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Abstract: In recent acoustic scene classification (ASC) models, various auxiliary methods to enhance
performance have been applied, e.g., subsystem ensembles and data augmentations. Particularly,
the ensembles of several submodels may be effective in the ASC models, but there is a problem with
increasing the size of the model because it contains several submodels. Therefore, it is hard to be
used in model-complexity-limited ASC tasks. In this paper, we would like to find the performance
enhancement method while taking advantage of the model ensemble technique without increasing
the model size. Our method is proposed based on a mean-teacher model, which is developed for
consistency learning in semi-supervised learning. Because our problem is supervised learning, which
is different from the purpose of the conventional mean-teacher model, we modify detailed strategies
to maximize the consistency learning performance. To evaluate the effectiveness of our method,
experiments were performed with an ASC database from the Detection and Classification of Acoustic
Scenes and Events 2021 Task 1A. The small-sized ASC model with our proposed method improved
the log loss performance up to 1.009 and the F1-score performance by 67.12%, whereas the vanilla
ASC model showed a log loss of 1.052 and an F1-score of 65.79%.

Keywords: acoustic scene classification; low model complexity; consistency learning; mean-teacher
model

1. Introduction

Machine learning techniques, which utilize a lot of data to tackle problems, have
improved a lot in recent years. In research topics in acoustic signal processing, machine
recognition of sound signals has been of particular researchers’ interest [1–4] to understand
a user’s situation or find particular events. Such machine-learning-based acoustic signal
analysis and classification techniques have been recently studied in various purposes,
including anomalous machine sound detection [5], monitoring domestic activity [6], sound
event localization and detection [7]. Moreover, the sound classification techniques have
been applied in the medical systems, e.g., snore sound classification to detect obstructive
sleep apnea [8] and bio-inspired voice evaluation [9].

Especially, the machine-based acoustic environment understanding task is related to
acoustic scene classification (ASC), which focuses on the recognition of long audio clips,
e.g., a 10-second clip, to classify an acoustic environment. Research for ASC tasks started
to classify a set of classes, including people, voices, subways, and traffic, with recurrent
neural networks and a k-nearest neighbor criterion [10], which was later expanded to
a technique using hidden Markov model [11]. Recent techniques for ASC tasks utilize
recently developed models based on convolutional neural network (CNN) families [12–14],
such as ResNet [15] and Inception [16].

State-of-the-art ASC models use auxiliary techniques to enhance the performance,
e.g., model ensembles and data augmentations. In particular, ASC systems with model

Appl. Sci. 2022, 12, 44. https://doi.org/10.3390/app12010044 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12010044
https://doi.org/10.3390/app12010044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8220-192X
https://doi.org/10.3390/app12010044
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010044?type=check_update&version=1


Appl. Sci. 2022, 12, 44 2 of 15

ensemble techniques have shown good performance in ASC competitions. In the ASC
competition of the Detection and Classification of Acoustic Scenes and Events (DCASE)
2020 Task 1A, 7 models of the top 10 models used ensembles of subsystems. The best models
of Suh et al. [12], Hu et al. [17], and Gao and McDonnell [18], which placed first, second,
and third team ranking, consisted of ensembles of three, eight, and three subsystems,
respectively. In the ASC task, the ensemble of various model instances seems to be helpful.

On the other hand, the ASC and sound event detection (SED) tasks have been ex-
panded to various tasks with specific conditions, e.g., semi-supervised [19], multiple
devices, or model-complexity-limited conditions [20]. The semi-supervised SED tasks
utilize a dataset that consists of strongly-labeled, weakly-labeled, and unlabeled data to
train the classifier, and the ASC with multiple devices utilizes a dataset that consists of
data recorded with multiple devices whose frequency characteristics are different from
each other. The model-complexity-limited ASC is to construct a small-size model to classify
acoustic scenes.

Because the small-size ASC model is developed considering mobile devices, there
is an upper limit to the model size, e.g., 128 KB. In order to satisfy the complexity con-
straints, researchers have tried various techniques to reduce the size of large ASC models,
including quantization [21], decomposition [22], and pruning [23]. Each algorithm has
contributed to the model size reduction in its own way, but the performance aspect was
rather complicated [14].

