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Abstract 

In reinforcement learning, first, the agent collects experiences by interacting with the environment through 

trial-and-errors (experience collection stage) and then learns from the collected experiences (learning stage). 

This two-stage training process repeats until the agent solves a given task and requires a lot of experience, 

computation power, and time for training the agent. Therefore, many studies are conducted to improve the 

training speed and performance to mitigate them, focusing on the learning stage. This paper focuses on the 

experience collection stage and proposes a prioritized environment configuration that prioritizes and 

stochastically samples the effective configuration for initializing the environment for every episode. Therefore, 

we can provide the environments initialized with the configuration suitable for effective experience collection 

to the agent. The proposed algorithm can complement the reinforcement learning algorithms that focus on the 

learning stage. We have shown speed and performance improvement by applying the prioritized environment 

configuration to an autonomous drone flight simulator. In addition, the results show that the proposed algorithm 

works well with both on-policy and off-policy reinforcement learning algorithms in distributed framework with 

multiple workers. 
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1. Introduction 

Research interests in reinforcement learning are continuously increasing year by year [1]. Accordingly, 

the range of applications continuously expands to communication [2], abnormal detection [3], privacy 

information sanitization [4], drone control [5, 6], etc. Furthermore, various services that focus on 

unrestricted mobility of drones have emerged, such as the internet of drones [7] and drone delivery, 

thanks to the advances in hardware. They are accelerating the research of drone deep reinforcement 

learning [5, 6], which we will focus on in this paper. So far, it seems that reinforcement learning is the 

universal key to solving drone control tasks. However, there are caveats to using reinforcement learning. 

For example, it is time-consuming, expensive, and unsafe to train drone control agents, especially in the 
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real world. As trial-and-error is the basis of reinforcement learning, tremendous and diverse experiences 

are essential. Experiences with dangerous states and actions are required to obtain generalized high-

performance agents to solve the problems. It is more so in model-free reinforcement learning, in which 

the agents do not know the environment models. This requirement makes the simulator an essential 

component for training the drone control agents with reinforcement learning. The advantages of the 

simulator are as follows:  

⚫ It is easy to acquire diverse experiences by changing environment configurations such as coordinates, 

friction coefficient, weather, wind speed, and maps for autonomous drone flight.  

⚫ It is relatively easy to improve the training speed through distributed framework. 

⚫ It is cost-effective since failing in the simulator does not cost anything. 

Reinforcement learning can be divided into two stages. The first stage is to collect experiences through 

rollouts, and the second stage is to train the policy with those experiences. Accordingly, two questions 

arise to enhance the training speed and performance: (i) How can we collect effective experiences for the 

policy update? (ii) How can we effectively learn from those collected experiences?   

Research results for the latter include prioritized experience replay (PER) [8] and Ape-X [9] as well as 

proximal policy optimization (PPO) [10], soft actor-critic (SAC) [11], and many mores. 

In the former case, the researches mainly focus on curriculum learning [12]. Curriculum learning 

provides auxiliary tasks. Similar to human learning, it provides progressively more challenging auxiliary 

tasks for solving a given task. However, the main goal of curriculum learning is to efficiently solve a 

given task, not to generalize through learning in various environmental configurations with similar levels 

of difficulty. There are also challenges in generating adequate auxiliary tasks; bad auxiliary tasks may 

worsen training. 

By predefining environment configurations, we can use the simulator to reproduce various situations 

to obtain general policies: predefine coordinates sets of various start and goal positions to prevent the 

agent from memorizing the specific route, predefine various friction coefficients for better sim-to-real 

transfer, or their combinations. Most of the researchers let the simulator randomly configures them. 

However, it is inefficient to repeat environment configurations that the agents are good at for both 

experience collection and training. By prioritizing the environment configurations instead of random 

sampling, we can enhance the performance of deep reinforcement learning (DRL). 

