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Abstract: To meet the increasing demands for remote sensing, a number of radar systems using Linear
Frequency Modulation (LFM) waveforms have been deployed, causing the problem of depleting
frequency resources. To address this problem, several researchers have proposed the Spectrum
Shared Radar System (SSRS) in which multiple radars share the same frequency band to transmit
and receive their own signals. To mitigate the interferences caused by the signal transmission by
other radars, SSRS employs orthogonal waveforms that inherit the orthogonality of the waveforms
from orthogonal codes. However, the inherited orthogonality of the codes is significantly reduced
when incorporating LFM waveforms with the codes. To solve this problem, in this paper, we
propose a novel but simple scheme for generating a set of optimized coded LFM waveforms via
new optimization framework. In the optimization framework, we minimize the weighted sum of
autocorrelation sidelobe peaks (ASP) and cross-correlation peaks (CP) of the coded LFM waveforms
to maximize the orthogonality of the waveforms. Through computer simulations, we show that
the waveforms generated by the proposed scheme outperform the waveforms created by previous
proposals in terms of ASP and CP.

Keywords: Spectrum Shared Radar Systems (SSRS); orthogonal waveforms; code diversity; opti-
mized coded LFM

1. Introduction

A Linear Frequency Modulation (LFM) waveform is the most popular type of pulse
compression and has been adopted for many radar systems due to its ease of hardware
implementation and good range resolution. However, due to the increasing demands for
mobile communications and remote sensing, a frequency resource that could be allocated
to the radar systems and that employs an LFM waveform is lacking. To remedy this issue,
many researchers have proposed the use of orthogonal waveforms in modern radar systems.
The representative system adopting orthogonal waveforms is the Spectrum Shared Radar
System (SSRS), where multiple radars in close proximity share the same frequency band
as depicted in Figure 1 [1–3]. To estimate a target’s characteristics accurately in the SSRS,
each radar must operate independently using a waveform that does not interfere with
other radar signals. For this purpose, it is imperative to design orthogonal waveforms that
minimize the interferences.

A simple solution to minimize interference in SSRS is a time division approach. In this
approach, only one radar transmits a waveform and receives an echo signal during one time
period; after the period, one of the other radars operates in a given order. The limitation of
this approach lies in the low utilization, which means that the other radars must wait until
the operation of one radar is completed. The low utilization inevitably hinders the real-time
detection and estimation of a target’s characteristics, such as its position and velocity.
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Figure 1. Spectrum Shared Radar System.

To address the limitations of the time division approach, several researchers have
employed orthogonal codes to generate orthogonal radar waveforms. H. Deng proposed
an optimization framework for generating a polyphase code set through the hybrid opti-
mization process [4]. Specifically, we can derive a polyphase code set that minimizes the
autocorrelation sidelobe peak (ASP) and cross-correlation peak (CP) via the optimization
framework. In [5], U. Majumder et al. proposed the incorporation of an orthogonal code
(e.g., Walsh–Hadamard code) into the Linear Frequency Modulation (LFM) waveforms
via Spread Spectrum Coded LFM (SSCL). Specifically, an orthogonal waveform is created
by multiplying an LFM waveform with each element of an orthogonal code. Even if the
method for creating the SSCL waveform is simple, this method has a limitation in that
multiplication with the rapidly fluctuated LFM waveform could significantly reduce the
orthogonality of the code.

To address the problem mentioned above, we propose a novel but simple scheme for
creating a set of orthogonal LFM waveforms that maximizes the orthogonality of the coded
LFM waveforms. Here, the coded LFM waveform refers to an LFM signal encoded with a
code. To maximize the orthogonality, our scheme employs a new optimization framework
whereby we optimize coded LFM waveforms rather than orthogonal codes. In previous
approaches, an orthogonal code set was firstly derived through an optimization framework
(or the well-known orthogonal code was used) and then each code was multiplied with
an LFM waveform. In contrast, we derive a set of orthogonal coded LFM waveforms
through the proposed optimization framework. The beauty of the proposed scheme lies
in the improvement of the orthogonality while benefiting from all the advantages of the
LFM and an orthogonal code set. Our simulation results shows that our scheme exhibits
significant performance improvements over the scheme proposed in [5]. This improvement
comes from (1) the new optimization framework for generating optimized coded LFM
waveforms and (2) a polyphase code with a higher degree of freedom compared to Walsh–
Hadamard code.

