

RESEARCH (Research Manuscript) Open Access

Human-centric Computing and Information Sciences (2022) 12:01

DOI: https://doi.org/10.22967/HCIS.2022.12.002

Received: August 6, 2021; Accepted: November 11, 2021; Published: January 15, 2022

Prioritized Environment Configuration for

Drone Control with Deep Reinforcement Learning

Sooyoung Jang1 and Changbeom Choi2,*

Abstract

In reinforcement learning, first, the agent collects experiences by interacting with the environment through

trial-and-errors (experience collection stage) and then learns from the collected experiences (learning stage).

This two-stage training process repeats until the agent solves a given task and requires a lot of experience,

computation power, and time for training the agent. Therefore, many studies are conducted to improve the

training speed and performance to mitigate them, focusing on the learning stage. This paper focuses on the

experience collection stage and proposes a prioritized environment configuration that prioritizes and

stochastically samples the effective configuration for initializing the environment for every episode. Therefore,

we can provide the environments initialized with the configuration suitable for effective experience collection

to the agent. The proposed algorithm can complement the reinforcement learning algorithms that focus on the

learning stage. We have shown speed and performance improvement by applying the prioritized environment

configuration to an autonomous drone flight simulator. In addition, the results show that the proposed algorithm

works well with both on-policy and off-policy reinforcement learning algorithms in distributed framework with

multiple workers.

Keywords

Deep Reinforcement Learning, Machine Learning, Prioritized Environment Configuration, Environment

Initialization, Drone Control

1. Introduction

Research interests in reinforcement learning are continuously increasing year by year [1]. Accordingly,

the range of applications continuously expands to communication [2], abnormal detection [3], privacy

information sanitization [4], drone control [5, 6], etc. Furthermore, various services that focus on

unrestricted mobility of drones have emerged, such as the internet of drones [7] and drone delivery,

thanks to the advances in hardware. They are accelerating the research of drone deep reinforcement

learning [5, 6], which we will focus on in this paper. So far, it seems that reinforcement learning is the

universal key to solving drone control tasks. However, there are caveats to using reinforcement learning.

For example, it is time-consuming, expensive, and unsafe to train drone control agents, especially in the

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits

unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

*Corresponding Author: Changbeom Choi (cbchoi@hanbat.ac.kr)
1Intelligence Convergence Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon, Korea
2Department of Computer Engineering, Hanbat National University, Daejeon, Korea

https://doi.org/10.22967/HCIS.2022.12.002

Page 2 / 16 Prioritized Environment Configuration for Drone Control with Deep Reinforcement Learning

real world. As trial-and-error is the basis of reinforcement learning, tremendous and diverse experiences

are essential. Experiences with dangerous states and actions are required to obtain generalized high-

performance agents to solve the problems. It is more so in model-free reinforcement learning, in which

the agents do not know the environment models. This requirement makes the simulator an essential

component for training the drone control agents with reinforcement learning. The advantages of the

simulator are as follows:

⚫ It is easy to acquire diverse experiences by changing environment configurations such as coordinates,

friction coefficient, weather, wind speed, and maps for autonomous drone flight.

⚫ It is relatively easy to improve the training speed through distributed framework.

⚫ It is cost-effective since failing in the simulator does not cost anything.

Reinforcement learning can be divided into two stages. The first stage is to collect experiences through

rollouts, and the second stage is to train the policy with those experiences. Accordingly, two questions

arise to enhance the training speed and performance: (i) How can we collect effective experiences for the

policy update? (ii) How can we effectively learn from those collected experiences?

Research results for the latter include prioritized experience replay (PER) [8] and Ape-X [9] as well as

proximal policy optimization (PPO) [10], soft actor-critic (SAC) [11], and many mores.

In the former case, the researches mainly focus on curriculum learning [12]. Curriculum learning

provides auxiliary tasks. Similar to human learning, it provides progressively more challenging auxiliary

tasks for solving a given task. However, the main goal of curriculum learning is to efficiently solve a

given task, not to generalize through learning in various environmental configurations with similar levels

of difficulty. There are also challenges in generating adequate auxiliary tasks; bad auxiliary tasks may

worsen training.

By predefining environment configurations, we can use the simulator to reproduce various situations

to obtain general policies: predefine coordinates sets of various start and goal positions to prevent the

agent from memorizing the specific route, predefine various friction coefficients for better sim-to-real

transfer, or their combinations. Most of the researchers let the simulator randomly configures them.

However, it is inefficient to repeat environment configurations that the agents are good at for both

experience collection and training. By prioritizing the environment configurations instead of random

sampling, we can enhance the performance of deep reinforcement learning (DRL).