In this paper, we propose prioritized environment configuration (PEC). The proposed algorithm 

prioritizes the environment configurations, stochastically samples a configuration according to the 

priority, and initializes the environment with the sampled configuration. Effectively initialized 

environments can help the agent collect effective experiences. The goal is to improve the training speed 

and performance of DRL by enabling effective experience collection through the environment initialized 

with the prioritized configurations. The main contributions of the paper are as follows: 

⚫ We proposed a priority metric based on the failures and a stochastic sampling method based on that 

metric. It allows reflecting the difficulty felt by the agent, i.e., perceived difficulty, furthermore can 

dynamically adapt to the perceived difficulty of the agent as training progresses without human 

expertise and intervention. For example, if specific configurations are sampled a lot in the current 

training iteration, then the failure ratio of those configurations may decrease. It results in the priorities 

of these settings being suppressed at the following training iteration, enabling efficient training.  

⚫ We showed improvements in both training speed and performance on the autonomous drone flight 

simulator. 

⚫ We showed that PEC works well with both on-policy and off-policy DRL algorithms in a distributed 

framework with multiple workers. Note that PEC complementarily works with reinforcement 

learning algorithms that focuses on learning from the collected experiences such as PPO [10] and 

Ape-X DQN [9]. 

The rest of this paper is organized as follows: Section 2 depicts the related works. Section 3 proposes 

the prioritized environment configuration algorithm. Section 4 describes the environment that we have 

utilized to verify and analyze the algorithm, and Section 5 presents the experiment results. Finally, 
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Section 6 concludes the paper. 

 

2. Related Work  
 

Reinforcement learning requires a lot of experience, computing resources, and learning time. So there 

have been many studies to increase data efficiency and accelerate training. Among the various works, we 

will state related works focusing on prioritization, randomization, and curriculum learning, which are 

highly related to PEC.  

 

Prioritization: DQN [13] first showed human-level performance over many Atari games using deep 

reinforcement learning. One of the features of DQN is an experience replay which reduces the correlation 

of the training data, thus, stabilizing the training process. Since the success of DQN, many extensions 

have been reported, and among them, PER [8] and Ape-X [9] exists. 

PER prioritizes the sampling according to temporal-difference error instead of random sampling 

experiences for learning from the experience replay buffer as DQN does. As a result, it improved both 

training speed and performance. In addition, Ape-X proposed a distributed architecture that can 

incorporate PER. Both proved that prioritization which PEC utilizes could yield better training speed and 

performance than uniform sampling. However, their purpose is to learn from the experiences effectively, 

whereas PEC is to collect experiences effectively. This difference implies that we can combine PEC and 

Ape-X. We present the results of PEC with Ape-X in Section 5.5. 

 

Randomization: There are studies on randomization to learn generalized agents for sim-to-real. Two 

main categories are dynamics randomization and domain randomization: dynamics randomization 

focuses on randomizing the dynamics of the simulator (e.g., mass, friction, dampings), whereas domain 

randomization focuses on the domain (e.g., colors, textures, appearance). Dynamics randomization 

suggested in [14] randomizes the dynamics for the sim-to-real transfer of the robotic arms. In the paper, 

they configured 95 randomized configurations and randomly sampled them for every episode. Automatic 

domain randomization is suggested in [15]. It randomizes both domain and dynamics. Moreover, it keeps 

increasing the boundary of the randomization range as training progresses. The results in [14, 15] both 

reported the performance of real-world robotic arms similar to that in a simulation. They performed a 

random selection of the configurations. In contrast, the main contribution of PEC is to prioritize the 

configurations to avoid unnecessarily many repetitions of easy configurations for efficient training. 

 

Curriculum learning: Curriculum learning provides increasingly complex auxiliary tasks, namely 

curriculum, to agents to solve a given task. By doing so, the agent can solve a given task that seems 

impossible. Various types of curriculum learning methods are being studied, which are well organized in 

[12]. Training speed and performance in environments with high-dimensional continuous action space 

can be enhanced by progressively increasing the distance of the target point that the agent should reach 