We analyze the impact of several parameters (e.g., the number of distinct phases,
the length of the code, and the number of radars) on the orthogonality of radar waveforms
using computer simulations. Moreover, we observe that the proposed optimized coded
LFM outperforms the waveform of [5] by up to 11.652 dB and 17.560 dB in terms of ASP
and CP, respectively. The contributions in this paper are as follows:

• We propose a scheme for designing a set of optimized coded LFM waveforms to
improve the orthogonality of previous proposals;

• The set of optimized coded LFM waveforms provides optimized orthogonality while
inheriting various advantages of LFM;

• We propose an optimization framework for deriving the proposed optimal coded
LFM waveforms;
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• We conduct an in-depth study of the proposed optimal coded LFM waveforms through
computer simulations and show that the proposed coded LFM waveforms outperform
the orthogonal waveforms in previous proposals.

The remainder of this document is structured as follows. Section 2 briefly intro-
duces the related works on orthogonal waveform design and highlights their limitations.
In Section 3, we describe the details of the proposed scheme. Section 4 presents the sim-
ulation results and performance evaluations in terms of orthogonality in relation to ASP
and CP. Numerical results and a discussion are provided in Section 5. Finally, Section 6
summarizes the results and draws conclusions.

2. Related Works

To maximize the system utilization in the SSRS, several researchers have proposed
a mechanism for deriving an orthogonal waveform set by leveraging phase code diver-
sity and chirp modulation diversity. Deng exploited phase code diversity to design an
orthogonal polyphase code set that has good ASP and CP using a hybrid optimization
process that leverages simulated annealing and the traditional iterative code selection
method [4]. Afterwards, the authors in [6,7] adopted a genetic algorithm and the Niche
genetic algorithm in the optimization process to improve the orthogonality of the code
sets. In [8], the authors revealed a problem that the method could be trapped in the local
minimum shortly after initialization, which resulted in poor performance when designing
a polyphase waveform. To solve this problem, the authors proposed a relaxation and cyclic
optimization algorithm.

Several researchers have proposed the use of chirp diversity to generate orthogonal
waveforms [9–14]. Welstead studied the relationship between the chirp rate and the level
of interferences between two LFM signals with the same pulse width and showed that,
as the difference of the chirp rates of two LFM waveforms increases, they become less
correlated [9]. Focusing on the characteristics of the chirp rate diversity of a single LFM
signal, in [9,10], a method for suppressing cross-term interference using a modified LFM
signal composed of multiple sub-chirp signals with different chirp rates was implemented.
However, when two signals with the same pulse width have different chirp rates, the band-
width of one signal is wider than that of the other signal. Like [10], in [11–14], the authors
exploited chirp diversity to generate orthogonal waveforms using a signal composed of
several sub-chirps with different chirp rates. Unlike previous studies [9,10], the authors
in [11–14] exploited chirp diversity, but bounded the bandwidth so that all signals had the
same bandwidth. In [11], the author developed a waveform consisting of up-chirps and
down-chirps within the bounded bandwidth and repeated the waveform within the pulse
width. The method for developing a waveform in [11] showed very good cross-correlation
performance between a pair of waveforms with different chirp rates. However, the perfor-
mance in terms of the autocorrelation sidelobe peaks of the waveform was unsatisfactory.
The authors in [12,13] constructed a new class of a polyphase code set called piecewise
LFM by concatenating the P3/P4 polyphase codes; they examined the autocorrelation side
lobe peak and cross-correlation peak performance as well as the Doppler property. This
piecewise LFM waveform is composed of several sub-chirps with different chirp rates and
sub-chirp durations. Each sub-chirp is configured to occupy an independent bandwidth
that does not overlap with other sub-chirps within the specified piecewise LFM bandwidth.
In this manner, several orthogonal waveforms can be generated by controlling different
sub-chirp durations and chirp rates. Compared to [4], this waveform showed good Doppler
properties; however, the performance in terms of autocorrelation and cross-correlation was
not significantly improved.