We want to approach the model-complex-limited ASC problem from a different per-
spective, to develop an auxiliary enhancement method that can be easily applied and that
can be applied independently of the existing technique. In order to achieve this goal, we
first started with the ensemble technique. As mentioned earlier, the ensemble technique is
simple and effective to enhance the performance, but it requires large complexity because it
needs several subsystems. For example, if we want to enhance the performance with an en-
semble of three subsystems of 128 KB, the entire system requires at least 384 KB. Therefore,
the ensemble technique cannot be applied directly to the model-complexity-limited ASC
problem, because requiring a large-size model is a serious penalty in the complexity-limited
problem.

In order to develop the performance enhancement technique without any additional
model size, we turned our attention to another sound classification: the semi-supervised
SED task. In order to deal with the weakly labeled and unlabeled data, several self-ensemble
methods have been developed, including the Π-model [24], temporal ensembling [24], and
mean-teacher model [25]. The Π-model ensembles several model networks that are gener-
ated through random dropout of the target model, so it requires multiple inference steps
in a single training step. The temporal ensembling technique utilizes the ensemble effect
by time-averaged prediction with exponential tapering. It requires only one inference
step per each training step, same as an ordinary training procedure, but it requires addi-
tional memory to save time-averaged prediction results. The mean-teacher model removes
the additional memory requirements by using a teacher model consisting of temporally
moving-averaged weights to generate ensembled prediction results.

Techniques that utilize ensemble-guided structures, including the temporal ensem-
bling and mean-teacher model techniques, are not useful generally in supervised ASC
tasks. Making an ensemble system of several subsystems may be more useful. However,
ensemble-guided structures do not require additional model complexity, so they may be
useful in the model-complexity-limited ASC task, if they are applied carefully. Therefore,
the purpose of this paper is twofold: to establish a parameter control strategy suitable
for supervised learning, and to verify that the ensemble-guided model is also effective in
model-complexity-limited supervised learning.

2. Problem Description

The ASC task is to classify audio data into one of known acoustic scene classes, e.g.,
airport, indoor shopping mall, or metro station, as shown in Figure 1. The ASC tasks
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have been investigated to help understand an environment with sound signals. ASC tasks
have a relatively long history among machine-learning-based sound signal analyses. The
challenge on DCASE, which is one of the famous competitions related to the analysis of
sound signals, has dealt with the ASC problem since 2013 [26]. Nowadays, the task has
been developed for complicated and target-specific problems.

One of the interesting problems of the ASC task is implementation on mobile devices
in recent ASC research. To achieve this goal, two issues should be considered: The per-
formance should not be affected by the difference in response between devices, and the
complexity of the ASC model should be as small as possible. Therefore, ASC models have
been developed to process input signals from multiple devices with a certain complexity
limit, as shown in Figure 1.

As mentioned in Section 1, there are several techniques to reduce the complexity of
existing ASC models, but they are not of interest in this paper. Our problem is to develop a
method that can enhance an ASC model without using additional model complexity. In
order to develop the method, we focus on self-ensemble techniques of semi-supervised
learning tasks.

Small-sized
Model

for
Acoustic 

Scene 
Classification

Airport

Shopping Mall

Metro Station

Pedestrian Street

Public Square

Traffic Street

Tram

Bus

Metro

Park

Figure 1. Problem description for the model-complexity-limited acoustic scene classification
(ASC) task.

