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Abstract: As embedded systems, such as smartphones with limited resources, have become increas-
ingly popular, active research has recently been conducted on performing on-device deep learning in
such systems. Therefore, in this study, we propose a deep learning framework that is specialized for
embedded systems with limited resources, the operation processing structure of which differs from
that of standard PCs. The proposed framework supports an OpenCL-based accelerator engine for
accelerator deep learning operations in various embedded systems. Moreover, the parallel processing
performance of OpenCL is maximized through an OpenCL kernel that is optimized for embedded
GPUs, and the structural characteristics of embedded systems, such as unified memory. Furthermore,
an on-device optimizer for optimizing the performance in on-device environments, and model con-
verters for compatibility with conventional frameworks, are provided. The results of a performance
evaluation show that the proposed on-device framework outperformed conventional methods.

Keywords: deep learning framework; embedded systems; on-device; OpenCL acceleration

1. Introduction

Deep neural networks (DNNs) have been widely adopted in various fields, such as
in image and character recognition and object detection [1–10]. Driven by the increasing
popularity of embedded systems, such as smartphones, active research is being conducted
to explore on-device deep learning in embedded systems [11–15]. When compared with
standard PC and server platforms, embedded systems have smaller amounts of memory,
fixed-size storage devices, and low-power processors. Furthermore, embedded systems
have a different computational operation processing architecture than PC/server platforms
in terms of their central processing unit (CPU), graphics processing units (GPUs), and
memory structure. In addition, various types of associated hardware (HW) platforms
have been developed, according to diverse applications. However, most deep learning
frameworks (PyTorch [16], TensorFlow [17], Caffe [18], etc.) are currently optimized for
PC server platforms with abundant system resources. In particular, conventional deep
learning frameworks use CUDA [19] or cuDNN [20] to accelerate deep learning operations,
and are thus dependent on specific GPU hardware, such as Nvidia GPUs.

A deep learning framework that is specialized for embedded operation processing ar-
chitectures with limited resources is required to perform on-device deep learning operations
efficiently. Furthermore, to accelerate deep learning operations in various heterogeneous
embedded systems, such as smartphones or embedded computers, a dedicated framework
is required to support deep learning operation acceleration techniques that do not depend
on specific HW.

Accordingly, in this study, we propose CitiusSynapse as a deep learning framework
that is specialized for embedded systems. First, the proposed framework performs deep
learning operations which are based on OpenCL [21] to accelerate deep learning operations
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within various embedded systems. To do so, our framework provides a proprietary GPU-
accelerated engine based on ARM OpenCL driver, supporting OpenCL 1.2/2.0 full profile.
OpenCL is an open, universal, parallel computing framework managed by the Khronos
Group, which supports parallel processing in diverse heterogeneous HW environments that
include CPUs, GPUs, and other processors. Due to the fact that OpenCL is not dependent
on specific HW, the same programs can be executed in a variety of embedded systems, as
well as on standard PCs. Moreover, our framework maximizes parallel processing through
an OpenCL kernel that is optimized for embedded GPUs and the structural characteristics
of embedded systems, such as shared unified memory between CPUs and GPUs. Second,
our framework provides an on-device inference performance optimizer for embedded
systems. Third, our framework can import other framework models for compatibility.
Finally, our framework was compared with conventional deep learning frameworks by a
performance evaluation in an embedded board, equipped with an ARM Mali GPU, which
is a popular embedded GPU. Figure 1 shows the overall architecture of the deep learning
framework proposed in this study.
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Figure 1. Overall architecture of our framework.

The major functions of each component are as follows.

• The deep learning core provides a data structure supporting a unified memory and a
layer-oriented, implementation-based structure to minimize the deep learning opera-
tion cost.

• The accelerator engine provides a deep learning operation acceleration function that
is optimized for embedded systems. The accelerator engine consists of a Basic Linear
Algebra Subprograms (BLAS) library [22] that is optimized for an embedded GPU
(CSblas), and a DNN-accelerated library, providing forward and backward operations
of each layer constituting the DNN (clDNN).

• The on-device optimizer for inference optimizes the inference performance in an
on-device environment. The on-device optimizer consists of a model optimizer for
reducing operation costs through the combination of layers, an NDRange optimizer
for searching the optimal parallel processing space of OpenCL, and a quantization
optimizer for lightening the model through INT8 quantization.
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• An on-device utility for compatibility provides a function for converting models
that are trained in other frameworks, such as Caffe, PyTorch, or open neural network
exchange (ONNX) [23] into our on-device framework. Moreover, it supports a function
for automatically resetting the network by parsing the protocol buffer-based network
configuration files.

Figure 2 shows the interaction flow of each component of our framework. First, the
user sends network information to the user API of our framework (=CitiusSynapse) to
perform inference (or training). Second, the user API initializes the network through the
deep learning core. Third, the deep learning core constructs data and layer structures in
conjunction with the accelerator engine. Fourth, the deep learning core executes deep
learning operations that are necessary for inference or learning through an accelerator
engine. At this time, the accelerator engine uses a CPU or GPU driver for operation. Finally,
the deep learning core returns the final output to the user through user APIs.
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The remainder of this study is organized as follows. In Section 2, the background of
this research and related works are reviewed. In Section 3, the deep learning core and accel-
erator engine of our framework are explained. Section 4 explains the on-device optimizer
and model conversion utility. Section 5 shows the superiority of the proposed framework
when compared to the conventional deep learning framework through a performance
evaluation. Finally, conclusions and some discussion are presented in Section 6.

2. Background and Related Works
2.1. OpenCL

OpenCL consists of a host program executed in a host, and a kernel executed in a
computing device. The host program defines an index space for executing a kernel, and a
work-item, or each instance, of the kernel is executed at each point of the index space. The
work-group consists of multiple work-items, and all work-groups have the same size. For
the size of the work-group, there is a global work-group size (GSZ) that indicates the total
number of work-items, and a local work-group size (LSZ), which indicates the number of
work-items per work-group.
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An index space is divided into work-groups of the same size, in which each work-
group is executed in parallel in one compute unit within a computing device. Therefore, the
LSZ must be set to allow each work-group to be executed in parallel as much as possible in
a compute unit, to maximize the performance during operations in OpenCL.

2.2. Accelerated Libraries for Deep Learning

The operation process of deep learning involves forward and backward operations,
which are mostly vector or matrix operations. BLAS consists of a set of routines for
performing general linear algebraic operations, such as vector or matrix operations. BLAS
generally uses the specifications defined in Netlib [22], but there are various BLAS libraries
optimized for each HW type, such as a CPU or GPU.