In this paper, we propose prioritized environment configuration (PEC). The proposed algorithm

prioritizes the environment configurations, stochastically samples a configuration according to the

priority, and initializes the environment with the sampled configuration. Effectively initialized

environments can help the agent collect effective experiences. The goal is to improve the training speed

and performance of DRL by enabling effective experience collection through the environment initialized

with the prioritized configurations. The main contributions of the paper are as follows:

⚫ We proposed a priority metric based on the failures and a stochastic sampling method based on that

metric. It allows reflecting the difficulty felt by the agent, i.e., perceived difficulty, furthermore can

dynamically adapt to the perceived difficulty of the agent as training progresses without human

expertise and intervention. For example, if specific configurations are sampled a lot in the current

training iteration, then the failure ratio of those configurations may decrease. It results in the priorities

of these settings being suppressed at the following training iteration, enabling efficient training.

⚫ We showed improvements in both training speed and performance on the autonomous drone flight

simulator.

⚫ We showed that PEC works well with both on-policy and off-policy DRL algorithms in a distributed

framework with multiple workers. Note that PEC complementarily works with reinforcement

learning algorithms that focuses on learning from the collected experiences such as PPO [10] and

Ape-X DQN [9].

The rest of this paper is organized as follows: Section 2 depicts the related works. Section 3 proposes

the prioritized environment configuration algorithm. Section 4 describes the environment that we have

utilized to verify and analyze the algorithm, and Section 5 presents the experiment results. Finally,

Human-centric Computing and Information Sciences Page 3 / 16

Section 6 concludes the paper.

2. Related Work

Reinforcement learning requires a lot of experience, computing resources, and learning time. So there

have been many studies to increase data efficiency and accelerate training. Among the various works, we

will state related works focusing on prioritization, randomization, and curriculum learning, which are

highly related to PEC.

Prioritization: DQN [13] first showed human-level performance over many Atari games using deep

reinforcement learning. One of the features of DQN is an experience replay which reduces the correlation

of the training data, thus, stabilizing the training process. Since the success of DQN, many extensions

have been reported, and among them, PER [8] and Ape-X [9] exists.

PER prioritizes the sampling according to temporal-difference error instead of random sampling

experiences for learning from the experience replay buffer as DQN does. As a result, it improved both

training speed and performance. In addition, Ape-X proposed a distributed architecture that can

incorporate PER. Both proved that prioritization which PEC utilizes could yield better training speed and

performance than uniform sampling. However, their purpose is to learn from the experiences effectively,

whereas PEC is to collect experiences effectively. This difference implies that we can combine PEC and

Ape-X. We present the results of PEC with Ape-X in Section 5.5.

Randomization: There are studies on randomization to learn generalized agents for sim-to-real. Two

main categories are dynamics randomization and domain randomization: dynamics randomization

focuses on randomizing the dynamics of the simulator (e.g., mass, friction, dampings), whereas domain

randomization focuses on the domain (e.g., colors, textures, appearance). Dynamics randomization

suggested in [14] randomizes the dynamics for the sim-to-real transfer of the robotic arms. In the paper,

they configured 95 randomized configurations and randomly sampled them for every episode. Automatic

domain randomization is suggested in [15]. It randomizes both domain and dynamics. Moreover, it keeps

increasing the boundary of the randomization range as training progresses. The results in [14, 15] both

reported the performance of real-world robotic arms similar to that in a simulation. They performed a

random selection of the configurations. In contrast, the main contribution of PEC is to prioritize the

configurations to avoid unnecessarily many repetitions of easy configurations for efficient training.

Curriculum learning: Curriculum learning provides increasingly complex auxiliary tasks, namely

curriculum, to agents to solve a given task. By doing so, the agent can solve a given task that seems

impossible. Various types of curriculum learning methods are being studied, which are well organized in

[12]. Training speed and performance in environments with high-dimensional continuous action space

can be enhanced by progressively increasing the distance of the target point that the agent should reach

[16]. GoalGAN [17] proposes automatically generating appropriate goals of intermediate difficulties to

solve a task using a generative adversarial network (GAN). In teacher-student curriculum learning [18],

the teacher tries to provide the appropriate subtasks to allow the student to solve a complex task. They

created five maps with progressive difficulties using Minecraft environments and evaluated the

performance with the most complex map. Their method dramatically improved the performance

compared to uniform sampling and comparable to the manual curriculum setting. Unlike curriculum

learning, which sets auxiliary tasks of various difficulties, the algorithm proposed in this paper aims to

effectively utilize various environmental configurations with similar difficulties to learn general agents

efficiently. We can utilize curriculum learning and the proposed algorithms together to improve

performance. For example, [18] uniformly samples agents and target positions for each map; we can

improve the training speed by prioritizing the sampling of the positions using the proposed algorithm.

Page 4 / 16 Prioritized Environment Configuration for Drone Control with Deep Reinforcement Learning

3. Prioritized Environment Configuration

In this section, we present the motivation, assumption, and the details of the proposed algorithm, PEC.