Multiple diversities have been considered for the design of a set of orthogonal wave-
forms. U. Majumder proposed a scheme for designing SSCL (Spread Spectrum Coded
LFM) waveforms that include code diversity and chirp rate diversity [5]. These waveforms
are generated by generating LFM signals with different chirp rates (chirp rate diversity)
and encoding the LFM signals with an orthogonal code set (code diversity). However, the
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previous approach for generating a SSCL waveform [5] might reduce the orthogonality of
the orthogonal code because each element of the code could be distorted when multiplied
with a LFM waveform. To address this issue, we propose a scheme for deriving a set
of optimized coded LFM waveforms that maximizes orthogonality. We elaborate on the
proposed scheme in the following section.

Instead of designing orthogonal waveforms, several studies have focused on improv-
ing orthogonal waveforms by using a pulse train or modifying a matched filter. In [15],
the authors mentioned the range–Doppler ambiguity problem of several optimal wave-
forms and proposed a method to generate optimal frequency-modulated pulse trains to
alleviate this problem. In [16], an orthogonal waveform called DFCCW was implemented.
The sub-pulses of the waveform proposed in [16] had different carriers and chirp rates,
indicating that they had more degrees of freedom to control the waveform properties. This
method has been proven to be excellent in reducing cross-ambiguity peaks because of the
pulse train property. In [17], the authors showed that high recurrent Doppler sidelobes
caused serious interference between channels. To suppress these recurrent side-lobes, they
proposed a modified range–Doppler processing method at the receiver.

3. Proposed Scheme

To derive a set of optimized coded LFM waveforms, our scheme employs a new opti-
mization framework in which we find L coded LFM waveforms minimizing an objective
function, which is the weighted sum of ASP and CP. Hence, to understand the process
of deriving a set of optimized coded LFM waveforms, we first explain the LFM signal
and the set of polyphase codes used to encode the LFM signal. Then, we explain how to
find a set of optimized coded LFM waveforms through the proposed optimization process.
Before explaining the details, we summarize the nomenclature of this paper in Table 1.

Table 1. Nomenclature.

Symbol Description

L The number of radars or waveforms
M The number of distinct phases
N Code length
λ Weighting factor
Tp Pulse width of an LFM waveform
Tc Chip time of a code sequence
X A set of LFM waveforms
S A set of polyphase code sequences

Sopt A set of optimized polyphase code sequences
Y A set of coded LFM waveforms
φ A phase element in S

ASP Autocorrelation sidelobe peak
ML Main lobe width
CP Cross-correlation peak

Ri(·) Autocorrelation of the ith waveform
Rij(·) Cross-correlation between ith and jth waveforms

Obj(Y) The objective function that minimizes ASP and CP

3.1. LFM Waveform

An LFM waveform is a signal in which a frequency increases (up-chirp) or decreases
(down-chirp) linearly with time, and the LFM waveform is obtained by

x(t) = exp
[

j2π

(
f0t +

1
2

αt2
)]
· 1[0,Tp ](t) (1)
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where Tp, f0, and α are the pulse width, starting frequency, and chirp rate, respectively.
1[0,Tp ] is an indicator function and is expressed as follows.

1[0,T](t) =

{
1, 0 ≤ t ≤ T
0, otherwise.

(2)

When the starting frequency ( f0) is zero, Equation (2) can be simplified as follows.

x(t) = exp(jπαt2) · 1[0,Tp ](t) (3)

An LFM waveform set, X, consists of L LFM waveforms and is defined as follows
(each LFM waveform in X might have different chirp rates. If this is the case, a modified
LFM signal such as a concatenated LFM or piecewise LFM could be used to make the
bandwidth of each LFM signal the same. In this case, chirp rate perturbation can be
activated in addition to phase perturbation in the optimization process):

X = [x0(t), x1(t), . . . , xL−1(t)]T (4)

where V T is the transposition of a vector V .