3. Ensemble-Guided Models
3.1. Π-Model and Temporal Ensembling for Semi-Supervised Learning

This section describes self-ensembling models for the semi-supervised learning. In
early research works for the semi-supervised task, there were two mainly improved meth-
ods that surpass previous research works: Π-model and temporal ensembling [24]. The
Π-model utilizes the consistency between same network structures with different dropouts
in order to handle the unlabeled data. As shown in Figure 2, the input data are processed
twice by networks with different dropouts to generate two inference results, i.e., zi and z̃i.
There are two components of loss function. The first is a classification cost between the
inference results and the labels, which is commonly measured by cross-entropy. The second
is a consistency cost between the models with different dropouts. The consistency cost can
be measured by any distance functions, but the mean-squared error is a good choice in the
previous research works. The Π-model successfully provides a prototype of consistency
learning, but it has two main drawbacks: The reference of consistency, z̃i, is noisy because
it is simply generated by another model with a random dropout, and the model should
perform the inference step multiple times for a training step, thus making the training step
slow.
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In order to compensate for the drawbacks of the Π-model, a temporal ensembling
technique is developed as shown in Figure 2. The temporal ensembling generates the
reference of consistency z̃i by exponential moving average of inference outputs of previous
epochs, instead of another model with different dropout, as [24]

zema(n) = αzema(n − 1) + (1 − α)z(n) (1)

z̃(n) =
zema(n)
1 − αn (2)

where n is an epoch number, z and zema are the prediction result and its exponential moving
average, respectively, and z̃ is a target vector with bias correction. The temporal ensembling
makes better results with faster speed than the Π-model; however, it requires additional
storage space to save the ensemble predictions of the whole epoch, and the implementation
is complicated.
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(a) Π-model

(b) Temporal ensembling model

Figure 2. Schematic diagrams of consistency learning models.

3.2. Mean-Teacher Model for Semi-Supervised Learning

The mean-teacher model is a consistency learning structure based on a student–teacher
model, as shown in Figure 3. The weights of student modules are trained as ordinary neural
networks, but the weights of teacher modules are fixed during training steps. The teacher
model weights are updated as an exponentially tapered moving average as follows at the
end of the training epoch [25]:

θteacher(n) = αθteacher(n − 1) + (1 − α)θstudent(n) (3)

where θteacher and θstudent are the model parameters of the teacher and student models,
respectively. The loss function is defined with the combination of classification and consis-
tency costs as

C(θstudent) = Cclass(θstudent) + βw(n)Cconsist(θstudent) (4)
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where Cclass and Cconsist are the classification and consistency cost functions, respectively; β
is a global weight coefficient; and w(n) is a time-varying weight function for the consistency
cost. The classification cost is commonly defined as the cross-entropy between the predic-
tion results and the labels if exist, and the consistency cost is defined as mean-squared error
between outputs from student and teacher models.

Waveform

Label

Labeled data

Waveform

Unlabeled data

Teacher Model
(fixed weights)

Student Model

Prediction B

Prediction A

Label

Classification loss

Consistency lossMoving Average

Figure 3. Schematic diagram of the mean-teacher model for semi-supervised learning.

3.3. Proposed Ensemble-Guided Model for Model-Complexity-Limited ASC

Our ensemble-guided model for the model-complex-limited ASC task is based on the
mean-teacher model [25]. However, the original mean-teacher model is developed for the
semi-supervised problem, so we modified the model to suit our model-complexity-limited
supervised problem. Of course, there is no path for the unlabeled data, because our model is
used for the enhancement of supervised learning without increasing the model complexity.

Then, the time-varying weight function w(n) is modified. In order to handle the
unlabeled data, the time-varying weight is a ramp-up function from the start of training,
e.g., exp[−5(1 − r)], where r is linearly increased from 0.0 to 1.0 during the ramp-up period,
e.g., first 80 epochs, in the conventional mean-teacher model. However, in supervised
learning, early application of consistency loss degrades the performance. It seems that the
performance is degraded as the teacher model, which has become an ensemble of immature
student models, guides the learning of the student model. To prevent degradation, the
weight function is modified into a unit step function as

w(n) =
{

0 if n < nact_ems
1 if n ≥ nact_ems

(5)

where nact_ems is the number of the start epoch of consistency learning. Furthermore, the
tapering parameter α is set to 0.0 for n < nact_ems to prevent ensembling of immature
student models. We also propose a strategy to choose an appropriate nact_ems at the epoch
number at which the performance of the vanilla model is saturated.

Lastly, the strategy of adding noise is modified. In the conventional mean-teacher
model, Gaussian noise is added to both inputs of the student and teacher models throughout
the entire training process. However, Gaussian noise is added to the input data of the
student model only when n > nact_ems in our model to prevent negative effect on the early
training process of supervised learning.