CPU-based BLAS libraries include the Linear Algebra Package (LAPACK) [24], Auto-
matically Tuned Linear Algebra Software (ATLAS) [25], and OpenBLAS [26]. LAPACK and
ATLAS only support single-core CPUs, whereas OpenBLAS supports multi-core CPUs.

CUDA-based BLAS libraries include cuBLAS [27], CUTLASS [28], and KBLAS [29],
in which cuBLAS is a BLAS library officially provided by Nvidia. A CUDA-based BLAS
library is only operable on a system equipped with an Nvidia GPU, and is inoperable in
embedded systems, such as mobile devices.

In addition to the BLAS library, the Nvidia CUDA Deep Neural Network Library
(cuDNN) can perform acceleration operations which are based on a GPU, for each layer of a
DNN. Based on CUDA, cuDNN supports forward and backward operations in convolution,
pooling, and softmax layers, which are essential layers of a DNN. Similar to CUDA, cuDNN
is operable only in systems which are equipped with an Nvidia GPU.

OpenCL-based BLAS libraries are typically conducted using open-source code, be-
cause OpenCL is an open, universal parallel computing framework. Well-known OpenCL-
based BLAS libraries include clBLAS [30], ViennaCL [31], and CLBlast [32]. The OpenCL-
based BLAS library is currently optimized for the PC environment, thus failing to guarantee
an optimized performance in embedded GPUs. In addition, insufficient research has been
conducted on OpenCL-based convolutional neural network (CNN) accelerator libraries
that support forward and backward operations of a layered label, as in cuDNN. The ARM
compute library (ACL) [33] is a deep learning accelerated library for ARM CPUs and
GPUs, managed by ARM Ltd. The ACL is only operable in ARM CPUs and GPUs; Caffe
or TensorFlow models can be used when ArmNN [34] is used, but ACL alone cannot be
linked with conventional deep learning frameworks.

2.3. Deep Learning Frameworks

Currently, the most popular deep learning frameworks are PyTorch, TensorFlow,
Keras [35], Theano [36], Caffe, MXnet [37], Deeplearning4j [38], and Darknet [39]. The
majority of deep learning frameworks are difficult to use in embedded systems because
CUDA and cuDNN are used to accelerate deep learning operations. Therefore, an OpenCL-
based GPU-accelerated library needs to be linked for deep learning frameworks to be
efficiently executed in embedded systems. OpenCL Caffe [40], DeepCL [41], TensorFlow
Lite [42], and Darknet on OpenCL [43] are deep learning frameworks that support OpenCL-
based GPU-accelerated libraries at present.

Because OpenCL Caffe is managed in the GitHub repository of Caffe, the existing
interface of Caffe can be used, while executing deep learning operations through linking
with ViennalCL, clBLAS, and CLBlast. DeepCL can be linked with EasyCL [44] and
clBLAS, providing the C++ and Python API. TensorFlow Lite is a lightened subset of the
trained TensorFlow model for on-device inference execution. TensorFlow Lite accelerates
deep learning operations through the Google neural network API (NNAPI) [45] and GPU
delegates. Darknet on OpenCL is a revised version of the existing Darknet that uses CUDA
and cuDNN to ensure that OpenCL can be used.
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3. Deep Learning Core and Accelerator Engine

In order to perform efficient deep learning in embedded systems, fast inference speed
is essential. In addition, because the embedded system has limited system resources,
especially memory, it is very important not only to increase the inference speed, but also
to reduce the memory usage. Therefore, our framework proposes a deep learning core
and accelerator engine that can improve the parallel processing performance of OpenCL
and minimize its memory usage. The accelerator engine maximizes the parallel processing
performance of OpenCL, and the deep learning core provides data and layer structures to
efficiently manage the accelerator engine.

Meanwhile, the embedded system has a different system structure, depending on
the HW platform. For example, ARM Mali GPU does not have local memory, whereas
Qualcomm Adreno GPU does. Also, even with the same ARM Mali GPU, the basic unit
used for parallel processing is different (explained in detail in Section 3.2.1). Therefore, in
order to improve the parallel processing performance of OpenCL in an embedded system,
a structural analysis of the system and its optimization should be performed.

Currently, various studies for optimizing the inference in embedded systems are being
conducted, but their utilization is limited as the optimization techniques of OpenCL are
very different, according to the characteristics of HW and DNN. Therefore, our framework
automatically analyzes the structural characteristics of embedded systems and optimizes
them accordingly using our proprietary accelerator engine. Through this, our framework
enables users to efficiently perform deep learning in embedded systems without any
knowledge of OpenCL and embedded systems.

3.1. Deep Learning Core

A deep learning core consists of a data structure for managing deep learning operation
data, and a layer structure for each layer constituting a DNN.

3.1.1. Data Structure with Unified Memory

As shown in Figure 3a, a standard PC has a separate memory for the CPU (host)
and GPU, in which the OpenCL buffer that is generated in the CPU needs to be copied to
the GPU in order to execute OpenCL in the GPU. Moreover, data also need to be copied
from the GPU to the CPU in order to import the result of operations executed in the GPU.
Notably, recent CPUs have a built-in GPU, and share memory through the built-in GPU
structure. However, in most PCs, the CPU and GPU are configured independently for the
efficiency of deep learning operations.
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In contrast, embedded systems have a unified memory structure, in which the CPU
and GPU share a single memory space, as shown in Figure 3b; thus, data can be shared
between the CPU and GPU without transfer. The memory required for deep learning
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operations can be minimized, because the CPU and GPU do not need to create separate
memory spaces. In particular, for an embedded system with limited bandwidth for memory
size and data transfer, it is necessary to minimize the operational costs required for deep
learning operations, using the characteristics of unified memory.

However, the data structure of conventional deep learning frameworks does not
support the unified memory of an embedded system, and thus requires an unnecessarily
costly data transfer between the CPU and GPU. To overcome this drawback, our framework,
an OpenCL buffer, is generated in the device memory, as shown in Figure 3b, and the
memory is shared using the memory mapping and unmapping functions of OpenCL. In
other words, the generated buffer is mapped if the OpenCL buffer is to be used in the CPU,
while the generated buffer is unmapped if the OpenCL buffer is to be used in the GPU.