PEC is motivated by the following questions: (i) Can the environment be initialized by prioritizing

configurations for effective experience collection? Can such prioritization (ii) be adaptive to the training

progress? (iii) be needless of expert knowledge? (iv) be robust to outliers? (v) be operated in a distributed

reinforcement learning framework?

PEC assumes that there is more than one configurable environment configuration in the environment.

Autonomous drone flight simulators or autonomous driving simulators [19] usually provide various

configurable environment configurations. Examples include coordinates for navigation, navigation maps,

weather (e.g., rainy, sunny, cloudy), and wind velocity.

From now on, we present the details of the algorithm.

First, the priority of environment configuration n, pn is calculated as follows.

𝑝𝑛 = {
𝑓𝑟𝑛 + 𝛼, 𝑖𝑓 𝑡𝑛 > 0

1, 𝑖𝑓 𝑡𝑛 = 0
 (1)

Failure ratio, frn, is defined as the number of failures of the configuration n, fn, divided by the number

of trials of the configuration n, tn. α ≥ 0 is to control the dependency of failure ratios on the priority. It is

the only hyperparameter directly related to the algorithm. As α increases, the dependence on the failure

ratio decreases diminishing the effect of PEC. Conversely, as α decreases, the dependence on the failure

ratio increases, so the sampling is biased towards some specific configurations. By setting the priority as

in Equation (1), PEC can provide the sampling probabilities of environment configurations not only with

zero trials but also with zero failures with low complexity. It is essential to guarantee the sampling

probabilities of successful configurations at some level as the policy might forget them as training

progresses.

Then, sampling probability, Pn, is computed as follows. N is the total number of environment

configurations.

𝑃𝑛 =
𝑝𝑛

∑ 𝑝𝑛
𝑁
𝑛=1

 (2)

PEC provides stochastic prioritization as it performs prioritized sampling based on the sampling

probability. The sampling probability based on Equation (2) has the following advantages.

⚫ Adaptability to the agent's training progress: Sampling probability can adapt to changing perceived

difficulty levels of the agents for each environment configuration as the training progresses. The

perceived difficulty levels of the agents change dynamically depending on the number of trials per

environment configuration, which can be confirmed in the experiment results.

⚫ No need for expert knowledge: Since PEC automatically configures the sampling probability, there

is no need for an expert to set the difficulty levels of environment configurations manually.

⚫ Robust training: Since the failure ratio has a value from 0 to 1, outliers, e.g., too big or too small, do

not occur, enabling more robust training.

⚫ Operability with the distributed framework: PEC can operate with the distributed framework by

tracking the number of failures and trials per worker and aggregating them to calculate the sampling

probability.

⚫ Low time complexity: The time complexity of the proposed algorithm is O(n) due to the proportional

sampling from discrete distribution [20], where n is the number of environment configurations.

The procedure of PEC based on the proposed sampling probability in Equation (2) is as follows.

For each training iteration, i:

(Line 2–10 in Fig. 1) Each M parallel worker collects experiences with the sampling probability, P, until

they sum to train batch size, TB. Specifically, each worker (1) proportionally samples an

Human-centric Computing and Information Sciences Page 5 / 16

environment configuration, n, based on the sampling probability, Pi (Line 4); (2) initializes an

environment, e, with the sampled configuration, n (Line 5); (3) run policy, πi, and collect

experiences until the end of the episode in the environment, e (Line 6); and (4) update the number

of failures and trials considering the results of the episode (Line 7–10).

(Line 11 in Fig. 1) The collected experiences are utilized to optimize the policy, πi. Any DRL algorithm

such as PPO or Ape-X DQN can be adopted for policy optimization.

(Line 12–16 in Fig. 1) The sampling probability for the next iteration is computed. First, we aggregate

the number of failures, fi,w, and trials, ti,w, from all workers, w, and update the number of failures,

fi, and ti (Line 12–13). Then, we compute the sampling probability by Equation (2) based on the

updated fi+1, and ti+1 (Line 14). Finally, we initialize fi+1,w, and ti+1,w to 0 for all workers, w (Line

15–16).