4. Evaluation
4.1. Evaluation Settings

In order to evaluate the ensemble-guided model for the model-complexilty-limited
task, evaluations with development data from DCASE 2021 Task 1A [20] were performed.
The audio data of the task consisted of recordings from 12 cities in 10 acoustic scene classes
with 4 recording devices, and synthetic data from 11 mobile devices [27]. Details of the
recording devices and environments can be found in [4].
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Each audio clip was 10 s long with a sampling frequency of 44.1 kHz, and it was
transformed into a 256-bin mel-frequency spectrum with a 2048-sample Hanning window
and a 50% overlap. The input features, which were fed to the models, consisted of three
channels of the log mel spectrum and its delta and delta-delta values.

In recent studies, most ASC models have been developed based on CNN families,
e.g., ResNet [15], Inception [16], and their modifications. Most of the models submitted
to DCASE 2020 Task 1 and DCASE 2021 Task 1A, which are competitions in the ASC,
consisted of ResNet and Inception, and variants of ResNet such as BC-ResNet [28] and SE-
ResNet [29]. Therefore, we constructed the CNN-based architecture for the ASC. Especially,
we constructed multi-path structrue, which divided the features into multiple frequency
groups, inspired by the Trident model [12], which showed the best performance in DCASE
2020 Task 1A. However, the Trident model was significantly large, so we applied canonical
polyadic (CP) ResNet [22], which showed good performance with small-sized model in
DCASE 2020 Task 1B, to the multi-path structure.

The student model was a dual-path structure consisting of two subnetworks respon-
sible for the low (from 1st to 128th bins) and high (from 129th to 256th bins) frequency
components, as shown in Table 1. In Table 1, CNN (a × b, c) means a convolutional layer
with an (a × b)-sized kernel and c output channels, and Residual Block (a) × b means a
residual block with a output channels and b depthwise repetition. The dual-path structure
was inspired by the Trident structure [12]. The residual block consisted of the ResNet
block [15] with complexity reduction by canonical polyadic (CP) decomposition [22] and
parameter sharing [30], as shown in Figure 4. The model weights were quantized to a 16-bit
floating point after training, so the model size became 125.8 KB and satisfied the complexity
limit of DCASE 2021 Task 1A, which is 128 KB.

Table 1. Structure of the student model. CNN (a× b, c) means a convolutional layer with (a× b)-sized
kernels and c output channels, and Residual Block (a) × b means a residual block with a output
channels and b depthwise repetition.

Low Frequency

(1st–128th bins)

High Frequency

(129th–256th bins)

CNN (1 × 1, 32) CNN (1 × 1, 32)

Batch Normalization

ReLU Activation

Batch Normalization

ReLU Activation

Residual Block (32) × 2 Residual Block (32) × 2

Max Pooling (2 × 2) Max Pooling (2 × 2)

Residual Block (64) × 2 Residual Block (64) × 2

Max Pooling (2 × 2) Max Pooling (2 × 2)

Residual Block (64) × 2 Residual Block (64) × 2

CNN (1 × 1, 32) CNN (1 × 1, 32)

CNN (1 × 1, 64) CNN (1 × 1, 64)

Batch Normalization Batch Normalization

Concatenation along freq. axis

CNN (1 × 1, 10)

Global Average Pooling

Softmax Activation
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Batch Normalization

ReLU

Batch Normalization

ReLU

Decomposed Conv.

Decomposed Conv.

+

+

parameter 
sharing

(a) Residual block

Conv(1x1, C/4)

Conv(3x3, C/4)

Conv(1x1, C)

(b) Decomposed convolution for C-channels residual block

Figure 4. Block diagrams of (a) the residual block and (b) CP-decomposed convolution block in
Table 1. C in (b) is the number of channels of the residual block.