3.2. Polyphase Code Set

To generate a coded LFM waveform, we employ a polyphase code sequence that
allows a higher degree of freedom in our optimization process than a well-known binary
code set (e.g., Barker code, Walsh–Hadamard code, Gold sequence), leading to better
orthogonality (instead of a polyphase code set, other code sets can be used without any
modifications in our design). A polyphase code set is composed of L codes; each code
includes N sub-pulses elements. The polyphase code set S is defined as follows:

S = [s0, s1, . . . , sL−1] (5)

where sl is a code l and sl(n) is the nth element of sl , which can be expressed by

sl = [sl(0), sl(1), . . . , sl(N − 1)] (6)

and
{sl(n) = exp[jφl(n)], n = 0, 1, . . . , N − 1}, l = 0, 1, . . . , L− 1 (7)

where φl(n)(0 ≤ φl(n) ≤ 2π) is the phase of sl(n). It is noted that the nth element of code
l is used to encode the nth sub-pulse of coded waveform l. φl(n) can be selected from the
following admissible values:

φl(n) ∈
{

0,
2π

M
, 2 · 2π

M
, . . . , (M− 1) · 2π

M

}
(8)

where M is the number of distinct phases in a code.

3.3. Coded LFM Waveform

The lth coded LFM waveform, yl(t), can be generated by multiplying the lth LFM
waveform and lth code sequence and can be defined as

yl(t) = xl(t) ·
N−1

∑
n=0

1[0,Tc ](t− nTc) · sl(n)

=
N−1

∑
n=0

ejπαl t2 · 1[0,Tc ](t− nTc) · ejφl(n)

(9)
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where Tc is the chip time of a code sequence. Tc is generally shorter than the pulse time, Tp,
and is defined as Tc = Tp/N. That is, the original pulse is split into N sub-pulses, and each
code element of the generated code sequence is encoded in each sub-pulse. We briefly
define Equation (9) as

yl(t) = xl(t)� sl . (10)

A set of coded LFM waveforms, Y , consists of L coded LFM waveforms as follows:

Y = [y0(t), y1(t), . . . , yL−1(t)]

= X ◦ S
(11)

where X ◦ S is an element operation of � between X and S.

3.4. Optimization Framework

If S is first optimized and then generates a coded LFM waveform based on the
optimized S, the orthogonality of S would be degraded. As a solution to this problem, we
propose a new optimization framework in which we find a set of optimized coded LFM
waveforms, Yopt, that minimizes an objective function; that is, the weighted sum of ASP
and CP. As we do not vary an LFM waveform set in this optimization framework, finding
Yopt is comparable to finding Sopt. Hence, we use S as a configurable parameter of our
optimization framework. Through this approach, we can maximize the orthogonality of
coded LFM waveforms, which are actually transmitted by radar.

The optimization problem can be formulated as follows:

Sopt = arg min
S

Obj(Y) (12)

where Obj(Y) is an objective function when a set of coded LFM waveforms is Y . Obj(Y)
can be expressed by

Obj(Y) = (1− λ)ASP(Y) + λCP(Y) (13)

where λ is a weighting factor (it is noted that the increase in λ means that we design a
set of coded LFM waveforms to mitigate CP more aggressively than ASP), and ASP(Y)
and CP(Y) are the autocorrelation sidelobe peak and cross-correlation peak, respectively.
ASP(Y) and CP(Y) are described by

ASP(Y) = max
i

max
|k|>MLi

|Ri(k)| (14)

CP(Y) = max
i,j,i 6=j

max
k
|Rij(k)| (15)

where k and MLi are the time delay and normalized main lobe width of the ith coded LFM
waveform, respectively. Rij(·) is a cross-correlation function of the ith and jth coded LFM
waveforms and R(·) is an autocorrelation function of the ith coded LFM waveform. Rij(·)
can be expressed by