When executing operations in the hidden layers of a DNN, only the OpenCL buffer
for the GPU is generated, and used without mapping or unmapping. Due to the fact that
the GPU result needs to be returned to the CPU when the final output is returned, it is
unnecessary to return the GPU result to the CPU through mapping when the operations
are executed in hidden layers. Moreover, the acceleration performance of OpenCL is
reduced when the operation result is returned from the GPU to the CPU during operation
execution in hidden layers, because the asynchronous operation processing structure of
OpenCL cannot be applied. The asynchronous operation processing structure of OpenCL
is explained in Section 3.2.2. Also, the performance improvement by unified memory is
explained in detail in Appendix A.

3.1.2. Layer Structure with Layer-Oriented Implementation

Our framework is implemented in the C++11 programming language to be operable
in various embedded systems, and provides a layer-oriented implementation-based layer
structure to effectively use the data structure. Figure 4 shows the architecture of the layer
structure, which is linked to the data structure of our framework.
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The layer structure consists of an input layer, a hidden layer, and an output layer that
is appropriate for the DNN configuration. There is one input layer and one output layer,
and there may be multiple hidden layers, depending on the DNN configuration. Each layer
has an independent data structure that exists in a parameter or output format, depending
on the layer characteristics. Here, the output of each layer is delivered as the input to the
following layer.

The input layer supports the Mat object of OpenCV [46], in addition to image files
in JPEG or PNG formats being appropriate for an on-device inference environment. Pro-
cessing the data captured in the actual environment by converting them to image files
is inefficient in on-device environments. Furthermore, the Lightning Memory-Mapped
Database (LMDB) [47] is supported as an input to use multiple image files efficiently during
training. In addition, the input layer supports pre-processing, such as mean subtraction
and normalization, and can be easily used through C++11-based user APIs.

Hidden layers receive the output of an input layer, or previous hidden layers, as their
input. According to the layer characteristics, hidden layers may receive multiple inputs or
the output of a specific step through user APIs, instead of the output of a previous layer.
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Finally, the output layer has the final output that is computed, based on the output of the
hidden layers.

Table 1 presents the list of hidden and output layers supported by our framework,
based on the layer name used in the Caffe framework. The convolution layer of our
framework uses symmetric padding as the default, which may result in an operation
difference from the learning model of TensorFlow, which uses asymmetric padding as the
default. Hence, our framework uses a padding layer [48] to compensate for the difference
in the padding algorithm used in the TensorFlow learning model.

Table 1. List of hidden and output layers of our framework.

Layer Type Layer Name

Vision layer Convolution, Depthwise convolution, Deconvolution, Pooling
(Max/Average/Global Average), Upsample, Focus 1

Recurrent layer LSTM (Long Short-Term Memory)

Normalization Batch Normalization, Scale

Activation ReLU, ReLU6, Sigmoid, H-Swish, SiLU 1

Utility Eltwise (Sum/Product), Concat, Reshape, Power, Permute, padding

Common Full-Connected (=Inner-Product)

Output Softmax, Yolo v2/v3/v5, EAST 2, kNN, PoseNet 3

Updater SGD, Adam
1 Used only in Yolo v5. Available online: https://github.com/ultralytics/yolov5 (accessed on 23 August 2021).
2 Available online: https://github.com/SURFZJY/EAST-caffe (accessed on 23 August 2021). 3 Available online:
https://github.com/microsoft/human-pose-estimation.pytorch (accessed on 23 August 2021).

3.2. Accelerator Engine

The accelerator engine consists of OpenCL-based BLAS (CSblas), which is optimized
for embedded GPUs, and a DNN-accelerated library (clDNN). CSblas and clDNN execute
parallel processing using OpenCL, for which a separate OpenCL kernel is used. An
OpenCL kernel is generally built during runtime, based on the characteristics of OpenCL,
which allows the same OpenCL kernel to be operable in various HW platforms. However,
building OpenCL kernels during runtime is inefficient. Therefore, our framework uses
raw C++11 string literals to ensure that the code of OpenCL kernels is embedded in the
accelerator engine when the framework is built. OpenCL kernels that are embedded in
the accelerator engine are converted to an OpenCL execution binary during inference
(or learning) in the on-device environment. Kernels are constructed only during the
first inference, and the generated binaries are cached for reuse, starting from the second
inference. Here, only the kernels which were used for inference were built, to prevent the
generation of unnecessary kernel binaries.

3.2.1. CSblas

BLAS is divided into vector–scalar operation routines (LEVEL 1), matrix–vector op-
eration routines (LEVEL 2), and matrix–matrix operation routines (LEVEL 3) according
to the operation data type. Each routine of BLAS is categorized as single (float), double,
complex, or double complex according to the operation precision, and supports single and
half (fp16) precision, which are frequently used in the latest DNNs.

Table 2 presents the common routines used in the latest DNNs, among the BLAS
operation routines that are provided by our framework. AXPY is often used in the scale
layer and Eltwise layer, SCAL is used in the scale layer, GEMV is used in the batch
normalization layer, and GEMM is used in the convolution layer and fully connected layer.
The operations of GEMV and GEMM are distinguished depending on whether the matrix
is transposed. Specifically, two GEMV operations may be distinguished (GEMV_T and
GEMV_N) depending on whether matrix A is transposed (true or false), whereas GEMM

https://github.com/ultralytics/yolov5
https://github.com/SURFZJY/EAST-caffe
https://github.com/microsoft/human-pose-estimation.pytorch
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categorizes four operations (GEMM_NN, GEMM_NT, GEMM_TN, GEMM_TT) depending
on whether matrices A and B are transposed.

Table 2. List of representative BLAS routines provided by our framework.

Routine Level Routine Name Operation

Level 1
AXPY Y = αX + Y (X, Y are vectors, α is a scalar)
SCAL X = αX (X is a vector, α is a scalar)

Level 2 GEMV Y = αAX + βY (X, Y are vectors, α, β are scalars, A is
a matrix)

Level 3 GEMM C = αAB + βC (A, B, C are matrices, α, β are scalars)

In general, an OpenCL device supports single instruction multiple data (SIMD) com-
mands, and simultaneously loads/stores multiple nearby data using the data type of an
OpenCL vector, or executes the same operation for multiple data. Our framework drasti-
cally reduces the overhead in operations and memory access using the characteristics of
OpenCL.

The maximum amount of data that can be simultaneously processed in OpenCL is
determined based on the vector register size of the device. For instance, an ARM Mali-
T860 has a 128-bit vector register and can simultaneously load/store up to four 32-bit
data values. In contrast, an ARM Mali-G52 has a 256-bit vector register, and thus can
simultaneously load/store up to eight 32-bit data values. Therefore, the vectorization size
must be determined by considering the size of the vector register, in order to maximize the
parallelism of OpenCL. However, analyzing the vector register size of an OpenCL device
is inconvenient for both developers and users. Therefore, our framework automatically
analyzes the device information through the OpenCL parameter and sets the vectorization
value that is optimized for the device.

