, enabling LSTM
to reset its state. They introduced peephole connections
to make precise timings easier to learn [45]. Graves et al.
[46] presented the most commonly used LSTM architec-
ture using full backpropagation-through-time training for
an LSTM network.

The LSTM is adopted as a part of the proposed net-
work structure because long-term dependencies could
exist between words in a long NL sentence. To increase
the performance of LSTM, Bi-LSTM concatenates for-
ward and backward LSTM-hidden states (HS). Bi-LSTM
is made by combining bidirectional RNN [47] with

F I GURE 1 DG-M-Bi-LSTM model F I GURE 2 Example of DG relations in an NL sentence

JUNG 3

LSTM. Bi-LSTM processes input vector sequences in the
forward and backward directions and performs substan-
tially better than unidirectional LSTM [48,49]. The for-
ward hidden sequence is calculated by iterating the
forward layer from t = 1 to T as follows (1):

h
!

t ¼H W
xh
!xtþW

h
!
h
!h
!

t�1þb
h
!

� �
: ð1Þ

However, the backward hidden sequence is calculated by
iterating the backward layer from t = T to 1 as
follows (2):

h

t ¼H W
xh
 xtþW

h

h
 h

tþ1þb
h

� �
: ð2Þ

The forward and backward LSTM-hidden layers are com-
bined as follows (3):

ht ¼Φ h
!
t,h

t

� �
: ð3Þ

Here, h
!

t and h

t are the forward hidden state (FHS) and
backward hidden state (BHS) at time t, respectively; W

xh
!

and W
xh
 are the weight matrices mapping the input vec-

tor to FHS and BHS, respectively. Additionally, W
h
!
h
! and

W
h

h
 are the weight matrices mapping the previous FHS

to FHS and the previous BHS to BHS, respectively; b
h
!

and b
h
 are the bias vectors of FHS and BHS, respectively;

H is the hidden layer function; and Φ is the function that
combines the states.

Multiple hidden layers can also be stacked to increase
the performance of LSTM. Multilayered LSTM (M-LSTM)
stacks multiple hidden layers and sends HS sequences
from the layer below the upper layer as follows (4):

hn
t ¼H W hn�1hnh

n�1
t þWhnhnh

n
t�1þbnh

� �
: ð4Þ

Here, hn
t , h

n�1
t , and hn

t�1 are the HS at time t on the n th

layer, HS at time t on the lower layer, and HS at time
t� 1 on the n th layer, respectively. W hn�1hn and W hnhn are
the weight matrices mapping HS on the lower layer to
HS on the n th layer and mapping the previous HS to HS
on the n th layer, respectively. Note that h0

t ¼ xt and bnh is
the bias vector of HS on the n th layer.

Furthermore, Bi-LSTM and M-LSTM are combined to
increase the performance of Bi-LSTM or M-LSTM alone.
M-Bi-LSTM can be implemented by stacking FHS and
BHS, as shown in (5) to (7).

h
!n

t ¼H W
h
!n
�1

h
!n
h
!n�1

t þW
h
!n h
!n
h
!n
t�1þbn

h
!

 !
, ð5Þ

h
 n
t ¼H W

h
 n�1h

 nh
 n�1

t þW
h
 n h
 nh
 n
tþ1þbn

h

� �
, ð6Þ

hN
t ¼Φ h

!N
t ,h
 N

t

� �
: ð7Þ

Here, h
!n

t and h
 n

t are the FHS and BHS at time t on the
n th layer, respectively; W

h
!n�1

h
!n is the weight matrix map-

ping FHS on the lower layer to the FHS on the n th layer;
W

h
 n�1

h
 n is the weight matrix mapping BHS on the lower

layer to BHS on the n th layer; W
h
!n

h
!n is the weight matrix

mapping the previous FHS to FHS on the n th layer;
W

h
 n

h
 n is the weight matrix mapping the previous BHS to

BHS on the n th layer. Furthermore, bn
h
! and bn

h
 are the

bias vectors of FHS and BHS on the n th layer,
respectively.

Figure 3 shows the example of M-Bi-LSTM. The input
of M-Bi-LSTM is a sequence of DG embeddings.

3.3 | Self-attention

Attention is performed to highlight the part of the sentence
related to the SPO tuple relation recognition. The attention
score of each step is obtained by correlating the output of
the last step of M-Bi-LSTM with the output of each step,
and attention is performed by applying the attention score
to the output of each step. When different input feature vec-
tors are processed, the attention mechanism can focus on
different parts of a sentence to optimize the process of the
deep learning task. Attention mechanisms obtain superior
results in image recognition [50], machine translation [51],
sentence summarization [52], and text classification

F I GURE 3 M-Bi-LSTM diagram

4 JUNG

[53–55]. Self-attention is an attention mechanism relating
different positions of a single sequence to compute a repre-
sentation of the sequence [56]. Self-attention performs well
in several tasks, such as machine reading [57] and summa-
rization [58].