As mentioned earlier, the objective function consists of the classification and the
consistency cost functions. The classification cost function was defined as the categorical
cross-entropy between the prediction results of the student model and the class labels, and
the consistency cost function was defined as the mean squared error between the prediction
results of the student and teacher models. The tapering parameter α was set to 0.99, and
the consistency cost weight β was set to 2.5. Stochastic gradient descent [31] was used as
the optimization algorithm, and the learning rate was controlled by a cosine annealing
scheduler with restart epochs of [2, 7, 15, 30, 60, 90, 120, 150, 180, 210, 240] and has an initial
value of 0.05 and a minimum value of 10−5, as shown in Figure 5. The maximum value
was decayed by 0.9 at each restart epoch. We observed that supervised learning for the
vanilla model (without ensemble guidance) was saturated between 230 and 260 epochs,
even with more learning rate restarts. Accordingly, we set the start epoch nact_ems to 260,
and the batch size was set to 32.

The development dataset of DCASE 2021 Task 1A consisted of 13,962-clip training data
and 2968-clip evaluation data. We used 80% of the training data to train our model and 20%
of the data as the validation data to choose the best model during the training procedure.
The training process was performed for 600 epochs, and the best model was selected as
the model with the smallest classification cost for the validation data. The optimization
performance was measured by cross-entropy loss (log loss), and the accuracy performance
was measured by the macro-averaged F1-score, the same as the criteria in the DCASE 2021
task 1A. In the cases of mean-teacher-based model, the performances of the student models
were measured. The cross-entropy loss and macro-averaged F1-score were measured by
Scikit-learn python package [32].
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Figure 5. Learning rate scheduling.

4.2. Performance Comparison with Other Ensemble-Guided and Vanilla Models

In order to evaluate our model, we compared the performance of the proposed model
with those of the conventional mean-teacher method, the temporal ensembling models [24],
and the vanilla model without any ensemble guidance. The consistency cost weight β and
the tapering parameter α of the conventional mean-teacher model were set to 2.5 and 0.99,
respectively, which are the same as those of the proposed model. The time-varying weight
w(n) was set as a ramp-up function as exp[−5(1 − r)] with linearly increased r from 0.0 to
1.0 during the first 80 epochs for the conventional temporal ensembling and mean-teacher
models, which are the same as the values in [24] and [25]. The consistency cost weight
of the temporal ensembling was set to 2 because it showed the best performance among
[0.5, 1, 2, 3, 4, 5]. All the tested models had the same model size of 125.8 KB with 16-bit
quantization after training, the same as in the vanilla model.

Table 2 shows the representative performance of the proposed model with the per-
formances of the vanilla model and other ensemble-guided models. Comparing the per-
formance of the proposed model (log loss of 1.009 and F1-score of 67.12%) to that of the
vanilla model (log loss of 1.052 and F1-score of 65. 79%), our ensemble-guided model can
enhance the optimization and accuracy performances of the ASC model without increasing
the model size.

Table 2. Performance comparison between the proposed model, the conventional mean-teacher
model, the temporal ensembling models, and the vanilla model without any ensemble guidance.

Model Log Loss Macro-Averaged
F1-Score Model Size

Vanilla 1.052 65.79% 125.8 KB
Conventional Temporal Ensembling 1.042 62.26% 125.8 KB
Conventional Mean-Teacher 1.069 66.47% 125.8 KB
Temporal Ensembling w/ Unit Step w(n) 1.023 65.93% 125.8 KB
Modified Mean-Teacher (Proposed) 1.009 67.12% 125.8 KB

Simple application of temporal ensembling, which is a consistency learning technique
for semi-supervised learning, can enhance slightly the log loss performance, but the F1-
score performance is severely degraded. Simple application of the mean-teacher method
can enhance slightly the F1-score, but the log loss performance is degraded. On the other
hand, the proposed model can successfully enhance the performance, showing that our
modification to suit to the supervised learning problem is meaningful. The temporal
ensembling with modified w(n) as (5) and nact_ems of 260, which are the same as the
settings of the proposed model, shows better performance than the conventional temporal
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ensembling method. However, the proposed model still performs better even though it
does not require additional space to save averaged prediction results, whereas the temporal
ensembling method requires the additional space.