Our framework uses CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE
to set the vectorization value. The respective parameter value represents a multiple LSZ
value that is optimized for the current device. For example, when the CL_KERNEL_
PREFERRED_WORK_GROUP_SIZE_MULTIPLE value is four, the LSZ value must be
set to a multiple of four in order to optimize the performance. This value generally
corresponds to the vector register size of an OpenCL device. The proposed framework sets
the vectorization value using this parameter information because the vector register size of
an OpenCL device cannot be directly confirmed using the parameter information.

Figure 5 illustrates the schematic diagram of the parallel processing of GEMM_NN,
which is the LEVEL 3 routine of BLAS using OpenCL in our framework. GEMM_NN is the
case in which matrices A and B are not transposed in GEMM. GEMM_NN executes the
multiplication of matrices A and B, in which the value of one row in matrix A is read and
multiplied by all the values read in matrix B. Next, n data values are continuously loaded
from columns in matrix B using vloadn. Furthermore, n data values are simultaneously
processed using vloadn and vstoren in matrix C, because the column position for loading data
in matrix B corresponds to the column position for storing the result values in matrix C.
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3.2.2. clDNN

The layer proposed in the latest DNNs has limitations that hinder the utilization
of BLAS. For example, when an operation is executed using GEMM for depth-wise con-
volution, which is added in MobileNet-v1 [49], GEMM needs to be repeatedly executed
sequentially by the number of filters. Furthermore, there are layers that cannot be ex-
ecuted using BLAS, such as a pooling layer. In this case, our framework provides a
DNN-accelerated library (clDNN), which executes parallel processing based on OpenCL
for each layer consistency of the DNN. The essential functions of clDNN are in-place kernel
optimization and asynchronous queue execution.

1. In-place kernel optimization
A convolution layer generally proceeds in the order of im2col for the input matrix,

GEMM for the weight parameter, and GEMM for the bias parameter (if the bias parameter
is present). GEMM for the weight and bias parameters share the operation spaces of each
matrix. Hence, unnecessary operation costs are added, as repetitive accesses occur for
each matrix. To resolve this issue, an in-place kernel is used to simultaneously execute
operations for the weight and bias parameters.

The bias of a convolution layer is determined by the number of weight filters, where
the number of weight filters is identical to the number of output channels of the convolution
layer. Based on these characteristics, the GEMM operation is executed for the weight
parameter in a convolution layer and adds bias corresponding to the output channel
when a bias parameter of a convolution layer is present. Moreover, activation is added
to the final output of a kernel when an activation function, such as a rectified linear unit
(ReLU), is present after a convolution layer. Accordingly, clDNN maximizes the OpenCL
acceleration performance by minimizing the repeated costs of accessing the data. Table 3
shows the operation list of layers for which the in-place kernel optimization is provided in
the proposed framework.
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Table 3. List of operations in layers that provide in-place kernel optimization.

Layer In-Place Operation

Convolution layer GEMM (weight) + GEMM (bias) + Activation
(ReLU/ReLU6/Sigmoid/SiLU)

Depthwise
convolution layer

Depthwise convolution algorithm (weight + bias) + Activation
(ReLU/ReLU6)

Deconvolution layer Col2im + Activation (ReLU)

Eltwise Layer sum/production + Activation (ReLU)

Scale Layer scale (weight + bias) + Activation (ReLU)

Full-Connected
layer

GEMM (weight) + GEMM (bias) + Activation
(ReLU/ReLU6/Sigmoid)

2. Asynchronous queue execution
OpenCL has one command queue for each computing device, while the host enqueues

commands, such as data transfer or kernel execution, to the command queue. When
running an OpenCL program, the OpenCL runtime executes commands by sequentially
dequeuing the commands that are enqueued in the command queue. Here, OpenCL uses
synchronous queue execution, in which the program waits until the executed command
ends. Synchronous queue execution has the limitation of delaying the processing speed of a
host, because the right to control the command that is executed in a computing device does
not return to the host until the command ends, and this induces kernel launch overhead [50].
Therefore, our framework processes each OpenCL command in an asynchronous manner,
thus maximizing GPU utilization.

In contrast, when commands in the command queue are executed in an asynchronous
queue execution method, the operation result of each layer must be delivered sequentially.
Thus, our framework calls clFlush() when the final operation of each layer ends. clFlush()
issues all commands in the command queue to the device, thus guaranteeing the execution
order of the command input in the command queue. However, clFinish() blocks the host
until all commands are executed. clFinish() produces a greater amount of overhead when
compared to clFlush(), which simply issues commands to the device [51]. Therefore, GPU
utilization is maximized, while guaranteeing the accuracy of the layer operation results,
through use of clFlush().

Figure 6 shows the differences between the synchronous and asynchronous queue
executions. In the synchronous queue execution method, each kernel is sequentially
executed, regardless of the processing capacity of the computing device. In contrast,
the asynchronous queue execution method can simultaneously process commands if the
processing capacity of the computing device is sufficient, and the executed kernels are
independent. Kernel2 and kernel3, in the example, use the output of kernel1 as input, but
the operation results do not affect each other. Moreover, OpenCL can process independent
tasks simultaneously because it supports task parallelism. Owing to these characteristics,
our framework applies asynchronous queue execution to allow independent kernels to be
processed simultaneously.
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4. On-Device Optimizer and Utility
4.1. On-Device Optimizer for Inference

An on-device optimizer is included in the proposed framework, which consists of
a model optimizer for reducing the operating costs of a model through a combination
of layers, an NDRange optimizer for searching the optimal parallel processing space of
OpenCL, and a quantization optimizer for lightening the model through INT8 quantization.

4.1.1. Model Optimizer

Recent DNNs, such as ResNet and MobileNet, have been applied with batch nor-
malization [52] to improve training and inference performance. Batch normalization is
typically used after a layer with parameters, such as a convolution layer. Batch normaliza-
tion involves re-centering and re-scaling a layer’s input to ensure that the DNN is faster
and more stable. Therefore, batch normalization involves five parameters: mean, variance,
moving average, scale weight, and scale bias. Each parameter is updated as the iterations
proceed in the training phase, and is fixed in the inference phase. The parameters of batch
normalization can be combined with an existing convolution layer during inference based
on such characteristics. When the parameters of batch normalization are combined with a
convolution layer, the GPU acceleration performance can be maximized by minimizing
the repeated operations of OpenCL through in-place kernel optimization, as explained in
Section 3.2.2.