Therefore, this study proposes a self-attention
mechanism to attend to the important part of a sen-
tence (Figure 4). As a result, the SPO tuple classifica-
tion for knowledge extraction can concentrate on the
key parts of a sentence. Here mt is the attention mask,
at is the attention score, and vt is the attention value
for the SPO tuple classification, as expressed in (8) to
(10), respectively:

mt ¼
0 t≤ len sentenceð Þð Þ
�Inf t> len sentenceð Þð Þ

�
, ð8Þ

at ¼ tanh W a hN
t •hN

T

� �
þba

n o
�mt, ð9Þ

vt ¼hN
t • exp atð ÞPT

j¼1exp aj
� � : ð10Þ

Here, hN
t is the HS at time t on the last layer; hN

T
is the

HS at the last word of the sentence on the last layer. The
symbol • denotes matrix multiplication, and

J
is the

element-wise addition. Furthermore, T is the sequence
time of the last word of the sentence; Wa is the weight
matrix mapping the matrix multiplication of hN

t and
hN
T

to the attention score; and ba is the bias of the
attention score.

3.4 | SPO tuple classification

The M-Bi-LSTM and self-attention values are used for
the SPO tuple classification (Figure 5). First, self-
decoding is performed by applying the result of the last

output step of M-Bi-LSTM to the self-attention values
as follows:

dt ¼Φ vt,h
N
T

� �
: ð11Þ

where Φ is a combination function and dt is self-decoding
value at time t.

In encoder–decoder LSTM models, such as transla-
tion, the decoder maps the encoder’s HS attention to the
decoder’s HS. However, the self-decoding maps the
self-attention value (vt) to the encoder’s HS (hN

T
Þ.

Second, the results are given to a feedforward neural
network (FFNN) using the self-decoding values as follows
(12):

f ki ¼ σk
XJk

j¼1W
k
i, j f

k�1
j þbk

� �
: ð12Þ

Here, f 0i ¼di (i= 1 to T), J1=T, J is the vector size on the
(k� 1)th layer, σ k is the activation function on the k th

layer, and k is the FFNN layer (k= 1 to L). Furthermore,
Wk is the weight matrix mapping the (k� 1)th layer to
the k th layer, and bk is the bias of the k th layer.

Third, the fully connected (FC) layer and softmax are
performed for SPO tuple recognition, as shown in (13),
(14), respectively:

cn¼ σ
XM

m¼1Wn,m f Lmþb
� �

, ð13Þ

yn¼
exp cnð ÞPN
j¼1exp cj

� � : ð14Þ

Here, f L is the last layer of FFNN, cn is the FC layer
results (n = 1 to N), N is the number of classes, M is theF I GURE 4 Self-attention diagram

F I GURE 5 SPO tuple classification diagram

JUNG 5

vector size on the last layer of FFNN, and yn is the
softmax value of cn.

The SPO tuple of the NL sentence is recognized to
extract knowledge through the end-to-end tuple recogni-
tion system using DG-M-Bi-LSTM. For example, the SPO
tuple relation (nsubj-predict-dobj) can be recognized
when an NL sentence (Google has announced their
Android platform for mobile devices) is input into the
DG-M-Bi-LSTM. Therefore, SPO tuple knowledge
(Google–announce–Android platform) can be extracted
using the SPO tuple relation and noun phrase chunk
(Figure 2).

4 | EXPERIMENTAL RESULTS

The proposed DG-M-Bi-LSTM model is compared with
the NL-based model and the recently proposed model in
NLP studies to evaluate its effectiveness.

4.1 | Learning data

The 229 476 pairs were generated as learning data. The
learning data for DG-M-BI-LSTM are pairs of dependency
syntax analysis and SPO relations. To conduct a depen-
dency syntax analysis and SPO tuple pairs, dependency
parsing for each NL sentence was conducted, and SPO
relations from DG parse tree were extracted. The detailed
explanation of the learning data generation is as follows.