Input

TI: Train iteration, TB: Train batch size, M: Number of workers, α: Dependency control

parameter

Initialize

P0: The sampling probability, f0: The number of failures, t0: The number of trials, π0: policy

Procedure

1: for i = 1 to TI do

2: while collected experiences < TB do

3: for each w = 1 to M do

4: n  ProportionalSampling(Pi)

5: e  InitializeEnvironment(n)

6: Run policy πi and collect experiences until episode end in environment e

7: if episode failed then

8: 𝑓𝑛
𝑖,𝑤

  𝑓𝑛
𝑖,𝑤 + 1

9: end if

10: 𝑡𝑛
𝑖,𝑤

  𝑡𝑛
𝑖,𝑤 + 1

11: πi+1  Optimize πi with collected experiences and a DRL algorithm

12: 𝑓𝑛
𝑖+1  𝑓𝑛

𝑖 + ∑ 𝑓𝑛
𝑖,𝑤𝑀

𝑤=1 for all n

13: 𝑡𝑛
𝑖+1  𝑡𝑛

𝑖 + ∑ 𝑡𝑛
𝑖,𝑤𝑀

𝑤=1 for all n

14: Pi+1  Compute sampling probability by Eq. (2) based on 𝑓𝑛
𝑖+1 and 𝑡𝑛

𝑖+1

15: 𝑓𝑛
𝑖+1,𝑤

  0 for all n and w

16: 𝑡𝑛
𝑖+1,𝑤

  0 for all n and w

Fig. 1. Prioritized environment configuration.

4. Environment

4.1 Overview

The environment we used to verify and analyze the proposed algorithm is a custom autonomous drone

flight simulator developed based on Gazebo [21] and ROS [22]. Its primary purpose is to train a drone

navigation agent with deep reinforcement learning to navigate from the starting position to the goal

position without collision. For that purpose, we have created a map, as shown in Fig. 2. The map consists

of six rooms, and each room has a door. The drone can only move between rooms through this door.

When the drone hits a wall, it is considered a collision.

Page 6 / 16 Prioritized Environment Configuration for Drone Control with Deep Reinforcement Learning

(a) (b) (c)

Fig. 2. Simulation map for drone navigation: (a) left rotated view,

(b) top view, and (c) right rotated view).

The episode termination conditions are as follows: when the drone reaches the goal, when the drone hits

the wall, or when the episode step count exceeds the maximum step size of an episode. We set the maximum

step size to 1,000 steps. The observation space, action space, and reward function are as follows:

⚫ Continuous observation space with depth camera image, distance between the drone and the goal,

and angle difference between the drone’s heading and the goal.

⚫ Discrete action space with the size of 15, which is the combination of forward movement speed

(linear.x) of 0, +1, and +2 m/s and yaw rate (angular.z) of -π/2, - π/4 , 0, π/4, and π/2.

⚫ Reward function with +2,000 for reaching the goal, -1,000 for collision, -1,000 for exceeding the

maximum step size of an episode, -3 for every step if linear.x is 0 for over ten consecutive steps, and

-1 for every step. Notice that the major portion of the reward function is related to the termination

conditions of the episode.

4.2 Coordinate Sets

Among the configurable environment configurations, we have chosen a coordinate set. The coordinate

set comprises several coordinates, where each coordinate represents the drone’s starting position and the

goal position. The reasons for the choice of the coordinate set are mainly two folds. First, it is one of the

necessary components that should be varied, as otherwise, the agent tends to memorize a particular route

instead of learning how to avoid obstacles and reach the goal. Second, it is easy to create various levels

of curriculums with similar difficulties. We will not evaluate a combination with curriculum learning that

is out of the scope, but the proposed algorithm can accelerate learning a curriculum.

We have created two coordinate sets to evaluate PEC performance on both easy and challenging

curriculums. Coordinate set 1 in Table 1 is easy: mainly coordinates without walls in the line of sight

between the starting and goal positions. On the other hand, coordinate set 2, listed in Table 2, is

challenging. It consists of coordinates with walls in between the starting and goal positions. If c0 in Table

1 is configured, the drone spawns at (0, -2) and navigates to the goal placed at (5, -2) in Fig. 2. Fig. 3

presents six sample coordinates, consisting of two coordinates only included in Table 1 ("light green"),

two coordinates included in Tables 1 and 2 ("green"), and two coordinates only included in Table 2

("blue"). Note that the capitalized "C" means the coordinate set, and the lower case "c" means the

coordinate, e.g., "C1_c6" means that the coordinate "c6" in the "Coordinate set 1" which is {(0, 5), (5,

5)}. We can see that coordinates in Table 2 are more challenging than those in Table 1.