Batch normalization has different layer compositions depending on the framework.
For example, Caffe consists of two layers, including batch normalization and a scale layer,
while TensorFlow and PyTorch have a single layer. Our framework can be divided into
batch normalization and scale layers, as in Caffe. An open-source method is available for
Caffe and PyTorch [53,54] to combine the batch normalization layers, but its use involves
certain limitations, such as regularity in layer names. In contrast, the combination method
of our framework analyzes the layer configuration information of the trained model
and automatically identifies the possibility of combining it with batch normalization.
The parameters of the model are updated, and a new model with combined layers is
generated if batch normalization can be combined. Moreover, our framework provides
model compatibility with other frameworks, such as Caffe or PyTorch, which enables it to
support model optimization through layer combination in the models of other frameworks.
This model compatibility is explained in detail in Section 4.2.

Algorithm 1 is the model optimization algorithm, based on the layer combination
of the proposed framework. Model optimization through layer combination requires the
parameters of the model to be updated and, therefore, the process is carried out offline in
advance. Convolution, depth-wise convolution, and deconvolution layers can be combined
with batch normalization through the model optimization algorithm.

The model optimization algorithm combines the parameters of batch normalization
into layers with weight parameters. This uses a certain feature: that batch normalization
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parameters are used as constants during inference. Machine epsilon for the probability
value occurs during the division operation of the model optimization algorithm. However,
because it is quite small, this does not affect the accuracy.

Algorithm 1 Model Optimization Algorithm.

Input: model–a pre-trained model, epsilon–constant used in BatchNorm
1: n← number of hidden layers in model
2: for i = 0→ n do
3: if type(hidden_layers[i]) == Conv/DepthwiseConv/Deconv then
4: if (type(hidden_layers[i + 1]) == BatchNorm) and

(type(hidden_layers[i + 2]) == Scale) and (i <= n − 2) then
5: weight, bias← GetParam(hidden_layers[i])
6: mean, variance, moving_average← GetParam(hidden_layers[i + 1])
7: scale_weight, scale_bias← GetParam(hidden_layers[i + 2])
8: scalef← 1/moving_average
9: mean←mean * scalef

10: variance← variance * scalef
11: rstd← 1/sqrt(variance + epsilon)
12: updated_weight← weight * rstd * scale_weight
13: updated_bias← (bias–mean) * rstd * scale_weight + scale_bias
14: Store parameters(updated_weight, updated_bias) to optimized model
15: i← i + 2
16: else
17: Store parameters in hidden_layers[i] to optimized model

return optimized model

4.1.2. NDRange Optimizer

As mentioned in Section 2.1, OpenCL is processed in parallel by dividing it into a work-
group of the same size. To maximize the parallel processing performance of OpenCL, an
optimal LSZ needs to be set, to efficiently divide and process the GSZ: the size of the entire
data. However, it is difficult to determine the LSZ value because various factors need to be
considered, such as the computational number of kernels or the processing performance
of the GPU. Therefore, our framework provides an NDRange optimizer to search for the
optimal LSZ in an on-device environment. The NDRange optimizer applies a brute-force
methodology for the kernel being executed to search for the optimal value corresponding
to the on-device environment. To minimize the search range, the space of a multiple of
two or a multiple of four was searched. As explained in Section 3.2, in general, an optimal
speed is observed when the search space is a multiple of two or four, because vectorization
has been applied to an OpenCL kernel. Moreover, the kernel parameters are used as search
parameters because different execution results may be produced depending on the input
parameters, even if the kernels are the same. For example, the GEMM kernel uses M, N,
and K parameters, which represent the matrix size as the search parameters. The value
searched by the NDRange optimizer can be saved in a file format or embedded within the
framework, and the optimal LSZ value is automatically chosen without re-searching, using
the saved data obtained during the actual inference process. In addition, the NDRange
optimizer calculates the GSZ based on the searched LSZ, to ensure the accuracy of the
execution result. Therefore, the NDRange optimizer does not affect the accuracy.

4.1.3. Quantization Optimizer

The INT8 quantization technique has recently gained popularity for reducing the
computation required of the latest DNNs. INT8 quantization is a technique for compress-
ing a 32-bit floating-point (FP32) number into an 8-bit integer value. A scale factor for
converting an FP32 value into an INT8 value must be calculated in advance to apply INT8
quantization. The scale factor is divided into an activation scale factor, for changing the
layer input value, and a weight scale factor, for changing the weight parameters. A single
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activation scale factor is used in each layer, and the number of weight scale factors matches
the number of filters in each layer.

A suitable scale factor must be calculated based on the calibration dataset, to minimize
the difference in the distributions of the FP32 and INT8 values. Accordingly, our framework
uses Kullback–Leibler divergence (KLD) [55] as the activation scale factor, and min-max
normalization as the weight scale factor to calculate each scale factor [56].

Quantization of the weight parameters using the weight scale factor is typically
conducted offline to reduce the quantization overhead during runtime. In contrast, quan-
tization of input values is performed during runtime, because these values cannot be
specified in advance. Furthermore, the operation result that is obtained through INT8
quantization must be dequantized to FP32 to be delivered to the next layer. More specif-
ically, INT8 quantization entails quantization of input values and dequantization of the
final output, in which quantization and dequantization overhead causes a reduction in the
performance gain from INT8 quantization. Therefore, optimization of an INT8 operation
kernel based on OpenCL, that offsets the quantization and dequantization overhead, is
absolutely necessary to maximize the performance gain through INT8 quantization. For
this purpose, the proposed framework utilizes a Winograd convolution algorithm [57,58]
by applying INT8 quantization. The Winograd convolution algorithm drastically reduces
the overall operation complexity by increasing the number of addition operations, to reduce
the number of multiplication operations in a convolution layer, which is a common method
used. The operation complexity and accuracy vary depending on the output and filter size
in the Winograd convolution algorithm. Our framework uses a Winograd convolution
algorithm with a 2 × 2 output and a 3 × 3 filter, to guarantee accuracy.