The open language learning for information extrac-
tion (OLLIE) provided 3 048 961 pairs of the SPO tuples
and NL sentences [18]. However, there are many NL
sentences where the SPO tuple is not the SPO relation.
For example, the SPO tuple (Paypal–accept–Visa) is not
the SPO relation of the NL sentence (We accept Paypal,
Amex, Mastercard, and Visa). Therefore, 229 476 pairs
were generated as the DG-M-Bi-LSTM learning data
based on the OLLIE data (Figure 6). The SPO tuple (Tt)
and NL sentence (St) are read from the OLLIE data.
Then, the DG parse tree (Dt) of the NL sentence is gener-
ated, and the lemma of the NL sentence (Lt) is generated
to process various types of words. The words that match
the predict (Tp

t), subject (T
s
t), and object (To

t) in the SPO
tuple are found in the lemma of the NL sentence. If the
number of words matching the predict, subject, and
object (np

t , n
s
t , and not , respectively) are all nonzero, the

predict (Spt), subject (S
s
t), and object (Sot) are selected in

the NL sentence. If the DG distance (DD) between the
predict and subject and between the predict and object is
both less than the threshold, the DG-based SPO tuple
relation (Rt) is extracted from the DG parse tree. Then,
the DG relation sequence (Gt) of the NL sentence is

generated. Finally, the SPO tuple, NL sentence, DG rela-
tion sequence, and DG-based SPO tuple relation are
stored in the DG-M-Bi-LSTM learning data.

There are 20 classes in 229 476 sentences. Table 1
presents the DG-based SPO tuple relations of the
20 classes.

Table 2 presents the selected DG relations in the
DG-based SPO tuple relations.

4.2 | DG-based self-attention M-Bi-LSTM

To evaluate whether the proposed model performs well
with a small amount of learning data, this study con-
ducted training and evaluation tests using limited learn-
ing data (10 000) and all learning data (229 476). Training
and evaluation tests were conducted using 70% and 30%
of the learning data, respectively.

To confirm the accuracy of the SPO tuple recognition
in the absence of self-attention M-Bi-LSTM, the SPO
tuple recognition is estimated using only DG. The SPO
tuple is recognized with DG embedding, two FFNN
layers, and an FC layer. When all learning data are used,
the SPO tuple recognition accuracy is 0.578, 0.838, and
0.907 for top-1, top-3, and top-5, respectively. When lim-
ited learning data are used, the SPO tuple recognition
accuracy is 0.507, 0.736, and 0.827 for top-1, top-3, and
top-5, respectively.

To determine the effect of multilayered and bidirec-
tional DNN model on the performance of the SPO tuple
recognition, SPO tuple recognitions are estimated by
combining several layers (l = 1, 2, and 3) and directions
[d = unidirection (uni.) and bidirection (bi.)], as shown
in Figure 7 and Table 3. The two-layered (l = 2) and bidi-
rectional (d = bi.) LSTM model outperforms other
models in the SPO tuple recognition.

F I GURE 6 Pseudo-code of DG-M-Bi-LSTM learning data

generation

6 JUNG

The DG-M-Bi-LSTM model consists of two LSTM
layers, each with 768 hidden nodes, and two FFNN
layers.

Figure 8 shows the evaluation test results using all
learning data, showing the change in SPO tuple
recognition accuracy at each epoch over 400 epochs.
As the epochs increase, the SPO tuple recognition
accuracy increases from 0.409 to 0.633 for top-1, 0.553
to 0.935 for top-3, and 0.659 to 0.972 for top-5 in the
evaluation test.

Figure 9 shows the evaluation test results using lim-
ited learning data. As the epochs increase, the SPO tuple
recognition accuracy increases from 0.080 to 0.733 for
top-1, 0.471 to 0.930 for top-3, and 0.596 to 0.968 for top-5
in the evaluation test.

The evaluation test was conducted four times, and the
results are shown in Figure 10. Figure 10A,B shows the
accuracy of the four evaluation tests (T1 through T4) and
average for top-1, top-3, and top-5 when using limited
learning data and all learning data, respectively.

When using limited learning data, the average accu-
racy is 0.697, 0.902, and 0.948 for top-1, top-3, and top-5,
respectively. The standard deviation (SD) is 0.028, 0.021,
and 0.018 for top-1, top-3, and top-5, respectively. When
using all learning data, the average accuracy is 0.634,
0.937, and 0.974 for top-1, top-3, and top-5, respectively.
The SD is 0.002, 0.003, and 0.001 for top-1, top-3, and
top-5, respectively.

4.3 | NL-based self-attention M-Bi-LSTM

The accuracy using NL can be compared with the accu-
racy using DG by measuring the accuracy of the SPO
tuple recognition of the self-attention M-Bi-LSTM model
using NL instead of DG. NL-based self-attention M-Bi-
LSTM (NL-M-Bi-LSTM) consists of two LSTM layers,
each with 768 hidden nodes, and two FFNN layers. The
evaluation test was performed four times, and the results
are shown in Figure 11.