Human-centric Computing and Information Sciences Page 7 / 16

Table 1. Coordinate set 1

Coordinate Positions Coordinate Positions

c0 {(0, -2), (5, -2)} c1 {(5, -2), (0, -2)}

c2 {(-1, 0), (-1, 4)} c3 {(-1, 4), (-1, 0)}

c4 {(-5, 0), (-5, 5)} c5 {(-5, 5), (-5, 0)}

c6 {(0, 5), (5, 5)} c7 {(5, 5), (0, 5)}

c8 {(3, 2), (3, 6)} c9 {(3, 6), (3, 2)}

c10 {(-5, -5), (-8, -8)} c11 {(-8, -8), (-5, -5)}

c12 {(-7, -8), (-1, -8)} c13 {(-1, -8), (-7, -8)}

c14 {(3, -5), (3, -2)} c15 {(3, -5), (3, -2)}

c16 {(0, -2), (-5, -2)} c17 {(-5, -2), (0, -2)}

c18 {(-8, -2), (6, -2)} c19 {(6, -2), (-8, -2)}

Table 2. Coordinate set 2

Coordinate Positions Coordinate Positions

c0 {(-7, -8), (-1, -8)} c1 {(-1, -8), (-7, -8)}

c2 {(-8, -2), (6, -2)} c3 {(6, -2), (-8, -2)}

c4 {(-1, 3), (0, -5)} c5 {(0, -5), (-1, 3)}

c6 {(0, 5), (5, -2)} c7 {(5,- 2), (0, 5)}

c8 {(-1, -2), (5, 5)} c9 {(5, 5), (-1, -2)}

c10 {(0, -1), (-5, 5)} c11 {(-5, 5), (0, -1)}

c12 {(-6, -6), (-1, -8)} c13 {(-1, -8), (-6, -6)}

c14 {(5, -7), (2, -1)} c15 {(2, -1), (5, -7)}

c16 {(6, -1), (3, -6)} c17 {(3, -6), (6, -1)}

c18 {(-7, -6), (-1, -8)} c19 {(-1, -8), (-7, -6)}

c20 {(-5, 5), (0, -2)} c21 {(0, -2), (-5, 5)}

c22 {(-7, 0), (5, 0)} c23 {(5, 0), (-7, 0)}

Fig. 3. Visualization of six sample coordinates in Tables 1 and 2.

5. Experiment Results

PEC is general enough to be applied to both on-policy and off-policy reinforcement learning

algorithms. First, we present experiment results of PEC combined with PPO, which is an on-policy

Page 8 / 16 Prioritized Environment Configuration for Drone Control with Deep Reinforcement Learning

algorithm, and then we show the results of PEC combined with Ape-X DQN, which is an off-policy

algorithm.

5.1 Hardware and Software Configurations

We setup the experiment on Dell Precision 7920 with Xeon Gold 6240, 32 GB RAM, and a single

Nvidia RTX 8000 48GB graphic card. Installed OS is Ubuntu 18.04. The simulator is based on Gazebo

9 and ROS Melodic. We implemented the algorithm based on Ray [23] version 0.8.5, which contains

RLlib [24] with Ape-X DQN, and PPO implementations. TensorFlow [25] version 1.15.0 is utilized to

execute these implementations. With the help of Ray, in the following experiments, 5 number of workers,

i.e., simulators, in parallel are utilized to gather the experiences.

5.2 PEC-PPO with Coordinate Set 1

Hyperparameters of Ray, which are num_gpus, num_workers, lambda, clip_param, kl_coeff,

train_batch_size, and batch_mode, are set to 1, 5, 0.95, 0.2, 1.0, 5000, and complete_episode,

respectively. Other hyperparameters are set to default values. α in Equation (1) is set to 0.2. The training

with the coordinate set 1 in Table 1 is performed for 1500 training iterations.

Fig. 4 is the average goal ratio over training iterations. We can observe that PEC’s performance is

slightly lower than w/o PEC’s at the beginning of the training. PEC selects a coordinate for every episode

by prioritizing the coordinates with high failure ratios. In other words, PEC is more likely to sample the

coordinates with high failure ratios than w/o PEC which randomly samples from a uniform distribution.

Therefore, when the overall failure ratio is high, especially in the early stages of training, training with

PEC may seem slow. However, from the point of training iteration 140, when learning has been done to

some extent, average goal ratios of PEC rise steeply and generally maintain high performance until the

end of the training. As for the average goal ratio of the last 100 iterations, PEC is 0.959, and w/o PEC is

0.930, showing high performance in PEC. This is because PEC performs rollout through prioritized

sampling for coordinates effective for training, and learns from the trajectories obtained through that

rollout. On average, the time taken per training iteration is 42.369 seconds, of which the proposed

algorithm occupies 0.681 seconds, only 1.607%.

Fig. 4. Average goal ratio in training for PPO and coordinate set 1.