Figure 7 illustrates the schematic diagram of the Winograd convolution algorithm in
which INT8 quantization is applied. Input and filter values must be converted because
of the nature of the Winograd convolution algorithm, which may result in multiplying
4 and 16 values, respectively, in the worst-case scenario. Therefore, after converting the
input value to 6 bits and the weight parameter to 4 bits, the converted input and filter
values are then used to execute the INT8 GEMM operation, in order to guarantee that
the conversion operation result is 8 bit. If an 8 bit dot product instruction that supports
GPU acceleration is available, the respective instructions must be used to improve the
INT8 operation performance. ARM and Qualcomm GPUs are well-known platforms that
support the GPU acceleration of 8 bit dot product instructions. Our framework supports
the arm_dot instruction [59] of the ARM GPU. When the arm_dot instruction is used, 8 bit
dot products, used in INT8 GEMM, can be processed as one instruction, maximizing the
performance gain due to INT8 quantization.
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4.2. Model Converter for Compatibility

Our framework provides a utility for importing a model that is trained with other deep
learning frameworks for compatibility. Our framework provides the best compatibility
with frameworks which are based on C/C++11. In particular, most Caffe-based learning
models can be directly converted to the proposed framework because they are based on a
static network configuration description. As depicted in Figure 8, the process of converting
the model is as follows.
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• First, a neural network visualization tool, such as Netron [60], needs to be used to
identify the overall network structure.

• Second, a neural network is configured in the same order and connection using the
user APIs of our framework.

• Finally, the model is converted to the model format for our framework layer-by-layer
according to the layer order of a neural network that has been reset in our framework
by loading the Caffe-based learning model (.caffemodel).
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In Figure 8, basically, it is a fully manual process for the user to write the initialization
codes of layers using the user APIs of our framework. However, if network configura-
tion can be provided with a network configuration file, the set-up process will be done
automatically in our framework.

It is notable that, when the network is set up in order, this order does not necessarily
mean the actual connecting sequences, but rather indicates the order that saves the param-
eters in the corresponding framework. Because not all the layers hold the parameters, we
can select and convert parameters from other formats to that of our framework by checking
the type, layer-by-layer, if the network is set up in the correct sequence.

The proposed framework also supports ONNX, which is applied as a de facto stan-
dard for converting models between frameworks. Similar to Caffe, ONNX also statically
describes the network based on a protocol buffer [61]; thus, visualization of a neural net-
work through Netron and model conversion is relatively straightforward. Hence, on a
framework such as TensorFlow, our framework provides a two-step model conversion
function through ONNX.

PyTorch provides a C/C++ based Torch script [62], but the basic language is Python,
and a large number of learning models are actually saved in a state dictionary format.
Hence, a Python-based utility is provided for converting the state dictionary model of
PyTorch into the protocol buffer format which is defined in our framework.

Most deep learning frameworks, including our framework, provide user APIs to
allow users to directly program neural networks. In contrast, they may have an internal
module that parses external text files for the network configuration, and establishes a
neural network on its own. This has the advantage that the neural network can be easily
changed and tested at the level of the application program without any modifications to the
source code. Many developers use such a method when they wish to obtain comparison
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results quickly; certain frameworks, such as Darknet and Caffe, explicitly require such
network configuration files.

To externally describe network configuration as text-based on protocol buffers, our
framework also optionally supports parsing and conversion into our framework for the
convenience of development. In other words, a network written by our user APIs can be
automatically generated internally by parsing the network configuration file (.prototxt)
of Caffe.

5. Experiments
5.1. Experimental Setup

To demonstrate the usefulness of our framework, we conducted performance evalua-
tions on its inference time and memory usage. Table 4 shows the performance evaluation
environment. The RK3399 [63] and Odroid-N2+ [64] computing devices are equipped with
ARM CPUs and GPUs, and are used in embedded systems. However, the currently popu-
lar platform Jetson Nano [65] does not support OpenCL, and only supports CUDA and
cuDNN. Therefore, RK3399 and Odroid N2+ are largely used for performance evaluation,
and Jetson Nano is used to relatively compare the performance of our framework and
CUDA-based deep learning frameworks, such as PyTorch.

Table 4. Performance evaluation environment.

System RK3399 Odroid N2+ Jetson Nano

CPU

ARM Cortex-A72
(2 cores, 2.0 Ghz)
ARM Cortex-A53
(4 cores, 1.5 Ghz)

ARM Cortex-A73
(4 cores, 2.4 Ghz)
ARM Cortex-A53
(2 cores, 2.0 Ghz)

ARM Cortex-A57
(4 cores, 1.43 Ghz)

GPU ARM Mali-T860 MP4 ARM Mali-G52 NVIDIA Maxwell GPU
(128 cores)

Memory 4 GB 4 GB 4 GB
Storage 64 GB eMMC 64 GB eMMC 128 GB

OS Ubuntu 18.04.7 Ubuntu 18.04.5 Ubuntu 18.04.5
(JetPack 4.5.1)

OpenCL
support OpenCL 1.2 OpenCL 2.0 Not supported

(CUDA 10.2, cuDNN 8.0)

In addition, TensorFlow Lite only supports OpenCL-based DNN acceleration in
Android. Hence, we compared the inference speed relative to NNAPI, which is a typical
Android-based GPU-accelerated engine, based on the performance evaluation results of
the AI benchmark [66]. In the AI benchmark, the inference performance was measured
for various networks, such as for MobileNet-v2 and Inception-v3, in the GPUs of diverse
mobile devices, in addition to the GPU of a general PC.

A shared library between our framework and OpenCL Caffe was generated to perform
a performance evaluation in an environment that was similar to the on-device operational
application environment. The inference time and memory consumption were then com-
pared through a test application, implemented with the generated shared library. In
contrast, OpenCL Caffe uses ViennaCL as the default for a GPU-based accelerated engine,
and additionally supports clBLAS and CLBlast. CLBlast is known to have the best perfor-
mance among OpenCL-based BLAS libraries that are currently disclosed [15]; therefore,
CLBlast was used as the GPU-based accelerated engine for OpenCL Caffe. Moreover, Open-
BLAS, which uses a multi-core, was used as a CPU-based BLAS library in our framework,
as well as OpenCL Caffe.

Table 5 presents a list of the DNNs used in the performance evaluation. The model,
trained in OpenCL Caffe, was converted using the model converter of our framework to
conduct a performance evaluation with DNNs having the same layer configuration and
parameters. OpenCL Caffe does not support YOLOv3 [67], EAST [68], or CRNN [69], and it
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is separately managed in a Git repository that supports CUDA. Therefore, the performances
of Yolo v3, EAST, and CRNN were only evaluated in our framework.

Table 5. List of DNNs used in performance evaluation.

