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ABSTRACT Fall from height (FFH) is an accident that leads to fatalities in construction workers, and a
major cause of FFH is due to the improper fastening of a safety hook of a safety harness to a temporary
structure. In this study, we propose a new approach for recognizing the fastening state of the safety hook
based on the similarity of motion between the motion of the hook and the body. We first assume that the
similarity of motion between a hook and a body will be more similar when a hook is fastened to a part of
a body than when the hook is fastened to a temporary structure. Under this assumption, we propose a new
method that measures the similarity of motion of a hook and a body. In the proposing method, motions are
represented through acceleration and rotations of the hook and the body. The magnitude of acceleration is
represented as an ordinal variable and the magnitude of acceleration is jointly represented with rotations in a
spherical coordinate system for effective similarity measurement of both motions. The effectiveness of our
approach is verified by our newly collected task-related human activity dataset comprising the motion data
of the hook and the body from inertial measurement unit (IMU) embedded mobile devices. Our proposed
method confirmed that representing the magnitude of acceleration as an ordinal variable shows improved
performance of 82.95% in terms of Youden’s index. Moreover, it further verified that jointly representing the
magnitude of acceleration and the rotation in the spherical coordinate system shows improved performance
of 90.64% in terms of Youden’s index.

INDEX TERMS Inertial measurement unit (IMU), point set, motion similarity measurement, fall from
height.

I. INTRODUCTION
Occupational accidents occur frequently every year, and var-
ious efforts to prevent them are being made worldwide.
In particular, the accident rate at construction sites account
for a large proportion of all industrial accidents across many
countries. The proportion of fall from height (FFH) acci-
dents among others is largely due to the specific nature of
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construction sites as compared to other industrial sites in
that high-altitude work comprise a large proportion of the
total work, and the majority of such accidents results in
fatal injuries. According to statistics on fatal occupational
injuries [1], [2], it was confirmed that among all deaths,
deaths due to falls comprised 31.1% in the UK [2] and 44.5%
in the United States [1], respectively.

FFHs at construction sites are caused by various factors
such as environmental factors, task-related factors and per-
sonal factors [3], [4]. They can be caused by a single factor
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or an interaction of the multiple factors, and in the majority of
case of FFHs, workers were not wearing their personal pro-
tective equipment (PPE) or using it improperly [5]. Although
PPE is the last resort for avoiding fatal injuries by a FFH,
it is not always used by construction site workers. There
are a variety of reasons as to why workers do not use PPE,
and a major reason is based on their personal decision [6].
Thus, the worker’s personal factors contribute to the frequent
occurrence of fatal injuries by a FFH.

Proactive methods are important on-site precautionary
measures that are required to be taken before FFH acci-
dents occur, and they are more important as they include
on-site precautionary measures [7]. Some authors proactively
strategize to avoid such accidents by changing the organiza-
tion of workers through revised task-planning or improved
training regimes for workers [8]. In contrast, some authors
have focused on mitigating FFHs using personal protection
equipment (PPE). As an example, FFH injuries would less
likely to occur for a scaffolder with a safety hook of a safety
harness that is fastened to a scaffold. In China, scaffolders are
required by law to wear safety harnesses at construction sites,
as using PPE minimizes injuries from FFHs, which could
otherwise be fatal [6].

In order to prevent fall accidents, it is necessary to ensure
that the workers fasten their safety hook to temporary struc-
tures when working at heights. On-site safety managers and
technicians can supervise workers, but it is difficult for safety
managers to monitor workers at all times [9]; thus, a technical
agent is necessary [7].

Several prevention strategies have been studied for pre-
venting the occurrence of FFH injuries at construction sites.
In some studies, FFHs were prevented by providing improved
work routines for workers [6], [7]. In contrast, in some stud-
ies, preventative measures by leveraging technological agents
have been suggested, such as a radio frequency identification-
based (RFID) [9], [10] and a computer vision-based [11]
approach to monitor the presence of safety harnesses and
an accelerometer-based approach to monitor the presence of
safety helmets or the proper usage of safety helmets [12].
However, these studies only recognize the presence of safety
harnesses or the proper usage of other PPEs. Despite safety
harnesses being one of the important PPEs for workers work-
ing at heights, few studies have been conducted for recogniz-
ing the proper use of safety harness.

Therefore, in this study, we propose an approach for rec-
ognizing whether a safety harness, one of the most important
PPE required for workers working at heights, is being used
properly. Based on the proposed approach, we attempt to
recognize whether the worker is in a state where the safety
hook is fastened to the temporary structure or that where the
safety hook is fastened to their body.