Human-centric Computing and Information Sciences Page 9 / 16

Fig. 5 is the trial ratio and failure ratio for each coordinate in 100th, 500th, 1000th, and 1500th training

iterations. The upper row is with PEC, and the lower row is w/o PEC. The bar and the line represent the

trial ratio and the failure ratio, respectively. Refer to Table 1 for the actual coordinates in x-axis. We can

see that PEC effectively reduces the difficult coordinates’ failure ratios and the overall failure ratios

through the prioritized sampling. With PEC, the trial ratios are proportional to the failure ratios. The

sampling gets more concentrated in difficult coordinates as the easy coordinates’ failure ratios drop

considerably compared to the difficult coordinates’. In particular, the trial ratio of c15, the coordinate with

the highest failure ratio, keeps increasing as the training iteration increases. It results in an effective

decrease in the failure ratio of c15. On the other hand, w/o PEC, the trial ratio is uniform regardless of the

failure ratio. The failure ratio of c15 only slightly decreases as the training progresses. Furthermore, we

can notice that PEC dynamically adjusts the trial ratios without the prior knowledge of the coordinates'

difficulties, which usually requires manual settings by the experts, according to the failure ratios that

dynamically changes as the training progresses.

Fig. 5. Trial and failure ratio over coordinates for PPO and coordinate set 1.

The trends of trial and failure ratios over training iterations are presented in Fig. 6. Fig. 6(a) is the

average and the standard deviation of the trial ratio, and Fig. 6(b) is the average and the standard deviation

of the failure ratio over coordinates for every 100th training iteration. When PEC is applied, the standard

deviation of the trial ratio is large. This is because prioritized sampling is performed according to the

failure ratio with PEC: more samples with higher failure ratios and fewer samples with lower failure

ratios. Without PEC, the standard deviations are small as it performs sampling from a uniform

distribution. Moreover, as the number of samples increases as the training progresses, the standard

deviation gradually decreases with the training iteration. The average trial ratios are all 0.05 because there

are 20 coordination sets in the coordinate set 1. From Fig. 6(b), we can see that the standard deviation

and average effectively decrease as training progresses with PEC, whereas standard deviation and

average decrease but remain relatively high w/o PEC.

Fig. 7 is the average goal ratio and reward when evaluated 50 times using the checkpoint saved for

every 100th training iteration. During the evaluation, random sampling from a uniform distribution was

performed. PEC performs better than w/o PEC at all checkpoints. Through this, we can see that PEC is

actually learning higher performance intelligence even in the early stage of training compared to w/o

PEC. Although PEC may appear to have lower performance as the average goal ratio in the early stage

of training is lower than w/o PEC. One more thing, as the major portions of the reward function are

related to the episode termination conditions, average goal ratio and average reward graphs show similar

tendency.

Page 10 / 16 Prioritized Environment Configuration for Drone Control with Deep Reinforcement Learning

Fig. 6. Average and standard deviation of (a) trial ratio and (b) failure ratio over

training iterations for PPO and coordinate set 1.

Fig. 7. Average goal ratio and reward in evaluation for PPO and coordinate set 1.

5.3 PEC-PPO with Coordinate Set 2

The same hyperparameters are used as in the previous subsection. The training with the coordinate set

2 in Table 2 is performed for 5000 training iterations.

The overall trend of Fig. 8 is similar to that of Fig. 4. However, we can clearly see the performance

gap between PEC and w/o PEC. The last 100 iterations’ average goal ratio is 0.860 and 0.764 for PEC

Human-centric Computing and Information Sciences Page 11 / 16

and w/o PEC, respectively. These results represent that the more difficult the task is, the greater the

learning effectiveness through prioritized sampling with PEC. For coordinate set 2, which has four more

environment configurations than coordinate set 1, the average time per training iteration is 41.461

seconds, of which the proposed algorithm occupies 0.692 seconds, only 1.669%.

Fig. 8. Average goal ratio in training for PPO and coordinate set 2.

Fig. 9 also clearly presents the difference between PEC and w/o PEC. Even when there are many

difficult coordinates, PEC effectively reduces the failure ratio by prioritizing the more difficult ones.

With PEC, the minimum trial ratio continues to decrease and the maximum trial ratio continues to

increase as the training progresses (the minimum values of iteration 1000, 2000, 3000, 4000, and 5000

are 0.0313, 0.0295, 0.0279, 0.0271, and 0.0269, respectively, and the maximum values of iteration 1000,

2000, 3000, 4000, and 5000 are 0.0470, 0.0505, 0.0553, 0.0593, and 0.0616, respectively). On the other

hand, the trial ratio w/o PEC converges to the average resulting prolonged decrease of failure ratios.

Fig. 9. Trial and failure ratio over coordinates for PPO and coordinate set 2.

From Fig. 10, it can be seen that the overall trend of standard deviation and average of trial and failure

ratio over training iterations are similar to that of the coordinate set 1. However, the gap between w/ PEC

and w/o PEC becomes noticeable. Since the coordinate set 2 is composed of 24 coordinates, the average

trial ratio is 0.417.

Page 12 / 16 Prioritized Environment Configuration for Drone Control with Deep Reinforcement Learning

Fig. 10. Average and standard deviation of (a) trial ratio and (b) failure ratio over

training iterations for PPO & coordinate set 2.