[16]. GoalGAN [17] proposes automatically generating appropriate goals of intermediate difficulties to 

solve a task using a generative adversarial network (GAN). In teacher-student curriculum learning [18], 

the teacher tries to provide the appropriate subtasks to allow the student to solve a complex task. They 

created five maps with progressive difficulties using Minecraft environments and evaluated the 

performance with the most complex map. Their method dramatically improved the performance 

compared to uniform sampling and comparable to the manual curriculum setting. Unlike curriculum 

learning, which sets auxiliary tasks of various difficulties, the algorithm proposed in this paper aims to 

effectively utilize various environmental configurations with similar difficulties to learn general agents 

efficiently. We can utilize curriculum learning and the proposed algorithms together to improve 

performance. For example, [18] uniformly samples agents and target positions for each map; we can 

improve the training speed by prioritizing the sampling of the positions using the proposed algorithm. 
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3. Prioritized Environment Configuration 
 

In this section, we present the motivation, assumption, and the details of the proposed algorithm, PEC.  

PEC is motivated by the following questions: (i) Can the environment be initialized by prioritizing 

configurations for effective experience collection? Can such prioritization (ii) be adaptive to the training 

progress? (iii) be needless of expert knowledge? (iv) be robust to outliers? (v) be operated in a distributed 

reinforcement learning framework? 

PEC assumes that there is more than one configurable environment configuration in the environment. 

Autonomous drone flight simulators or autonomous driving simulators [19] usually provide various 

configurable environment configurations. Examples include coordinates for navigation, navigation maps, 

weather (e.g., rainy, sunny, cloudy), and wind velocity. 

From now on, we present the details of the algorithm.  

First, the priority of environment configuration n, pn is calculated as follows. 

 

𝑝𝑛 = {
𝑓𝑟𝑛 + 𝛼, 𝑖𝑓 𝑡𝑛 > 0

1, 𝑖𝑓 𝑡𝑛 = 0
                                                        (1) 

 

Failure ratio, frn, is defined as the number of failures of the configuration n, fn, divided by the number 

of trials of the configuration n, tn. α ≥ 0 is to control the dependency of failure ratios on the priority. It is 

the only hyperparameter directly related to the algorithm. As α increases, the dependence on the failure 

ratio decreases diminishing the effect of PEC. Conversely, as α decreases, the dependence on the failure 

ratio increases, so the sampling is biased towards some specific configurations. By setting the priority as 

in Equation (1), PEC can provide the sampling probabilities of environment configurations not only with 

zero trials but also with zero failures with low complexity. It is essential to guarantee the sampling 

probabilities of successful configurations at some level as the policy might forget them as training 

progresses. 

Then, sampling probability, Pn, is computed as follows. N is the total number of environment 

configurations. 

𝑃𝑛 =
𝑝𝑛

∑ 𝑝𝑛
𝑁
𝑛=1

                                                                   (2) 

 

PEC provides stochastic prioritization as it performs prioritized sampling based on the sampling 

probability. The sampling probability based on Equation (2) has the following advantages. 

⚫ Adaptability to the agent's training progress: Sampling probability can adapt to changing perceived 

difficulty levels of the agents for each environment configuration as the training progresses. The 

perceived difficulty levels of the agents change dynamically depending on the number of trials per 

environment configuration, which can be confirmed in the experiment results. 

⚫ No need for expert knowledge: Since PEC automatically configures the sampling probability, there 

is no need for an expert to set the difficulty levels of environment configurations manually. 

⚫ Robust training: Since the failure ratio has a value from 0 to 1, outliers, e.g., too big or too small, do 

not occur, enabling more robust training. 

⚫ Operability with the distributed framework: PEC can operate with the distributed framework by 

tracking the number of failures and trials per worker and aggregating them to calculate the sampling 

probability. 

⚫ Low time complexity: The time complexity of the proposed algorithm is O(n) due to the proportional 

sampling from discrete distribution [20], where n is the number of environment configurations. 

The procedure of PEC based on the proposed sampling probability in Equation (2) is as follows.  