Rij(k) =
k

∑
n=−∞

yi(n) · y∗j (n− k) (16)

where yi(n) is the nth element of a discrete sequence for yi(t) and y∗ is a complex conjugate
of y. Ri(k) can be easily obtained by replacing y∗j (n − k) with y∗i (n − k). In radar sys-
tems adopting coded waveforms and matched filtering, the autocorrelation sidelobe (i.e.,
Ri(k), k > 0) might induce a spurious peak, causing false alarms in target detection. Thus,
maximizing Ri(0) is comparable to minimizing ASP(Y). As it is impossible to minimize
both ASP and CP in the optimization framework, we minimize the weighted sum of ASP



Sensors 2021, 21, 5796 7 of 13

and CP in our optimization framework. Similar to [13], the main lobe width MLi can be
obtained by

MLi =

[
min(k > 0) s.t. |Ri(k)| <

1√
N

]
− 1. (17)

As depicted in Figure 2, the procedure for finding Sopt consists of six steps (notably,
even if it seems that finding Yopt is computationally complex, the complexity of finding
Yopt in this framework is comparable to the complexity of finding Sopt [6]). Specifically, we
adopt simulated annealing (SA), as presented in [4], as an algorithm for finding an optimal
point, which corresponds to steps 3–6. The detailed procedure is explained below.

1. Generate an LFM waveform set, X;
2. Generate a random polyphase code set S;
3. Generate a set of coded LFM waveforms, Y ;
4. Calculate the objective function, Obj(Y). Then, Y is adopted as a candidate of the

optimized coded LFM waveform. If Obj(Y) is smaller than Obj(Yopt), Yopt and Sopt
are replaced with the current Y and S. Otherwise, we do not change Yopt and Sopt
(any global optimization algorithm (e.g., brute force, simulated annealing, the genetic
algorithm, Bayesian optimization, etc.) can be used in this step to find the optimal
state. In this paper, we employ simulated annealing (SA), which was also adopted
by [4]. In simulated annealing, the transition, which corresponds to the update of the
phase matrices S and Sopt in our context, is determined by an acceptable probability
function P(Obj(Y prev), Obj(Y), T) = exp[{Obj(Y)−Obj(Y prev)}/T] that depends on
the scores of the two states and a global time-varying parameter T called temperature.
If a random value p, where p ∼ U(0, 1) is a uniform distribution between 0 and 1,
is less then P(Obj(Y prev), Obj(Y), T), then the transition is accepted for the current
state, Y , as a candidate of the optimized coded LFM waveform, Yopt. This probability
prevents the algorithm from becoming stuck at a local minimum that is worse than
the global minimum. Please refer to [4] for detailed operation);

5. In the phase perturbation process, a randomly selected element in S is replaced with
a different admissible phase, which is defined in Equation (8);

6. Repeat steps 3 to 5 until the stop condition is satisfied (we use the stop conditions
adopted by [4]. If the phase perturbation is not accepted during three consecutive
temperature reductions in the simulated annealing algorithm, then the optimization
process is stopped).

Figure 2. Structure of proposed coded LFM scheme.

4. Performance Evaluation

In this section, we present the evaluation of the proposed scheme for generating a set
of optimized coded LFM waveforms using MATLAB R2020b [18]. More specifically, we
obtained two performance measures to evaluate the orthogonality (i.e., ASP and CP) as
a function of several independent variables: the code length (N), the number of distinct
phases (M), the weighting factor (λ), and the number of radars (L). As the optimization
process is a task to find a phase matrix S, we selected L, M, and N to constitute the phase
matrix S as independent variables, and λ was used for the objective function. The chirp
bandwidth and pulse width were fixed to 16 MHz and 1 µs, respectively (the netted radar
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system for detecting drones normally consists of up to 8 radars and uses the same pulse
length of 1 µ to perform the same role [19] and 16 MHz, respectively). The sampling rate
used in the MATLAB simulation was set to 256 MHz. The bandwidth of the coded LFM is
determined by the sum of the bandwidth of the LFM waveform (B) and the bandwidth of
the code (1/Tc). This sampling rate satisfies the Nyquist bandwidth for the bandwidth of
the coded LFM waveform used in the experiment.