When using limited learning data, the average accu-
racy is 0.435, 0.743, and 0.869 for top-1, top-3, and top-5,
respectively. The SD values are 0.013, 0.015, and 0.008 for
top-1, top-3, and top-5, respectively. When using all
learning data, the average accuracy is 0.476, 0.732, and
0.843 for top-1, top-3, and top-5, respectively. The SD
values are 0.008, 0.009, and 0.004 for top-1, top-3, and
top-5, respectively.

TAB L E 1 DG-based SPO tuple relations of NL sentences

Classes DG-based SPO tuple relations

Class 1 nsubj-predict-nmod

Class 2 nsubj-predict-dobj

Class 3 nsubj-predict-compound-nmod

Class 4 nmod-predict-nsubj

Class 5 nsubj-predict-nmod-dobj

Class 6 nsubj-predict-nmod-nmod

Class 7 nsubjpass-predict-nmod

Class 8 nsubj-predict-compound-dobj

Class 9 nsubj-predict-nsubj-ccomp

Class 10 nsubj-compound-predict-nmod

Class 11 nsubj-predict-nmod:tmod

Class 12 ccomp-nsubj-predict-nsubj

Class 13 dobj-predict-nsubj

Class 14 nsubj-predict-conj-nmod

Class 15 nmod-predict-nsubjpass

Class 16 dobj-predict-nmod

Class 17 nsubj-compound-predict-compound-dobj

Class 18 nsubj-conj-predict-nmod

Class 19 nsubj-predict-xcomp

Class 20 nsubj-compound-predict-dobj

TAB L E 2 Selected DG relation features

DG relation Description

nsubj Nominal subject

nmod Nominal modifier

dobj Direct object

nsubjpass Passive nominal subject

ccomp Clausal complement

tmod Temporal modifier

conj Conjunct

xcomp Open clausal complement

F I GURE 7 Ablation test results of DG-M-Bi-LSTM model:

top-5 accuracy using limited learning data (10 000)

JUNG 7

4.4 | NL-based BERT

The accuracy according to the DNN model using NL can
be compared by measuring the accuracy of the SPO
tuple recognition of the BERT model instead of the self-
attention M-Bi-LSTM model using NL.

The pretrained BERT consists of 24 layers, each with
1024 hidden nodes, and 16 self-attention heads. After
fine-tuning the BERT parameters using 70% of the
learning data, an evaluation test was conducted using the

remaining 30%. The NL-based BERT (NL-BERT) evalua-
tion test was conducted four times, and the results are
shown in Figure 12.

When using limited learning data, the average accuracy
is 0.312, 0.575, and 0.638 for top-1, top-3, and top-5, respec-
tively. The SD values are 0.123, 0.071, and 0.074 for top-1,
top-3, and top-5, respectively. When using all learning data,
the average accuracy is 0.551, 0.684, and 0.752 for top-1,
top-3, and top-5, respectively. The SD values are 0.142,
0.226, and 0.190 for top-1, top-3, and top-5, respectively.

TAB L E 3 Ablation test results of DG-M-Bi-LSTM model

Model

Limited learning data All learning data

top-1 top-3 top-5 top-1 top-3 top-5

d = bi., l = 1 0.709 0.912 0.948 0.627 0.928 0.970

d = bi., l = 2 0.733 0.930 0.968 0.633 0.935 0.972

d = bi., l = 3 0.719 0.927 0.962 0.631 0.931 0.969

d = uni., l = 1 0.585 0.836 0.899 0.566 0.825 0.906

d = uni., l = 2 0.612 0.847 0.921 0.585 0.861 0.931

d = uni., l = 3 0.657 0.879 0.930 0.597 0.891 0.949

F I GURE 8 DG-M-Bi-LSTM evaluation test results using all

learning data (229 476)

F I GURE 9 DG-M-Bi-LSTM evaluation test results using

limited learning data (10 000)

F I GURE 1 0 SPO tuple recognition accuracy of DG-M-Bi-

LSTM when using (A) limited learning data (10 000) and (B) all

learning data (229 476)

F I GURE 1 1 SPO tuple recognition accuracy of NL-M-Bi-

LSTM when using (A) limited learning data (10 000) and (B) all

learning data (229 476)

8 JUNG

4.5 | DG-based BERT

The accuracy according to the DNN model using DG
can be compared by measuring the SPO tuple recogni-
tion accuracy of the BERT model using DG. The DG-
based BERT (DG-BERT) evaluation test was conducted
four times, and the results are shown in Figure 13.