For each training iteration, i: 

(Line 2–10 in Fig. 1) Each M parallel worker collects experiences with the sampling probability, P, until 

they sum to train batch size, TB. Specifically, each worker (1) proportionally samples an 
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environment configuration, n, based on the sampling probability, Pi (Line 4); (2) initializes an 

environment, e, with the sampled configuration, n (Line 5); (3) run policy, πi, and collect 

experiences until the end of the episode in the environment, e (Line 6); and (4) update the number 

of failures and trials considering the results of the episode (Line 7–10).  

(Line 11 in Fig. 1) The collected experiences are utilized to optimize the policy, πi. Any DRL algorithm 

such as PPO or Ape-X DQN can be adopted for policy optimization. 

(Line 12–16 in Fig. 1) The sampling probability for the next iteration is computed. First, we aggregate 

the number of failures, fi,w, and trials, ti,w, from all workers, w, and update the number of failures, 

fi, and ti (Line 12–13). Then, we compute the sampling probability by Equation (2) based on the 

updated fi+1, and ti+1 (Line 14). Finally, we initialize fi+1,w, and ti+1,w to 0 for all workers, w (Line 

15–16). 

 

Input 

TI: Train iteration, TB: Train batch size, M: Number of workers, α: Dependency control 

parameter 

Initialize 

P0: The sampling probability, f0: The number of failures, t0: The number of trials, π0: policy 

Procedure 

1:     for i = 1 to TI do 

2:         while collected experiences < TB do 

3:             for each w = 1 to M do 

4:                 n  ProportionalSampling(Pi) 

5:                 e  InitializeEnvironment(n) 

6:                 Run policy πi and collect experiences until episode end in environment e 

7:                 if episode failed then 

8:                     𝑓𝑛
𝑖,𝑤

  𝑓𝑛
𝑖,𝑤 + 1 

9:                 end if 

10:               𝑡𝑛
𝑖,𝑤

  𝑡𝑛
𝑖,𝑤 + 1 

11:        πi+1  Optimize πi with collected experiences and a DRL algorithm 

12:        𝑓𝑛
𝑖+1  𝑓𝑛

𝑖 + ∑ 𝑓𝑛
𝑖,𝑤𝑀

𝑤=1   for all n 

13:        𝑡𝑛
𝑖+1  𝑡𝑛

𝑖  + ∑ 𝑡𝑛
𝑖,𝑤𝑀

𝑤=1    for all n 

14:        Pi+1  Compute sampling probability by Eq. (2) based on 𝑓𝑛
𝑖+1 and 𝑡𝑛

𝑖+1 

15:        𝑓𝑛
𝑖+1,𝑤

  0 for all n and w 

16:        𝑡𝑛
𝑖+1,𝑤

   0 for all n and w 

Fig. 1. Prioritized environment configuration. 

 

4. Environment 

 

4.1 Overview 

 

The environment we used to verify and analyze the proposed algorithm is a custom autonomous drone 

flight simulator developed based on Gazebo [21] and ROS [22]. Its primary purpose is to train a drone 

navigation agent with deep reinforcement learning to navigate from the starting position to the goal 

position without collision. For that purpose, we have created a map, as shown in Fig. 2. The map consists 

of six rooms, and each room has a door. The drone can only move between rooms through this door. 

When the drone hits a wall, it is considered a collision. 
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(a) (b) (c) 

Fig. 2. Simulation map for drone navigation: (a) left rotated view,  

(b) top view, and (c) right rotated view). 

 

 

The episode termination conditions are as follows: when the drone reaches the goal, when the drone hits 

the wall, or when the episode step count exceeds the maximum step size of an episode. We set the maximum 

step size to 1,000 steps. The observation space, action space, and reward function are as follows: 

⚫ Continuous observation space with depth camera image, distance between the drone and the goal, 

and angle difference between the drone’s heading and the goal. 

⚫ Discrete action space with the size of 15, which is the combination of forward movement speed 

(linear.x) of 0, +1, and +2 m/s and yaw rate (angular.z) of -π/2, - π/4 , 0, π/4, and π/2. 

⚫ Reward function with +2,000 for reaching the goal, -1,000 for collision, -1,000 for exceeding the 

maximum step size of an episode, -3 for every step if linear.x is 0 for over ten consecutive steps, and 

-1 for every step. Notice that the major portion of the reward function is related to the termination 

conditions of the episode. 