5.4 Analysis of α with PEC-PPO

All settings are the same as in Section 4.2, but only α is different which varies from 0 to 0.4.

Fig. 11 shows the results of monitoring the trial and failure ratios of every coordinate at the training

iterations 100, 800, and 1500 with different α. The smaller the α, the higher the dependency to the failure

ratio when prioritizing the coordinate sampling, and the higher the α, the lower it is. It yields the trade-

off among the coordinates with higher and smaller failure ratios. The smaller the alpha, the more the trials

are concentrated at the coordinates with the higher failure ratios, so the failure ratios effectively decrease.

However, the failure ratios of other points decrease slowly. This phenomenon can be found in the figure.

When α is below a certain threshold, 0, 0.1, and 0.2 in Fig. 11, the standard deviation of trial ratio tends

to increase, whereas it tends to decrease for α above a certain threshold, 0.3, and 0.4 in the figure. This is

because the degree of dependency on the failure ratio in prioritization varies with α. Besides, the

performance differs according to α due to the trade-off mentioned in Fig. 12. The performance with regard

to the final average failure ratio is in the order of α 0.2, 0.0, 0.3, 0.1, and 0.4.

5.5 PEC-Apex with Coordinate Set 1

Hyperparameters of Ray, which are num_gpus, num_workers, target_network_update_freq, gamma,

train_batch_size, and batch_mode, are set to 1, 5, 20000, 0.99, 5000, and complete_episode, respectively.

Other hyperparameters are set to default values. α in Equation (1) is set to 0.2. The training with the

coordinate set 1 in Table 1 is performed for 2000 training iterations.

Human-centric Computing and Information Sciences Page 13 / 16

Fig. 11. Trial and failure ratio over coordinates with different α.

Fig. 12. Standard deviation and average of trial and failure ratio over

training iterations with different α.

The overall trend is similar to Section 4.2. So, we are going to mention only worth to notice.

The interesting thing in Fig. 13 is that c18 shows the highest failure ratio unlike other results where c15

shows the highest failure ratio. We can assume that the difficulty felt by the agent may vary according to

the early stage of the training process, and that even if it changes, PEC adapts well accordingly.

Fig. 14 is the average goal ratio over training iterations. This figure has another purpose, which is to

empirically compare the training speed of w/ PEC and w/o PEC. We set the exit condition for the training

process and presented the results. The exit condition is the average goal ratios of five consecutive

iterations being maintained above a certain threshold. When the threshold is set to 0.9, displayed as dash-

dot, the training with PEC, and w/o PEC terminates at 695th, and 1470th iteration, respectively, which

implies that the training speed is increased by 52.7%. When the threshold is set to 0.95, displayed as dot,

it takes 1342, and 1892 iterations to terminate the training with PEC and w/o PEC, respectively, resulting

in 29.1% enhancement. The time it takes for a single training iteration is similar for PEC and w/o PEC.

The total time taken for 2000 training iterations was 107, and 106 hours for PEC and w/o PEC,

respectively. So, we just compared the number of training iterations for comparing the learning speed.

From the above results, we can confirm that both the training speed and performance improve with PEC.

Page 14 / 16 Prioritized Environment Configuration for Drone Control with Deep Reinforcement Learning

Fig. 13. Trial and failure ratio over coordinates for Apex-X DQN and coordinate set 1.

Fig. 14. Average goal ratio in training for Ape-X DQN and coordinate set 1.

6. Conclusion

This paper proposes a PEC. Examples of environment configurations are coordinate, map id, weather,

and wind speed, which the simulator configures to initialize episodes. By prioritizing effective

environment configurations and sampling accordingly, we can collect effect experiences for training the

agents. We found out that PEC enhances both training speed and performance of reinforcement learning

compared to the uniform sampling by applying it to the drone pathfinding. Moreover, we show that the

proposed algorithm binds well to Ape-X DQN, an off-policy algorithm, and PPO, an on-policy algorithm.

The same concept can be applied to a multi-task problem as the environment configuration can easily be

extended to include task configuration, which is left for the future works of the paper.

Acknowledgements

Not applicable.

Author’s Contributions

Conceptualization, SJ. Investigation and methodology, SJ, CC. Writing of the original draft, SJ.

Human-centric Computing and Information Sciences Page 15 / 16

Writing of the review and editing, CC. Software, SJ. Validation, SJ, CC. Project administration, CC.

Funding acquisition, SJ. All the authors have proofread the final version.

Funding

This work was supported in part by Electronics and Telecommunications Research Institute (ETRI)

grant funded by the Korean government (No. 21ZR1100, A study of hyper-connected thinking Internet

Technology by autonomous connecting, controlling and evolving ways), and in part by the research fund

of Hanbat National University in 2021.

Competing Interests

The authors declare that they have no competing interests.