DNN Number of Class
(Dataset)

Size of Trained-Model
(MB)

Size of Input Images
(Width × Height × Channel)

VGG-16 [70] 1000 (ImageNet [71]) 527 224 × 224 × 3
ResNet-18 [72] 1000 (ImageNet) 44.6 224 × 224 × 3

ResNet-101 [73] 1000 (ImageNet) 170 224 × 224 × 3
MobileNet-v2 [74] 1000 (ImageNet) 13.5 224 × 224 × 3

Yolo v3 20 (VOC [75]) 14.4 320 × 320 × 3
EAST 1 (Text Region) 15.9 320 × 320 × 3

CRNN 10 (Digit) 23.9 128 × 32 × 3

5.2. Comparison of Inference Times

Table 6 presents a comparison of the inference times between OpenCL Caffe and
our framework. For the performance evaluation, inference was continuously performed
on 100 images in each DNN, and then the average inference time was measured. The
images which were used for inference were randomly selected from the dataset used in
each DNN. In addition, the first inference time was excluded, because the build time
of OpenCL kernels was added during the first inference, when the DNN inference was
accelerated based on OpenCL. For our framework, the inference time, to which the model
and NDRange optimization were applied, was also measured. The performance of VGG-16,
to which the model and NDRange optimization were applied, was not evaluated, because
batch normalization was not used for VGG-16.

Table 6. Comparison of inference times (ms) in Odroid N2+/RK3399.

System DNN
OpenCL Caffe Our Framework

Speed-Up
Ratio (%)CPU GPU CPU GPU GPU

(+MO 1)
GPU

(+MO&RO 2)

Odroid N2+

VGG-16 1618 12,005 1606 1207 - - 134 3

ResNet-18 236 1792 227 203 141 129 183 4

ResNet-101 877 7522 814 908 536 515 170 4

MobileNet-v2 308 3082 280 232 62 40 770 4

Yolo v3 Not supported 841 367 118 80 1051 5

EAST Not supported 795 459 176 153 520 5

CRNN Not supported 80 58 42 40 200 5

RK3399

VGG-16 2562 10,164 2855 2218 - - 116 3

ResNet-18 366 1656 354 363 255 246 149 4

ResNet-101 1930 7242 1299 1467 963 928 208 4

MobileNet-v2 444 N/A (error) 930 354 94 64 694 4

Yolo v3 Not supported 1603 529 193 146 1098 5

EAST Not supported 1457 652 254 224 650 5

CRNN Not supported 99 81 63 61 162 5

1 Model optimization. 2 NDRange optimization. 3 CPU in OpenCL Caffe/GPU in our framework. 4 CPU in OpenCL Caffe/GPU (+MO/RO)
in our framework. 5 CPU in our framework/GPU in our framework.

The evaluation results show that the GPU-based inference performance in OpenCL
Caffe was considerably reduced when compared with that of the CPU. Because OpenCL
Caffe is optimized for a general PC environment, it does not guarantee that the performance
is optimized for an embedded system. The GPU-based inference performance using
OpenCL had improved further than the CPU in most cases in our framework. In particular,
the performance improved even further when model optimization (MO) and NDRange
optimization (RO), which were proposed in our framework, were applied.
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When the inference time was compared between OpenCL Caffe and our framework,
the results show that performance was improved by 134% for heavy DNNs, such as VGG-
16, and by 770% for light DNNs, such as MobileNet-v2. VGG-16 has a large number of
parameters, and the operation is executed sequentially in each layer; thus, an optimization
method applicable to an embedded system is limited, because operational resources are also
limited. In contrast, the GPU acceleration performance significantly improved through the
methods proposed in our framework for lightened DNNs, such as ResNet or MobileNet.
In particular, in-place kernel optimization that simultaneously executes operations for
weight and bias parameters can be applied if model optimization, which combines the
batch normalization layer, is applied, which minimizes unnecessary operating costs. The
evaluation also shows that the OpenCL-based acceleration performance can be maximized
by setting the optimal parallel processing space for each OpenCL kernel when the NDRange
optimizer is applied.

Table 7 presents a comparison of the inference time between our framework and AI
benchmark. The inference time of the GPU, similar to the ARM Mali-G52 equipped in
Odroid-N2+ used in the performance evaluation of this study, is summarized for com-
parison. In the AI benchmark, AI Benchmark 3.0.0 [76], operated in Android, was used
for the performance evaluation. AI Benchmark 3.0.0 provides the benchmark functions to
compare CPU and NNAPI-based execution results. NNAPI was used in the AI benchmark
to evaluate the performance of mobile devices. The inference time of MobileNet-v2 was 51
ms when the GPU (Mali-G52 MP2), which was most similar to the performance evaluation
of this study among various performance evaluations of the AI benchmark, was used. The
inference time of MobileNet-v2 was 40 ms when the model and NDRange optimization
of our framework were applied. Accordingly, these results verify that our framework is
competitive with popular DNN acceleration techniques, such as NNAPI.

Table 7. Comparison of inference times (ms) of our framework and AI Benchmark.

DNN

Our
FrameWork

AI Benchmark
AI Benchmark 3.0.0 with NNAPI

Odroid N2+
(Mali-G52)

MediaTek
Helio G90T
(Mali-G76

MP4)

Exynos 9810
Octa

(Mali-G72
MP18)

Exynos 8895
Octa

(Mali-G71
MP20)

MediaTek
Helio P70
(Mali-G72

MP3)

MediaTek
Helio P65
(Mali-G52

MP2)

MediaTek
Helio P60
(Mali-G72

MP3)

Exynos 9609
(Mali-G72

MP3)

Exynos 9610
(Mali-G72

MP3)

Mobile
Net v2 40 1 37 72 63 66 51 68 61 77

1 It applies model and NDRange optimization at our framework.

Table 8 presents a comparison of the inference time between PyTorch and our frame-
work. Our framework performed inference on an Odroid N2+, and PyTorch performed
inference on a Jetson Nano. This is because, as mentioned earlier, Jetson Nano does not
support OpenCL. The Jetson Nano has 128 CUDA cores and shows a performance of
up to 472 GFLOPS (GPU FLoating point Operations Per Second) [65]. In comparison,
the Odroid N2+ has six execution engines and shows a performance of approximately
163 GFLOPS [64,77]. In the case of ResNet-18, the difference in inference speed occurs as
much as the difference in GFLOPS between Jetson Nano and Odroid N2+. In contrast, in
the case of MobileNet-v2, our framework showed a faster inference speed than PyTorch.
This is because, when the parameters of the model are small, the efficiency of in-place
kernel optimization and asynchronous queue execution is relatively high, as well that as the
parallel processing performance of OpenCL is maximized through the on-device optimizer.
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Table 8. Comparison of inference times (ms) of PyTorch and our framework.