 

4.2 Coordinate Sets 

 

Among the configurable environment configurations, we have chosen a coordinate set. The coordinate 

set comprises several coordinates, where each coordinate represents the drone’s starting position and the 

goal position. The reasons for the choice of the coordinate set are mainly two folds. First, it is one of the 

necessary components that should be varied, as otherwise, the agent tends to memorize a particular route 

instead of learning how to avoid obstacles and reach the goal. Second, it is easy to create various levels 

of curriculums with similar difficulties. We will not evaluate a combination with curriculum learning that 

is out of the scope, but the proposed algorithm can accelerate learning a curriculum. 

We have created two coordinate sets to evaluate PEC performance on both easy and challenging 

curriculums. Coordinate set 1 in Table 1 is easy: mainly coordinates without walls in the line of sight 

between the starting and goal positions. On the other hand, coordinate set 2, listed in Table 2, is 

challenging. It consists of coordinates with walls in between the starting and goal positions. If c0 in Table 

1 is configured, the drone spawns at (0, -2) and navigates to the goal placed at (5, -2) in Fig. 2. Fig. 3 

presents six sample coordinates, consisting of two coordinates only included in Table 1 ("light green"), 

two coordinates included in Tables 1 and 2 ("green"), and two coordinates only included in Table 2 

("blue"). Note that the capitalized "C" means the coordinate set, and the lower case "c" means the 

coordinate, e.g., "C1_c6" means that the coordinate "c6" in the "Coordinate set 1" which is {(0, 5), (5, 

5)}. We can see that coordinates in Table 2 are more challenging than those in Table 1. 
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Table 1. Coordinate set 1 

Coordinate Positions Coordinate Positions 

c0 {( 0, -2), ( 5, -2)} c1 {( 5, -2), ( 0, -2)} 

c2 {(-1,  0), (-1,  4)} c3 {(-1,  4), (-1,  0)} 

c4 {(-5,  0), (-5,  5)} c5 {(-5,  5), (-5,  0)} 

c6 {( 0,  5), ( 5,  5)} c7 {( 5,  5), ( 0,  5)} 

c8 {( 3,  2), ( 3,  6)} c9 {( 3,  6), ( 3,  2)} 

c10 {(-5, -5), (-8, -8)} c11 {(-8, -8), (-5, -5)} 

c12 {(-7, -8), (-1, -8)} c13 {(-1, -8), (-7, -8)} 

c14 {( 3, -5), ( 3, -2)} c15 {( 3, -5), ( 3, -2)} 

c16 {( 0, -2), (-5, -2)} c17 {(-5, -2), ( 0, -2)} 

c18 {(-8, -2), ( 6, -2)} c19 {( 6, -2), (-8, -2)} 

 

Table 2. Coordinate set 2 

Coordinate Positions Coordinate Positions 

c0 {(-7, -8), (-1, -8)} c1 {(-1, -8), (-7, -8)} 

c2 {(-8, -2), ( 6, -2)} c3 {( 6, -2), (-8, -2)} 

c4 {(-1,  3), ( 0, -5)} c5 {( 0, -5), (-1,  3)} 

c6 {( 0,  5), ( 5, -2)} c7 {( 5,- 2), ( 0,  5)} 

c8 {(-1, -2), ( 5,  5)} c9 {( 5,  5), (-1, -2)} 

c10 {( 0, -1), (-5,  5)} c11 {(-5,  5), ( 0, -1)} 

c12 {(-6, -6), (-1, -8)} c13 {(-1, -8), (-6, -6)} 

c14 {( 5, -7), ( 2, -1)} c15 {( 2, -1), ( 5, -7)} 

c16 {( 6, -1), ( 3, -6)} c17 {( 3, -6), ( 6, -1)} 

c18 {(-7, -6), (-1, -8)} c19 {(-1, -8), (-7, -6)} 

c20 {(-5,  5), ( 0, -2)} c21 {( 0, -2), (-5,  5)} 

c22 {(-7,  0), ( 5,  0)} c23 {( 5,  0), (-7,  0)} 

 

 
Fig. 3. Visualization of six sample coordinates in Tables 1 and 2. 