When using limited learning data, the average
accuracy is 0.428, 0.653, and 0.705 for top-1, top-3, and
top-5, respectively. The SD values are 0.004, 0.077, and

0.061 for top-1, top-3, and top-5, respectively. When using
all learning data, the average accuracy is 0.625, 0.934,
and 0.966 for top-1, top-3, and top-5, respectively. The SD
values are 0.004, 0.004, and 0.002 for top-1, top-3, and
top-5, respectively.

4.6 | Comparison of the results

The proposed DG-M-Bi-LSTM achieves better accuracy
than NL-BERT, DG-BERT, and NL-M-Bi-LSTM, as
shown in Table 4 and Figure 14.

The experimental results show that the proposed DG-
M-Bi-LSTM model achieves the best performance at
recognizing SPO tuples in NL sentences even if it has
fewer DNN parameters than BERT. The BERT consists of
24 layers, 1024 hidden sizes, and 16 self-attention heads
containing 340 M parameters [30]. However, the pro-
posed model consists of two LSTM layers, 768 LSTM-
hidden sizes, and two FFNN layers containing only 15 M
parameters. Because the proposed model requires a
smaller parameter size than BERT, it can be used in
various applications that require less memory or learning
time than BERT. For instance, it shows superior perfor-
mance compared to BERT when few learning data
are used.

F I GURE 1 2 SPO tuple recognition accuracy of NL-BERT

when using (A) limited learning data (10 000) and (B) all learning

data (229 476)

F I GURE 1 3 SPO tuple recognition accuracy of DG-BERT

when using (A) limited learning data (10 000) and (B) all learning

data (229 476)

TAB L E 4 Comparison of the SPO tuple recognition accuracy results using DG-M-Bi-LSTM, NL-M-Bi-LSTM, DG-BERT, and NL-BERT

Model

Limited learning data All learning data

top-1 top-3 top-5 top-1 top-3 top-5

NL-BERT 0.312 0.575 0.638 0.551 0.684 0.752

DG-BERT 0.428 0.653 0.705 0.625 0.934 0.966

NL-M-Bi-LSTM 0.435 0.743 0.869 0.476 0.732 0.843

DG-M-Bi-LSTM
(our model)

0.697 0.902 0.948 0.634 0.937 0.974

F I GURE 1 4 Comparison of SPO tuple recognition accuracy

results when using (A) limited learning data (10 000) and (B) all

learning data (229 476)

JUNG 9

5 | CONCLUSION

This study addressed an SPO tuple recognition DNN
model based on DG to autonomously extract knowledge
from NL sentences. The DG-M-Bi-LSTM model consists
of DG embedding, M-Bi-LSTM, self-attention, and SPO
tuple classification. The DG embedding performs DG
parsing for NL sentences and embedding for the gener-
ated DG relations. The M-Bi-LSTM model receives the
DG embeddings as input vectors and performs deep
learning using M-Bi-LSTM. Self-attention calculates the
attention scores for each step of M-Bi-LSTM and gener-
ates attention values. The SPO tuple classification deter-
mines the SPO tuple relations of the NL sentences.

Furthermore, the proposed DG-M-Bi-LSTM model
was compared with NL-BERT, DG-BERT, and NL-M-Bi-
LSTM to evaluate its effectiveness. The experimental
results show that DG-M-Bi-LSTM achieves better results
in terms of SPO tuple recognition accuracy than other
compared models, even though the proposed model has
fewer DNN parameters than BERT. Unlike BERT, it
shows good accuracy even with limited learning data.
Therefore, the proposed model can be used even with
limited learning data. Additionally, the pretrained
parameter can be applied to different domains because
DG-M-Bi-LSTM learns the structural relations in NL
sentences instead of learning the semantic relations of
specific words.

This study recognizes the SPO tuple from an NL
sentence using a DG-based DNN model. However, the
SPO tuple can be extracted using several NL sentences in
a paragraph. Therefore, in future studies, research on
recognizing SPO tuple in a paragraph is required to infer
SPO tuples from multiple NL sentences.

ACKNOWLEDGEMENTS
This work was supported by Electronics and Telecommu-
nications Research Institute (ETRI) grant funded by
the Korean government (21ZS1100, Core Technology
Research for Self-Improving Integrated Artificial Intelli-
gence System).

ORCID
Joon-young Jung https://orcid.org/0000-0001-6964-4005

REFERENCES
1. S. Auer et al., DBpedia: A nucleus for a web of open data, in

Proc. Int. Semantic Web Conf. (Busan, Republic of Korea),
Nov. 2007, pp. 722–735.