Table 3 shows the performance comparison with the state-of-the-art performances.
The performance values of compared models in Table 3 are from the values reported in
the original papers. The tested model with the proposed mean-teacher structure shows
considerably improved performance compared to the baseline model, but slightly degraded
performance compared to the state-of-the-art systems. They uses the same database to
train their models, but have different training methodologies including extraction and
pre-processing of features, learning rate control, optimizer, etc. Therefore, it is difficult
to analyze exactly which factors cause the performance differences, but we think that
the effective uses of the model lightweight and data augmentation methods may be the
dominent factors.

Table 3. Performance comparison with the state-of-the-art performances. All performances are
presented using the values reported in referenced papers.

Method Log
Loss

Macro-Averaged
F1-Score Model Size

DCASE 2021 Task 1A Baseline (in [20]) 1.47 47.7% 90.3 KB

Vanilla model (ours) 1.05 65.8% 125.8 KB
Mean-Teacher model (ours) 1.01 67.1% 125.8 KB

Liu’s model (in [21]) 0.92 68.0% 42.5 KB
Liu’s model + Feature Reuse (in [21]) 0.91 68.2% 106.7 KB

Koutini’s model (in [14]) 0.89 69.4% 127.7 KB
Koutini’s model + Domain Adaptation (in [14]) 0.88 69.5% 127.5 KB

Heo’s model (in [33]) - 68.5% 124.1 KB
Heo’s model + Knowledge Distillation (in [33]) - 70.5% 124.1 KB

Additionally, there are interesting results regarding the performance-enhancing tech-
nique, which is the subject of this paper. As shown in Table 3, several performance
improvement techniques specific to their models have been tried, e.g., feature reuse in [21],
domain adaptation in [14], and knowledge distillation [33]. The techniques have F1-score
improvements of 0.2%, 0.1%, and 2%, respectively, and log loss improvements of about
0.01. Therefore, the 1.3% F1-score improvement and the 0.04 log loss improvement of the
proposed mean-teacher model may be meaningful.

Figure 6 shows the classwise F1-score performances of the vanilla and proposed mod-
els. Comparing the F1-scores of the vanilla model and the proposed model, the performance
improvements of two classes are notable: the public square (5.74% improvement) and the
pedestrian street (5.81% improvement), indicated by green arrows in Figure 6. These two
classes showed the lowest performance in the vanilla model, so the results show that the
proposed method can improve the low-performance classes.
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Figure 6. Classwise F1-score performances. Green arrows indicate classes with significantly improved
F1-score performance.

In the training step, additional computation time is required to calculate the prediction
result of the teacher model in the proposed mean-teacher structure. Of course, there is no
additional time required for updating the coefficient, i.e., backpropagation, because the
coefficients of the teacher model are fixed. In our experiment using a GPU (NVIDIA Geforce
RTX 3090), the elapsed time to train the vanilla model and the proposed mean-teacher
model are 105 and 146 s per epoch, respectively. With using a CPU, the elapsed time to
train the vanilla and the proposed models are 55 and 76 minutes per epoch, respectively.
Each elapsed time was measured as an average of ten epochs for the GPU and three epochs
for the CPU. In the inference step, the proposed and the vanilla models have the same
elapsed times because the proposed model uses only the student model.

4.3. Performance Comparison with Various Parameters

Table 4 shows the performances of the proposed model with various consistency
weights. For β = 0, the performance is of course similar to that of the vanilla model. In our
experiment, the performance is the best when β = 2.5. The performances of the proposed
model in the cases of β = 5 and β = 7.5 are slightly lower than the best performance, but
these cases have better performance than the case with β = 0, which is practically the same
as that of the vanilla model.

Table 4. Performance comparison with various consistency weights, β.