 

 

5. Experiment Results 
 

PEC is general enough to be applied to both on-policy and off-policy reinforcement learning 

algorithms. First, we present experiment results of PEC combined with PPO, which is an on-policy 
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algorithm, and then we show the results of PEC combined with Ape-X DQN, which is an off-policy 

algorithm. 

 

5.1 Hardware and Software Configurations 

 

We setup the experiment on Dell Precision 7920 with Xeon Gold 6240, 32 GB RAM, and a single 

Nvidia RTX 8000 48GB graphic card. Installed OS is Ubuntu 18.04. The simulator is based on Gazebo 

9 and ROS Melodic. We implemented the algorithm based on Ray [23] version 0.8.5, which contains 

RLlib [24] with Ape-X DQN, and PPO implementations. TensorFlow [25] version 1.15.0 is utilized to 

execute these implementations. With the help of Ray, in the following experiments, 5 number of workers, 

i.e., simulators, in parallel are utilized to gather the experiences. 

 

5.2 PEC-PPO with Coordinate Set 1 

 

Hyperparameters of Ray, which are num_gpus, num_workers, lambda, clip_param, kl_coeff, 

train_batch_size, and batch_mode, are set to 1, 5, 0.95, 0.2, 1.0, 5000, and complete_episode, 

respectively. Other hyperparameters are set to default values. α in Equation (1) is set to 0.2. The training 

with the coordinate set 1 in Table 1 is performed for 1500 training iterations.  

Fig. 4 is the average goal ratio over training iterations. We can observe that PEC’s performance is 

slightly lower than w/o PEC’s at the beginning of the training. PEC selects a coordinate for every episode 

by prioritizing the coordinates with high failure ratios. In other words, PEC is more likely to sample the 

coordinates with high failure ratios than w/o PEC which randomly samples from a uniform distribution. 

Therefore, when the overall failure ratio is high, especially in the early stages of training, training with 

PEC may seem slow. However, from the point of training iteration 140, when learning has been done to 

some extent, average goal ratios of PEC rise steeply and generally maintain high performance until the 

end of the training. As for the average goal ratio of the last 100 iterations, PEC is 0.959, and w/o PEC is 

0.930, showing high performance in PEC. This is because PEC performs rollout through prioritized 

sampling for coordinates effective for training, and learns from the trajectories obtained through that 

rollout. On average, the time taken per training iteration is 42.369 seconds, of which the proposed 

algorithm occupies 0.681 seconds, only 1.607%. 

 

 
Fig. 4. Average goal ratio in training for PPO and coordinate set 1. 
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Fig. 5 is the trial ratio and failure ratio for each coordinate in 100th, 500th, 1000th, and 1500th training 

iterations. The upper row is with PEC, and the lower row is w/o PEC. The bar and the line represent the 

trial ratio and the failure ratio, respectively. Refer to Table 1 for the actual coordinates in x-axis. We can 

see that PEC effectively reduces the difficult coordinates’ failure ratios and the overall failure ratios 

through the prioritized sampling. With PEC, the trial ratios are proportional to the failure ratios. The 

sampling gets more concentrated in difficult coordinates as the easy coordinates’ failure ratios drop 

considerably compared to the difficult coordinates’. In particular, the trial ratio of c15, the coordinate with 

the highest failure ratio, keeps increasing as the training iteration increases. It results in an effective 

decrease in the failure ratio of c15. On the other hand, w/o PEC, the trial ratio is uniform regardless of the 

failure ratio. The failure ratio of c15 only slightly decreases as the training progresses. Furthermore, we 

can notice that PEC dynamically adjusts the trial ratios without the prior knowledge of the coordinates' 

difficulties, which usually requires manual settings by the experts, according to the failure ratios that 

dynamically changes as the training progresses. 

 

 
Fig. 5. Trial and failure ratio over coordinates for PPO and coordinate set 1. 