2. D. Vrandeči�c and M. Krötzsch, Wikidata: A free collaborative
knowledgebase, Commun. ACM 57 (2014), no. 10, 78–85.

3. F. M. Suchanek, G. Kasneci, and G. Weikum, YAGO: A core of
semantic knowledge, in Proc. Int. Conf. WWW (Banff, Canada),
May 2007, pp. 697–706.

4. N. Kolitsas, O.-E. Ganea, and T. Hofmann, End-to-end neural
entity linking, in Proc. Conf. Comput. Nat. Lang. Learn.
(Brussels, Belgium), Aug. 2018, pp. 519–529.

5. B. D. Trisedya, J. Qi, and R. Zhang, Entity alignment between
knowledge graphs using attribute embeddings, in Proc. AAAI
Conf. on Artif. Intell. (Honolulu, HI, USA), July 2019,
pp. 297–304.

6. B. D. Trisedya, J. Qi, R. Zhang, and W. Wang, GTR-LSTM: A
triple encoder for sentence generation from RDF data, in Proc.
Annu. Meet. Assoc. Comput. Linguistics (Melbourne,
Australia), July 2018, pp. 1627–1637.

7. M. J. Cafarella et al., WebTables: Exploring the power of tables
on the web, in Proc. Very Large Data Base Endowment
(Auckland, New Zealand), Aug. 2008, pp. 538–549.

8. O. Lehmberg et al., A large public corpus of web tables
containing time and context metadata, in Proc. Int. Conf.
Companion WWW (Montréal, Canada), Apr. 2016, pp. 75–76.

9. B. Fetahu, A. Anand, and M. Koutraki, TableNet: An approach
for determining fine-grained relations for wikipedia tables, in
Proc. Int WWW Conf. (San Francisco, CA, USA), May 2019,
pp. 2736–2742.

10. M. Mintz et al., Distant supervision for relation extraction
without labeled data, in Proc. Joint Conf. Assoc. Comput.
Linguistics & Int. Joint Conf. Natural Lang. Process. AFNLP
(Suntec, Singapore), Aug. 2009, pp. 1003–1011.

11. S. Riedel, L. Yao, and A. McCallum, Modeling relations and
their mentions without labeled text, in Proc. Joint Eur. Conf.
Mach. Learn. Knowl. Discov. Databases (Barcelona, Spain),
Sept. 2010, pp. 148–163.

12. S. Riedel et al., Relation extraction with matrix factorization
and universal schemas, in Proc. N. Am. Chapter Assoc.
Comput. Linguistics: Hum. Lang. Technol. (Atlanta, GA,
USA), June 2013, pp. 74–84.

13. D. Zeng et al., Distant supervision for relation extraction
via piecewise convolutional neural networks, in Proc. Conf.
Empir. Methods Nat. Lang. Process. (Lisbon, Portugal), Sept.
2015, pp. 1753–1762.

14. Y. Lin et al., Neural relation extraction with selective attention
over instances, in Proc. Annu. Meet. Assoc. Comput. Linguis-
tics (Berlin, Germany), Aug. 2016, pp. 2124–2133.

15. P. Zhou et al., Distant supervision for relation extraction with
hierarchical selective attention, Neural Netw. 108 (2018),
240–247.

16. M. Banko et al., Open information extraction from the web,
in Proc. Int. Joint Conf. Artif. Intell. (Hyderabad, India), Jan.
2007, pp. 2670–2676.

17. A. Fader, S. Soderland, and O. Etzioni, Identifying relations
for open information extraction, in Proc. Conf. Empir.
Methods Nat. Lang. Process. (Edinburgh, UK), July 2011, pp.
1535–1545.

18. M. Schmitz et al., Open language learning for information
extraction, in Proc. Conf. Empir. Methods Nat. Lang. Process.
(Jeju, Republic of Korea), July 2012, pp. 523–534.

19. L. D. Corro and R. Gemulla, ClausIE: Clause-based open infor-
mation extraction, in Proc. Int. Conf. WWW (Rio de Janeiro,
Brazil), May 2013, pp. 355–366.

20. K. Gashteovski, R. Gemulla, and L. D. Corro, MinIE: Minimiz-
ing facts in open information extraction, in Proc. Conf. Empir.
Methods Nat. Lang. Process. (Copenhagen, Denmark), Sept.
2017, pp. 2630–2640.

10 JUNG

https://orcid.org/0000-0001-6964-4005
https://orcid.org/0000-0001-6964-4005

21. G. Angeli, M. J. J. Premkumar, and C. D. Manning, Leveraging
linguistic structure for open domain information extraction, in
Proc. Assoc. Comput. (Beijing, China), July 2015, pp. 344–354.