DNN

PyTorch Our Framework
Jetson Nano with CUDA/cuDNN

(472 GFLOPS)
Odroid N2+ with OpenCL

(163 GFLOPS)

GPU GPU GPU (+MO) GPU (+MO&RO)

ResNet-18 43 1 203 141 129
MobileNet-v2 51 1 58 42 40

1 It uses TorchVision pre-trained model: pytorch/vision:v0.10.0.

5.3. Comparison of Memory Usage for Inference

Table 9 shows a comparison of the memory usage during inference between OpenCL
Caffe and the proposed framework. Memory usage was compared only in Odroid-N2+, in
which the average memory usage and the maximum memory usage during inference were
measured. In all networks, the memory usage during GPU-based inference was lower than
that of OpenCL Caffe. For ResNet-101, in particular, the average memory usage decreased
by approximately 52%, while the maximum memory usage decreased by approximately
24%. The memory object maintenance costs of OpenCL were minimized, as our framework
supports the unified memory architecture of embedded systems. While OpenCL Caffe was
designed to utilize an open-source-based GPU-accelerated engine, such as CLBlast, our
framework provides a proprietary GPU-accelerated engine for embedded systems that
minimizes the auxiliary memory that is required for OpenCL operations.

Table 9. Comparison of memory usage (MB) in Odroid N2+.

System DNN
Usage
Type

OpenCL Caffe Our Framework Reduction
Ratio (%) 1CPU GPU CPU GPU

Odroid N2+

VGG-16
Average 1164 1724 944 1288 25

Max 2334 2620 1842 2236 15

ResNet-18
Average 395 688 496 500 27

Max 395 707 602 657 7

ResNet-101
Average 807 1551 809 744 52

Max 807 1710 1116 1302 24

MobileNet-v2
Average 550 1007 468 831 17

Max 550 1226 685 939 23
1 1 − (GPU in our framework)/(GPU in OpenCL Caffe).

6. Conclusions and Discussion

In this study, we have proposed a deep learning framework that is specialized for
embedded systems. The proposed framework provides a deep learning core, including
data and layer structures, an OpenCL-based accelerator engine, and an on-device optimizer
to improve the learning and inference performance on real devices, and a model converter
for compatibility.

The deep learning core of our framework was designed for unified memory, thus
minimizing the operation costs required for OpenCL data management by preventing
unnecessary data transfer between the CPU and GPU. In addition, the accelerator engine
provides the BLAS library, which is optimized for the embedded GPU, in-place kernel
optimization that minimizes the repeated access cost of data, and asynchronous queue
execution for maximizing the GPU utilization.

The on-device optimizer for inference provides a model optimizer for improving
the inference performance by combining layers, an NDRange optimizer for searching for
the optimal parallel processing space, and a quantization optimizer, which reduces the
computation amount through INT8 quantization.

Finally, our framework provides a model converter for compatibility, enabling it to
use models trained in conventional deep learning frameworks.

The performance evaluation shows that our framework compares favorably in terms
of inference time and memory usage with OpenCL Caffe, which is an existing deep learning
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framework. Furthermore, our framework was confirmed as being competitive against
NNAPI, according to the performance evaluation results of the AI benchmark.

Currently, research on on-device learning, based on field data in embedded systems, is
challenging. Our framework focuses on optimizing the inference performance of embedded
systems, and provides a limited functionality for on-device learning. Therefore, we plan to
study an acceleration engine and an on-device optimizer for on-device learning.

Also, our framework is optimized for the ARM CortexA CPU and Mali GPU in a
Linux environment. Therefore, the framework will be expanded in the future to enable its
use in other HW environments and operating systems that are used in various common
mobile devices, such as Android or Qualcomm.

Finally, we plan to study a tuning algorithm that automatically analyzes the problems
and potential of parallelism, based on the characteristics of the embedded system, and
explore the optimization mechanism for this.
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Appendix A

This appendix describes the performance analysis and discussion of each technique
of our framework to identify which block contributes the most towards the performance
improvement. In DNN, inference time usually consists of the sum of the execution times of
input, hidden, and output layers. The execution time of the input layer can be expressed as
the sum of the preprocessing time (TPre) and the data transfer time to the GPU (TCopyToGPU).
The TPre is a fixed value, but the TCopyToGPU can be minimized by utilizing data sharing,
which is one of the features of unified memory (see Section 3.1.1).

The execution time of the hidden layer is calculated as the sum of the operation
execution times of each hidden layer. Because the execution time of the hidden layer
occupies most of the inference time, our framework focused on minimizing the execution
time of the hidden layers. For this, we proposed an OpenCL-based accelerator engine. The
accelerator engine can utilize existing CPU-based BLAS libraries, as well as use proprietary
OpenCL-based BLAS and DNN acceleration libraries proposed by our framework. In
addition, in order to maximize the efficiency of DNN acceleration in the hidden layer, the
accelerator engine performs calculations only on the GPU. This is because the acceleration
performance of OpenCL decreases if operation results are returned between devices when
performing operations in the hidden layer. In addition, when accelerating the DNN
operation based on OpenCL, not only the execution time of OpenCL kernels, but also the
build and launch time of the kernels, are additionally required. Therefore, the accelerator
engine has focused on minimizing the build and launch times as well as the execution time
of the kernels (see Sections 3.1.1 and 3.2).

Table A1 shows the performance comparison with and without unified memory. For
performance comparison, inferences were continuously performed on 100 images of each
DNN. Overall latency includes the overall execution time, data preprocessing, and data
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transfer time. Memory usage represents the average memory usage for inference over
100 images.

In terms of the inference time per one image, the acceleration performance improved
by the unified memory is quite small. This is because, as described above, most of the
inference time is occupied by the operation time of the hidden layers, and the data trans-
mission time can be reduced only in the input/output layer. However, it is confirmed that
performance can be improved in terms of overall latency when inference is continuously
performed using changed input data. Therefore, when using an inference service in on-
device, an accelerator engine that supports unified memory can be a great help in reducing
overall latency.

In terms of memory usage, it was confirmed that performance gains can be obtained
when unified memory is used. In particular, the larger the number of parameters and
the greater the depth, the greater the memory usage when unified memory is not used.
Therefore, it was confirmed that memory usage can be minimized through unified memory
in the case of embedded systems with limited system resources, especially memory.

Table A1. Comparison of performance with and without unified memory.

System DNN

With Unified Memory Without Unified Memory

Overall
Latency

(ms)

Memory
Usage (MB)

Overall
Latency

(ms)

Memory
Usage (MB)

Odroid N2+
ResNet-18 13,273 500 14,081 507

ResNet-101 52,031 744 53,158 858

MobileNet-v2 4356 831 5199 855
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