 

 

The trends of trial and failure ratios over training iterations are presented in Fig. 6. Fig. 6(a) is the 

average and the standard deviation of the trial ratio, and Fig. 6(b) is the average and the standard deviation 

of the failure ratio over coordinates for every 100th training iteration. When PEC is applied, the standard 

deviation of the trial ratio is large. This is because prioritized sampling is performed according to the 

failure ratio with PEC: more samples with higher failure ratios and fewer samples with lower failure 

ratios. Without PEC, the standard deviations are small as it performs sampling from a uniform 

distribution. Moreover, as the number of samples increases as the training progresses, the standard 

deviation gradually decreases with the training iteration. The average trial ratios are all 0.05 because there 

are 20 coordination sets in the coordinate set 1. From Fig. 6(b), we can see that the standard deviation 

and average effectively decrease as training progresses with PEC, whereas standard deviation and 

average decrease but remain relatively high w/o PEC. 

Fig. 7 is the average goal ratio and reward when evaluated 50 times using the checkpoint saved for 

every 100th training iteration. During the evaluation, random sampling from a uniform distribution was 

performed. PEC performs better than w/o PEC at all checkpoints. Through this, we can see that PEC is 

actually learning higher performance intelligence even in the early stage of training compared to w/o 

PEC. Although PEC may appear to have lower performance as the average goal ratio in the early stage 

of training is lower than w/o PEC. One more thing, as the major portions of the reward function are 

related to the episode termination conditions, average goal ratio and average reward graphs show similar 

tendency. 
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Fig. 6. Average and standard deviation of (a) trial ratio and (b) failure ratio over  

training iterations for PPO and coordinate set 1. 

 

 
Fig. 7. Average goal ratio and reward in evaluation for PPO and coordinate set 1. 

 

 

5.3 PEC-PPO with Coordinate Set 2 

 

The same hyperparameters are used as in the previous subsection. The training with the coordinate set 

2 in Table 2 is performed for 5000 training iterations. 

The overall trend of Fig. 8 is similar to that of Fig. 4. However, we can clearly see the performance 

gap between PEC and w/o PEC. The last 100 iterations’ average goal ratio is 0.860 and 0.764 for PEC 
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and w/o PEC, respectively. These results represent that the more difficult the task is, the greater the 

learning effectiveness through prioritized sampling with PEC. For coordinate set 2, which has four more 

environment configurations than coordinate set 1, the average time per training iteration is 41.461 

seconds, of which the proposed algorithm occupies 0.692 seconds, only 1.669%. 

 

 
Fig. 8. Average goal ratio in training for PPO and coordinate set 2. 

 

Fig. 9 also clearly presents the difference between PEC and w/o PEC. Even when there are many 

difficult coordinates, PEC effectively reduces the failure ratio by prioritizing the more difficult ones. 

With PEC, the minimum trial ratio continues to decrease and the maximum trial ratio continues to 

increase as the training progresses (the minimum values of iteration 1000, 2000, 3000, 4000, and 5000 

are 0.0313, 0.0295, 0.0279, 0.0271, and 0.0269, respectively, and the maximum values of iteration 1000, 

2000, 3000, 4000, and 5000 are 0.0470, 0.0505, 0.0553, 0.0593, and 0.0616, respectively). On the other 

hand, the trial ratio w/o PEC converges to the average resulting prolonged decrease of failure ratios.  

 

 
Fig. 9. Trial and failure ratio over coordinates for PPO and coordinate set 2. 

 

 

From Fig. 10, it can be seen that the overall trend of standard deviation and average of trial and failure 

ratio over training iterations are similar to that of the coordinate set 1. However, the gap between w/ PEC 

and w/o PEC becomes noticeable.  Since the coordinate set 2 is composed of 24 coordinates, the average 

trial ratio is 0.417. 
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Fig. 10. Average and standard deviation of (a) trial ratio and (b) failure ratio over  

training iterations for PPO & coordinate set 2. 

 

5.4 Analysis of α with PEC-PPO 

 

All settings are the same as in Section 4.2, but only α is different which varies from 0 to 0.4. 