22. G. Stanovsky et al., Supervised open information extraction, in
Proc. N. Am. Chapter Assoc. Comput. Linguistics: Hum. Lang.
Technol. (New Orleans, LA, USA), June 2018, pp. 885–895.

23. L. Cui, F. Wei, and M. Zhou, Neural open information
extraction, in Proc. Annu. Meet. Assoc. Comput. Linguistics
(Melbourne, Australia), May 2018, pp. 407–413.

24. M. Sun et al., Logician: A unified end-to-end neural approach
for open-domain information extraction, in Proc. Web Search
Data Min. (Los Angeles, CA, USA), Feb. 2018, pp. 556–564.

25. S. Jia, Y. Xiang, and X. Chen, Supervised neural models
revitalize the open relation extraction, arXiv preprint, CoRR,
2018, arXiv: 1809.09408.

26. Z. Jiang, P. Yin, and G. Neubig, Improving open information
extraction via iterative rank-aware learning, in Proc. Annu.
Meet. Assoc. Comput. Linguistics (Florence, Italy), May 2019,
pp. 5295–5300.

27. B. D. Trisedya et al., Neural relation extraction for knowledge
base enrichment, in Proc. Annu. Meet. Assoc. Comput.
Linguistics (Florence, Italy), July 2019, pp. 229–240.

28. P. Shi and J. Lin, Simple BERT models for relation extraction
and semantic role labeling, arXiv preprint, CoRR, 2019, arXiv:
1904.05255.

29. Y. Papanikolaou, I. Roberts, and A. Pierleoni, Deep bidirec-
tional transformers for relation extraction without supervision,
arXiv preprint, CoRR, 2019, arXiv: 1911.00313.

30. J. Devlin et al., BERT: Pre-training of deep bidirectional
transformers for language understanding, in Proc. N. Am.
Chapter Assoc. Comput. Linguistics: Hum. Lang. Technol.
(Minneapolis, MN, USA), May 2019, pp. 4171–4186.

31. M. D. Marneffe et al., Universal Stanford dependencies: A cross-
linguistic typology, in Proc. Int. Conf. Lang. Resour. Eval.
(Reykjavik, Iceland), May 2014, pp. 4585–4592.

32. J. Nivre et al., Universal dependencies v1: A multilingual
treebank collection, in Proc. Int. Conf. Lang. Resour. Eval.
(Portorož, Slovenia), May 2016, pp. 1659–1666.

33. N. Nakashole, G. Weikum, and F. Suchanek, PATTY: A taxon-
omy of relational patterns with semantic types, in Proc. Conf.
Empir. Methods Nat. Lang. Process. (Jeju, Republic of Korea),
July 2012, pp. 1135–1145.

34. D. Klein and C. D. Manning, Accurate unlexicalized parsing,
in Proc. Annu. Meet. Assoc. Comput. Linguistics (Sapporo,
Japan), 34 (2003), pp. 423–430.

35. D. Chen and C. D. Manning, A fast and accurate dependency
parser using neural networks, in Proc. Conf. Empir. Methods
Nat. Lang. Process. (Doha, Qatar), Oct. 2014, pp. 740–750.

36. T. Mikolov et al., Efficient estimation of word representations
in vector space, arXiv preprint, CoRR, 2013, arXiv: 1301.3781.

37. T. Mikolov et al., Distributed representations of words and
phrases and their compositionality, in Proc. Neural Inf. Process.
Syst. (Lake Tahoe, NV, USA), Dec. 2013, pp. 3111–3119.

38. J. Pennington, R. Socher, and C. D. Manning, GloVe: Global
vectors for word representation, in Proc. Conf. Empir. Methods
Nat. Lang. Process. (Doha, Qatar), Oct. 2014, pp. 1532–1543.

39. R. Jozefowicz, W. Zaremba, and I. Sutskever, An empirical
exploration of recurrent network architectures, in Proc. Int.
Conf. Mach. Learn. (Lille, France), June 2015, pp. 2342–2350.

40. M. F. Y. Ghadikolaie, E. Kabir, and F. Razzazi, Sub-word based
offline handwritten farsi word recognition using recurrent neural
network, ETRI J. 38 (2016), no. 4, 703–713.

41. W. Khan et al., Deep recurrent neural networks with word
embeddings for Urdu named entity recognition, ETRI J. 42
(2020), no. 1, 90–100.

42. Y. Bengio, P. Simard, and P. Frasconi, Learning long-term
dependencies with gradient descent is difficult, IEEE Trans.
Neural Netw. 5 (1994), no. 2, 157–166.