Consistency Weight Log Loss Macro-Averaged F1-Score [%]

β = 0 1.045 65.66%
β = 2.5 1.009 67.12%
β = 5 1.013 66.07%

β = 7.5 1.019 66.03%

As mentioned in Section 3.3, our proposed model has modified strategies for consis-
tency learning: removing unlabeled data path, modification of the time-varying weight
function w(n), and modification of adding noise strategy. In this section, we present the
results of additional experiments to validate and to the second and third modification. The
first modification, removing unlabeled data path, is not verified because it is obvious. The
effectiveness of the modification of w(n) is shown in Table 5, and the effect of adding noise
strategy is evaluated in Tables 6 and 7.
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Table 5 shows the performances of the proposed model with various start epoch
parameters nact_ems. As mentioned earlier, the training of the vanilla model was saturated
between 230 and 260 epochs, and the best performance was obtained when ensemble-
guided learning was started at 260 epochs, which is immediately after saturation. Early
application of the ensemble-guided learning, such as 0 ≤ nact_ems ≤ 100, seems to interfere
in the early-stage of supervised learning due to the ensembles of immature student models.
Moreover, the last row in Table 5 shows the performance of the proposed system when only
w(n) is replaced with an exponential ramp-up function for 260 epochs. Comparing the
result of the exponential ramp-up w(n) with the results of the unit step 150 ≤ nact_ems ≤ 300,
the results of unit step weights are better than that of the exponential ramp-up weight
function.

Table 5. Performance comparison with various start epoch parameters nact_ems for ensemble guidance.

Start Epoch Log Loss Macro-Averaged F1-Score

nact_ems = 0 1.060 63.55%
nact_ems = 50 1.048 64.32%

nact_ems = 100 1.049 65.53%
nact_ems = 150 1.040 66.04%
nact_ems = 200 1.022 66.20%
nact_ems = 260 1.009 67.12%
nact_ems = 300 1.027 65.70%

Ramp-up for 260 epochs 1.045 65.82%

Table 6 shows the performances of the proposed model with various signal-to-noise
ratios (SNRs) when adding Gaussian noise. As mentioned earlier, the noise was added to
the student model inputs only in the activated period of the ensemble-guided model (i.e.,
when n ≥ nact_ems). In the 70-dB SNR case, the noise is too small, so the performance is very
similar to that of the model trained without noise. The case with 60-dB SNR has the best
performance among the various SNR settings. For the 50-dB SNR case, the performance
is slightly worse than the best performance, probably due to the excessive noise, but it
performs better than the no-noise case.

Table 6. Performance comparison with various signal-to-noise ratios (SNRs) of additive noise.

SNR Log Loss Macro-Averaged F1-Score

Without noise 1.041 65.97%
70 dB 1.041 66.03%
60 dB 1.009 67.12%
50 dB 1.028 66.39%

Table 7 shows the performance comparison between noise addition strategies of the
conventional and proposed methods. The conventional mean-teacher model does not
recommend any specific noise addition strategy but generally uses a strategy of adding
noise to each model’s input throughout the training process for semi-supervised learning.
In our experiment for supervised learning, the performance was better when adding noise
only in the period of n ≥ nact_ems, instead of adding noise throughout the training process.
As shown in Table 7, when noise is added throughout the training process to both models,
the F1-score is improved, but the log loss is slightly degraded. Both performance indices,
the F1-score and the log loss, improve when noise is applied only to the student model,
and there is a greater improvement when the noise application interval is adjusted to
n ≥ nact_ems.
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Table 7. Performance comparison with various noise addition strategies.

Method Log Loss Macro-Averaged F1-Score

Without noise 1.041 65.97%
Both models, throughout training 1.045 66.30%

Student model only, throughout training 1.025 66.92%
Student model only, n ≥ nact_ems 1.009 67.12%

4.4. Application to State-of-the-Art Model

In order to evaluate our ensemble-guided model, we applied it to Liu’s wide ResNet
(WRN) with 1-bit quantization [21], which achieved fifth in team ranking with an extremely
small model size in DCASE 2021 Task 1A. The model that we implemented with reference to
the study in [21] is shown in Figure 7. All convolutional layers consisted of 1-bit quantized
weights as follows except for the gray-colored layer in Figure 7 [21,34]:

Wob,i =

√
2

KiCin,i
sgn(Wi) (6)

where Wi and Wob,i are the weight tensors before and after quantization, respectively;
sgn(·) is the element-wise sign function; Ki is the kernel size; and Cin,i is the number of
input channels of ith convolutional layer. If the convolutional layer has a two dimensional
kernel, e.g., (a × b), the kernel size is calculated by multiplication of each dimension, e.g.,
ab. The training parameters and mean-teacher model parameters were set to the same
values as Section 4.1 including learning rate scheduling.