References

[1] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep reinforcement learning that

matters,” in Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, 2018, pp.

3207-3214.

[2] M. A. Rahman, Y. D. Lee, and I. Koo, “An efficient transmission mode selection based on reinforcement

learning for cooperative cognitive radio networks,” Human-centric Computing and Information

Sciences, vol. 6, article no. 2, 2016. https://doi.org/10.1186/s13673-016-0057-2

[3] A. Belhadi, Y. Djenouri, G. Srivastava, and J. C. W. Lin, “Reinforcement learning multi-agent system for

faults diagnosis of mircoservices in industrial settings,” Computer Communications, vol. 177, pp. 213-219,

2021.

[4] U. Ahmed, J. C. W. Lin, and G. Srivastava, “Privacy-preserving deep reinforcement learning in vehicle

adhoc networks,” IEEE Consumer Electronics Magazine, 2021.

https://doi.org/10.1109/MCE.2021.3088408

[5] A. T. Azar, A. Koubaa, N. Ali Mohamed, H. A. Ibrahim, Z. F. Ibrahim, M. Kazim, et al., “Drone deep

reinforcement learning: a review,” Electronics, vol. 10, no. 9, article no. 999, 2021.

https://doi.org/10.3390/electronics10090999

[6] V. J. Hodge, R. Hawkins, and R. Alexander, “Deep reinforcement learning for drone navigation using sensor

data,” Neural Computing and Applications, vol. 33, no. 6, pp. 2015-2033, 2021.

[7] B. Sharma, G. Srivastava, and J. C. W. Lin, “A bidirectional congestion control transport protocol for the

internet of drones,” Computer Communications, vol. 153, pp. 102-116, 2020.

[8] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” in Proceedings of the 4th

International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2016.

[9] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. Van Hasselt, and D. Silver, “Distributed

prioritized experience replay,” in Proceedings of the 6th International Conference on Learning

Representations (ICLR), Vancouver, Canada, 2018.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization

algorithms,” 2017 [Online]. Available: https://arxiv.org/abs/1707.06347.

[11] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: off-policy maximum entropy deep

reinforcement learning with a stochastic actor,” in Proceedings of the 35th International Conference on

Machine Learning (ICML), Stockholm, Sweden, 2018, pp. 1856-1865.

[12] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone, “Curriculum learning for

reinforcement learning domains: a framework and survey,” Journal of Machine Learning Research, vol. 21,

article no. 181, 2020.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, et al., “Human-level control

through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[14] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer of robotic control with

dynamics randomization,” 2017 [Online]. Available: https://arxiv.org/abs/1710.06537.

Page 16 / 16 Prioritized Environment Configuration for Drone Control with Deep Reinforcement Learning

[15] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, et al., “Solving Rubik's cube

with a robot hand,” 2019 [Online]. Available: https://arxiv.org/abs/1910.07113.

[16] S. Jang and M. Han, “Combining reward shaping and curriculum learning for training agents with high

dimensional continuous action spaces,” in Proceedings of 2018 International Conference on Information

and Communication Technology Convergence (ICTC), Jeju, Korea, 2018, pp. 1391-1393.

[17] C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic goal generation for reinforcement learning

agents,” in Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm,

Sweden, 2018, pp. 1514-1523.

[18] T. Matiisen, A. Oliver, T. Cohen, and J. Schulman, “Teacher–student curriculum learning,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 31, no. 9, pp. 3732-3740, 2019.

[19] M. Wen, J. Park, and K. Cho, “A scenario generation pipeline for autonomous vehicle simulators,” Human-

centric Computing and Information Sciences, vol. 10, article no. 24, 2020. https://doi.org/10.1186/s13673-

020-00231-z

[20] K. Bringmann and K. Panagiotou, “Efficient sampling methods for discrete distributions,” Algorithmica,

vol. 79, no. 2, pp. 484-508, 2017.

[21] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-robot simulator,”

in Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE

Cat. No. 04CH37566), Sendai, Japan, 2004, pp. 2149-2154.

[22] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Ng, “ROS:

an open-source Robot Operating System,” in Proceedings of the ICRA Workshop on Open Source Software,

Kobe, Japan, 2009.

[23] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, et al., “Ray: a distributed framework for

emerging AI applications,” in Proceedings of the 13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI), Carlsbad, CA, 2018, pp. 561-577.

[24] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, et al., “RLlib: abstractions for distributed

reinforcement learning,” in Proceedings of the 35th International Conference on Machine Learning (ICML),

Stockholm, Sweden, 2018, pp. 3053-3062.

[25] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, et al., “TensorFlow: a system for large-scale

machine learning,” in Proceedings of the 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2016, pp. 265-283.

	2022_1월표지.pdf
	HCIS-2021-0061-Proofreading-me (2) - 복사본.pdf