To obtain a set of optimized coded LFM waveforms in this evaluation, we adopted a
hybrid optimization process similar to [4]. To demonstrate the superiority of the proposed
scheme, we compared the orthogonality of the proposed optimized coded LFM waveforms
with that of SSCL waveforms [5]. In the SSCL waveforms, we generated two types of
coded waveforms: (1) SSCL waveforms encoded with the Walsh–Hadamard code (SSCL–
Hadamard) and (2) SSCL waveforms encoded with the polyphase codes derived in [4]
(SSCL–Polyphase). The setting of default parameters is shown in Table 2.

Table 2. Parameter settings.

Parameter Default Value

Tp, pulse width 1 µs
B, chirp bandwidth 16 MHz
L, the number of radars 4
M, the number of phases 2
N, code length 32
λ, weighting factor 0.5

4.1. Impact of the Number of Radars

Figure 3 depicts ASP and CP according to the number of radars. We observe that the
ASP and CP of the proposed optimized coded LFM waveforms were lower than those of
the SSCL–Hadamard and SSCL–Polyphase waveforms. This was because the objective
function of the proposed optimization framework was a function of coded LFM waveforms.
In contrast, the objective function for obtained SSCL–Hadamard and SSCL–Polyphase
waveforms was based on orthogonal codes, where orthogonality could be degraded during
multiplication with LFM waveforms.

Figure 3 shows that ASP and CP increased with the number of radars in both the
proposed coded LFM waveforms and two benchmarks (SSCL–Hadamard and SSCL–
Polyphase). This was because it was unlikely that a set of waveforms would be selected
that could produce good orthogonality for all pairs of waveforms as L increased. Moreover,
in Figure 3, an additional gain was obtained by increasing the number of distinct phases in
the proposed LFM waveforms.
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Figure 3. ASP and CP according to the number of radars.

4.2. Impact of Code Length

Figure 4 shows ASP and CP according to the code length. As expected, the optimized
coded LFM waveform outperformed the SSCL–Hadamard and SSCL–Polyphase wave-
forms in terms of ASP and CP. Similar to Figure 3, Figure 4 shows that the additional gain
could be obtained by selecting a large M in the proposed optimized coded LFM waveform.
Specifically, CP decreased exponentially with the code length and ASP was likely to con-
verge with the code length. From this observation, we conclude that the code length is a
dominant factor affecting the orthogonality. This is because the degree of freedom (DoF)
increases exponentially with the code length, which implies that we can select a set of
coded waveforms with large orthogonality in the optimization process. From Figure 4, we
learn that an appropriate tradeoff is required between the bandwidth of a radar system and
the code length satisfying the orthogonal performance in the proposed scheme. Specifically,
the bandwidth of the waveform increases linearly with the code length, but the gains in
ASP and CP tend to gradually decrease with the code length, as depicted in Figure 4. This
implies that a longer code length allows the orthogonal gain to be achievable with a greater
number of phases.

Figure 4. ASP and CP according to the code length.

4.3. Impact of the Number of Distinct Phases

Figures 3 and 4 confirm that our scheme could generate a better set of orthogonal
waveforms than the two benchmarks. We expected that we could further improve the or-
thogonal waveforms of our scheme by controlling the number of distinct phases. To confirm
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this, we evaluated the ASP and CP of the proposed optimized LFM waveforms according
to the number of distinct phases. Figure 5 shows that both ASP and CP decreased with the
number of distinct phases. In particular, the gain induced by adopting a large M increased
with the code length N. This phenomenon resulted from the fact that the degree of freedom
(DoF) in the optimization process increased exponentially with N (the number of coded
LFM waveforms that could be selected in the optimization process was ML×N).

4.4. Impact of the Weighting Factor

Recall that the weighting factor λ is an important design parameter affecting the ASP
and CP of optimized coded LFM waveforms. Specifically, a set of coded LFM waveforms
with a large λ reduces CP aggressively while sacrificing ASP. Thus, we evaluated the ASP
and CP of the optimized coded LFM waveforms of our scheme according to λ.