Input

BN,GAP,Softmax

BN,ReLU,conv(1×1, 10)

BN,ReLU,conv(3×3)

+

3×3 avg pool
with stride 2

BN,ReLU,conv(3×3)
with 2 × channels 2 × channels

BN,ReLU,conv(3×3)

BN,ReLU,conv(3×3)

+

(a) Wide residual network architecture

Residual block(16)

Residual block(16)

BN,ReLU,conv(3×3, 16)

Down-Sampling block(16)

Residual block(32)

Residual block(32)

Down-Sampling block(32)

Residual block(64)

Residual block(64)

BN,ReLU,conv(3×3, 64)

BN,ReLU,conv(3×3, 16)

(b) Residual block (c) Down-sampling block

Figure 7. Schematic diagrams of (a) the ASC model with wide ResNet (WRN), (b) the residual block,
and (c) the down-sampling block. The “2 × channels” layer in the down-sampling block is a layer for
doubling the number of channels with zero paddings for the skip connection.

Table 8 shows the performances of the ensemble-guided model with 1-bit-quantized
WRN. Both the log loss and F1-score performances are improved for the cases of the
proposed mean-teacher model with β = 0.5, 1, 2.5 compared with the vanilla model, and
the case with β = 2.5 shows the best performance. The proposed model with β = 5
has the same log loss performance as the vanilla model, but it shows improved F1-score
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performance. Therefore, the proposed mean-teacher model is also effective for the 1-bit
quantized WRN model structure in our experiment.

Table 8. Performances of the 1-bit-quantized WRN models.

Model Log Loss Macro-Averaged
F1-Score Model Size

Vanilla 1.035 65.44% 43.6 KB
Proposed Mean-Teacher with β = 0.5 1.027 66.15% 43.6 KB
Proposed Mean-Teacher with β = 1 1.012 67.05% 43.6 KB

Proposed Mean-Teacher with β = 2.5 1.004 67.49% 43.6 KB
Proposed Mean-Teacher with β = 5 1.035 66.55% 43.6 KB

We expect that the proposed technique will be well applied to the models of the top
four teams of DCASE 2021 Task 1A, because the models also consist of CNN variants,
and various learning strategies or data augmentation techniques do not conflict with the
proposed algorithm. It is expected that the proposed method can be applied even when
pruning is used to reduce the model size, but additional verification is required in this
case. However, some models of Kim’s [35] and Heo’s [33] systems utilize the knowledge
distillation technique, which uses teacher–student structure, so it may be necessary to
design a different strategy to apply the proposed technique in this case.

5. Conclusions

In this paper, we have researched to find the performance enhancement method
for model-complexity-limited ASC tasks. We first paid attention to the model ensemble
techniques as the method for performance enhancement. Ensembles of several models are a
well-known auxiliary method for performance enhancement, but they require a large model
size. Therefore, the model ensemble technique is hard to use for the model-complexity-
limited ASC problem. In order to tackle this problem, we modify the mean-teacher model,
which is developed for consistency learning in the semi-supervised learning, and apply it
to our problem.

In order to evaluate our model, ASC experiments were performed with a database
from DCASE 2021 Task 1A. First, our mean-teacher model was applied to a ResNet-based
low-model-complexity ASC model to enhance the classification performance. As the
evaluation result, our proposed method was able to improve the log loss performance up
to 1.009 and F1-score performance by 67.12%, whereas the vanilla model showed a log loss
performance of 1.052 and an F1-score performance of 65.79%. Moreover, our proposed
model was more effective than the simple application of the temporal ensembling and
mean-teacher model techniques, which are developed for the semi-supervised learning.
Finally, our model was applied to another model, namely the 1-bit quantized WRN model.
The model with the proposed technique was able to improve the log loss performance up
to 1.004 and the F1-score performance by 67.49%, whereas the vanilla model showed a log
loss of 1.035 and an F1-score of 65.44%.
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