43. S. Hochreiter and J. Schmidhuber, Long short-term memory,
Neural Comput. 9 (1997), no. 8, 1735–1780.

44. F. A. Gers, J. Schmidhuber, and F. Cummins, Learning to
forget: Continual prediction with LSTM, in Proc. Int. Conf.
Artif. Neural Netw. (Edinburgh, UK), Oct. 1999, pp. 850–855.

45. F. A. Gers and J. Schmidhuber, Recurrent nets that time and
count, in Proc. Int. Joint Conf. Neural Netw. (Como, Italy),
July 2000, pp. 189–194.

46. A. Graves and J. Schmidhuber, Framewise phoneme classifica-
tion with bidirectional LSTM and other neural network architec-
tures, Neural Netw. 18 (2005), no. 5–6, 602–610.

47. M. Schuster and K. K. Paliwal, Bidirectional recurrent neural
networks, IEEE Trans. Signal Process. 45 (1997), no. 11,
2673–2681.

48. A. Graves, N. Jaitly, and A. Mohamed, Hybrid speech
recognition with deep bidirectional LSTM, in Proc. IEEE Work-
shop Autom. Speech Recognit. Underst. (Olomouc, Czech
Republic), Dec. 2013, pp. 273–278.

49. F. U. M. Ullah et al., Short-term prediction of residential power
energy consumption via CNN and multilayer bi-directional
LSTM Networks, IEEE Access 8 (2019), 123369–123380.

50. V. Mnih et al., Recurrent models of visual attention, in Proc.
Int. Conf. Neural Inf. Process. Syst. (Montreal, Canada), Dec.
2014, pp. 2204–2212.

51. D. Bahdanau, K. Cho, and Y. Bengio, Neural machine transla-
tion by jointly learning to align and translate, arXiv preprint,
CoRR, 2014, arXiv: 1409.0473.

52. A. M. Rush, S. Chopra, and J. Weston, A neural attention
model for abstractive sentence summarization, in Proc. Empir.
Methods Nat. Lang. Process. (Lisbon, Portugal), Sept. 2015,
pp. 379–389.

53. Z. Zhang, Y. Zou, and C. Gan, Textual sentiment analysis via
three different attention convolutional neural networks and
cross-modality consistent regression, Neurocomputing 275
(2018), 1407–1415.

54. G. Liu and J. Guo, Bidirectional LSTM with attention
mechanism and convolutional layer for text classification,
Neurocomputing 337 (2019), 325–338.

55. M. P. Akhter et al., Document-level text classification using
single-layer multisize filters convolutional neural network, IEEE
Access 8 (2020), 42689–42707.

56. A. Vaswani et al., Attention is all you need, in Proc. Conf.
Neural Inf. Process. Syst. (Long Beach, CA, USA), Dec. 2017,
pp. 6000–6010.

57. J. Cheng, L. Dong, and M. Lapata, Long short-term memory-
networks for machine reading, in Proc. Conf. Empir. Methods
Nat. Lang. Process. (Austin, TX, USA), Nov. 2016, pp. 551–561.

58. A. Parikh et al., A decomposable attention model for natural
language inference, in Proc. Empir. Methods Nat. Lang. Pro-
cess. (Austin, TX, USA), Nov. 2016, pp. 2249–2255.

JUNG 11

AUTHOR BIOGRAPHY

Joon-young Jung received his BS
and MS degrees in computer net-
work engineering from Soongsil
University, Seoul, South Korea, in
1996 and 2000, respectively, and his
PhD degree in information commu-
nications engineering from Chu-

ngnam National University, Daejeon, South Korea, in
2015. Since 2000, he has been a research engineer at
Electronics and Telecommunications Research

Institute, Daejeon, South Korea. His main research
interests are natural language processing and visual
intelligence.

How to cite this article: J. Jung, DG-based SPO
tuple recognition using self-attention M-Bi-LSTM,
ETRI Journal (2021), 1–12. https://doi.org/10.4218/
etrij.2020-0460

12 JUNG

https://doi.org/10.4218/etrij.2020-0460
https://doi.org/10.4218/etrij.2020-0460

	DG-based SPO tuple recognition using self-attention M-Bi-LSTM
	1 INTRODUCTION
	2 RELATED WORK
	3 DG-BASED SELF-ATTENTION M-BI-LSTM
	3.1 DG embedding
	3.2 M-Bi-LSTM
	3.3 Self-attention
	3.4 SPO tuple classification

	4 EXPERIMENTAL RESULTS
	4.1 Learning data
	4.2 DG-based self-attention M-Bi-LSTM
	4.3 NL-based self-attention M-Bi-LSTM
	4.4 NL-based BERT
	4.5 DG-based BERT
	4.6 Comparison of the results

	5 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