Fig. 11 shows the results of monitoring the trial and failure ratios of every coordinate at the training 

iterations 100, 800, and 1500 with different α. The smaller the α, the higher the dependency to the failure 

ratio when prioritizing the coordinate sampling, and the higher the α, the lower it is. It yields the trade-

off among the coordinates with higher and smaller failure ratios. The smaller the alpha, the more the trials 

are concentrated at the coordinates with the higher failure ratios, so the failure ratios effectively decrease. 

However, the failure ratios of other points decrease slowly. This phenomenon can be found in the figure. 

When α is below a certain threshold, 0, 0.1, and 0.2 in Fig. 11, the standard deviation of trial ratio tends 

to increase, whereas it tends to decrease for α above a certain threshold, 0.3, and 0.4 in the figure. This is 

because the degree of dependency on the failure ratio in prioritization varies with α. Besides, the 

performance differs according to α due to the trade-off mentioned in Fig. 12. The performance with regard 

to the final average failure ratio is in the order of α 0.2, 0.0, 0.3, 0.1, and 0.4. 

 

5.5 PEC-Apex with Coordinate Set 1 

 

Hyperparameters of Ray, which are num_gpus, num_workers, target_network_update_freq, gamma, 

train_batch_size, and batch_mode, are set to 1, 5, 20000, 0.99, 5000, and complete_episode, respectively. 

Other hyperparameters are set to default values. α in Equation (1) is set to 0.2. The training with the 

coordinate set 1 in Table 1 is performed for 2000 training iterations. 
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Fig. 11. Trial and failure ratio over coordinates with different α. 

 

 
Fig. 12. Standard deviation and average of trial and failure ratio over  

training iterations with different α. 

 

The overall trend is similar to Section 4.2. So, we are going to mention only worth to notice. 

The interesting thing in Fig. 13 is that c18 shows the highest failure ratio unlike other results where c15 

shows the highest failure ratio. We can assume that the difficulty felt by the agent may vary according to 

the early stage of the training process, and that even if it changes, PEC adapts well accordingly. 

Fig. 14 is the average goal ratio over training iterations. This figure has another purpose, which is to 

empirically compare the training speed of w/ PEC and w/o PEC. We set the exit condition for the training 

process and presented the results. The exit condition is the average goal ratios of five consecutive 

iterations being maintained above a certain threshold. When the threshold is set to 0.9, displayed as dash-

dot, the training with PEC, and w/o PEC terminates at 695th, and 1470th iteration, respectively, which 

implies that the training speed is increased by 52.7%. When the threshold is set to 0.95, displayed as dot, 

it takes 1342, and 1892 iterations to terminate the training with PEC and w/o PEC, respectively, resulting 

in 29.1% enhancement. The time it takes for a single training iteration is similar for PEC and w/o PEC. 

The total time taken for 2000 training iterations was 107, and 106 hours for PEC and w/o PEC, 

respectively. So, we just compared the number of training iterations for comparing the learning speed. 

From the above results, we can confirm that both the training speed and performance improve with PEC. 



Page 14 / 16                                                              Prioritized Environment Configuration for Drone Control with Deep Reinforcement Learning 

 

 
Fig. 13. Trial and failure ratio over coordinates for Apex-X DQN and coordinate set 1. 

 

 
Fig. 14. Average goal ratio in training for Ape-X DQN and coordinate set 1. 

 

6. Conclusion 
 

This paper proposes a PEC. Examples of environment configurations are coordinate, map id, weather, 

and wind speed, which the simulator configures to initialize episodes. By prioritizing effective 

environment configurations and sampling accordingly, we can collect effect experiences for training the 

agents. We found out that PEC enhances both training speed and performance of reinforcement learning 

compared to the uniform sampling by applying it to the drone pathfinding. Moreover, we show that the 

proposed algorithm binds well to Ape-X DQN, an off-policy algorithm, and PPO, an on-policy algorithm. 

The same concept can be applied to a multi-task problem as the environment configuration can easily be 

extended to include task configuration, which is left for the future works of the paper. 
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