Figure 6 depicts ASP and CP according to a weighting factor λ. As expected, CP
decreases with λ and ASP increases with λ. There are two interesting observations in
Figure 6. First, ASP slightly increases with λ in the regime with a small λ(≤0.75) and
abruptly increases with λ in the regime of a large λ(>0.75). However, CP slightly decreases
with λ in both regimes. Specifically, the increase in λ in the regime of a large λ induces a
small gain in CP but significantly degrades ASP. Second, we do not find any tendency
between ASP and M when λ is 1. However, we observe that a large M is helpful for
reducing CP. This is because ASP is not considered in the optimization process when λ
is 1.

Figure 5. ASP and CP according to the code length in various settings for M: M = 2, 4, 8, and 16.
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Figure 6. ASP and CP according to the weighting factor in various settings for M: M = 2, 4, 8,
and 16.

5. Discussion

In Table 3, we compare the performances of our scheme with those of previous
proposals [6,7,13]. More specifically, the proposed scheme outperformed the previous
proposals even when our scheme employed a shorter code length and a larger number of
radars than the previous proposals. We emphasize that the orthogonal waveforms from
our scheme showed better orthogonality than those from previous proposals even using a
narrower bandwidth and supporting more radars. In other words, the frequency efficiency
of our scheme is much better than previous proposals [6,7,13].

It should be noted that we must consider both the computational complexity and
orthogonality when generating orthogonal waveforms using the proposed scheme. Specifi-
cally, large numbers of M and N induce a large DoF in the optimization process, but the
computational complexity of the optimization process increases exponentially with M and
N. Moreover, the coded LFM waveform with a large M is vulnerable to noise. Therefore,
the careful selection of design parameters (e.g., L, M, N) is important for generating a set
of optimized coded LFM waveforms.

Table 3. Performance comparison.

Number of Radars Code Length ASP(dB) CP(dB)

P. A. Qazi [13] 3 128 −17.66 −13.93
M. Ramarakula [6] 4 40 −17.8 −13.2
H. Zhang [7] 4 40 −15.2 −15.2
Proposed 8 32 −25.19 −21.88

To exploit the proposed waveform in practice, we need to analyze the performance of
the range and Doppler measurements of the optimized coded LFM waveform compared to
a single (uncoded) LFM waveform. For this purpose, using MATLAB, we obtain ambiguity
functions of the proposed optimized coded LFM and a single (uncoded) LFM waveform,
where the ambiguity function at a non-zero delay and Doppler frequency corresponds to
returns from the range and Doppler that are different to those of the nominal target [20].
The LFM waveform is constructed with a pulse width of 1 µs and sweep bandwidth of
32 MHz. To generate an optimized coded LFM waveform set that has the same bandwidth
as the LFM waveform, we encoded polyphase code sequences with a chip bandwidth of
16 MHz to an LFM waveform sweeping 16 MHz for 1 µs.

Figure 7 shows the range–Doppler result obtained through the zero-delay cut and the
zero-Doppler cut ambiguity functions. As shown in Figure 7, the ambiguity functions of the
non-zero delay of the proposed waveform are relatively higher than those of a single LFM
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waveform. This implies that accuracy of range measurements could be reduced when there
are multiple targets in close proximity (we can improve the accuracy of range detection
by employing a post-processing algorithm at the receivers (e.g., the CLEAN algorithm)).
Moreover, the ambiguity function of the non-zero Doppler of the proposed waveform is
comparable to that of a single LFM waveform, which means that the accuracy of Doppler
measurement is rarely degraded.

Figure 7. Range–Doppler relationship of a single LFM and optimized coded LFM waveforms.

6. Conclusions

In this paper, we propose a scheme for designing a set of optimized coded LFM
waveforms. Contrary to previous approaches that derive a set of orthogonal codes that
maximize the orthogonality of the codes and then use the derived codes to encode LFM
waveforms, our scheme derives an optimal set of coded LFM waveforms, maximizing
the orthogonality of the waveforms. For this purpose, our scheme employed a new opti-
mization framework in which we found a set of coded LFM waveforms that minimize an
objective function. Through in-depth simulation studies, we confirmed that the proposed
scheme generated a set of waveforms with better orthogonality than previous proposals in
terms of autocorrelation sidelobe peaks and cross-correlation peaks.
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