The concept of this study originates from the fundamental
assumption that data from two motion sensors located at
different parts of the body will be more similar than a case in
which one of the sensors is located at the temporary structure.
To extract information regarding the motion of a body and

a safety hook during construction site work, an inertial
measurement unit (IMU) is attached to each of the safety
hook and chest strap of the safety harness.

In contrast to the aforementioned studies that were focused
on recognizing the presence of a safety harness, this study is
conducted for recognizing the proper use of a safety harness.

This research contributes to the following:
1. The first proposed safety hook fastening state recogni-

tion system based on two IMU sensors and the publication of
the obtained dataset for future research related to this field.

2. Introduction of a new motion similarity measurement
method with a new motion representation method in which
the magnitude of acceleration and rotations can be jointly
represented on the same coordinate system effective for safety
hook fastening state recognition.

II. RELATED WORKS
A. EXISTING METHODS FOR SAFETY HOOK FASTENING
STATE RECOGNITION
Various designs and approaches for recognizing the fastening
state of the safety hook have been proposed utilizing various
sensors [13]–[17]. Gómez-de-Gabriel et al. [13] proposed a
safety monitoring system using Blutooth low-energy bea-
cons; the relative position of a worker is determined based on
the position of the beacons and the receiver, which is attached
to a safety harness. When the distance between the receiver
and the beacon in a dangerous area is small, it can be deduced
that the worker is in a dangerous area. Concurrently, if the
distance between the beacon in the karabiner and the receiver
is small, it can be observed that the worker is using the safety
harness properly.

A similar detection method was proposed in which uti-
lized RFID tags. RFID coupling detectors are attached at
the anchor point and the safety harness [15]. However, the
aforementioned methods operate on sites where the ambient
sensors (RFID tag, Beacon) with anchor point information
are available. Moreover, some cases have confirmed that
construction site materials interfere with RFID [18].

On the other hand, methods that can be used without
anchor point restrictions have also been proposed. In [14],
a retrofittable load sensor was attached to the safety hook. The
system incorporated its information from the identity (ID)
card of the worker, which contained the load information,
anchor point information, and anchor point at the construction
site. The load information is obtained from the coupling
detector attached to the safety harness; and the anchor infor-
mation is obtained from the coupling detector, possibly an
RFID reader, attached at the lanyard of the safety harness.
Likewise, in [16], multiple load sensors were used, and all
but one were located at the safety hook, which was located at
the hook hanger of the safety harness. Each sensor attached
to the safety hook was responsible for checking the fastening
status, lever status, and disconnection status; the controller
then outputs a sound and a light signal based on the status
of the load sensors. In contrast to previously mentioned sys-
tems, the system [16] informs both the worker and on-site
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supervisor. However, the systems proposed in [14] and [16]
required that the load threshold be set manually, which varied
with different workers, to classify the status. Although the
threshold of [16] is variable, it requires the user to input the
correct information using an ID card. In [19], a single IMU
sensor was utilized to recognize the fastening state of the
safety hook. They trained various machine learning models
based on kinematic parameters from the IMU sensor. In [17],
accelerometers were used to recognize the fastening state of
the safety hook, and two acceleration sensors were mounted
to each body belt and safety hook. When the value of the
relative acceleration of the two accelerometers is higher or
lower than a predetermined threshold, the state can be recog-
nized by generating an alert signal. Several approaches have
been proposed with the use of various sensors. However, most
of the above studies are patents, and it is difficult to deter-
mine the specific method or analytical experimental results
in detail [14]–[17]. Although Gómez-de-Gabriel et al. [13]
described their approach with detailed analysis, in which the
operating locationwas limited to near the anchor points where
an ambient sensor was attached.

For the monitoring system to be used generally at a con-
struction site, it should be able to be used anywhere there
is a temporary structure without restriction on the position
of the anchor. We proposed an approach that can be used
anywhere there is a temporary structure by recognizing the
fastening state of the safety hook using only two IMU sen-
sors attached to the safety harness. Although the study of
Muhammad [19] et al. targeted the same application as ours
using a single IMU sensor; the approach is different from
that of ours. Furthermore, we experimentally verified the
effectiveness of using not only the acceleration [17] but also
rotation for the safety hook fastening state recognition, and
we publish a newly collected task-related human activity
dataset for future research related to the prevention of FFHs
at construction sites.

B. STUDIES ON THE SIMILARITY OF TIME SERIES DATA
ACCORDING TO TWO SENSOR POSITIONS
This study classifies the fastening state of the safety hook
based on the similarity measured between the motion of the
safety hook and tne body. In this regard, this study is similar
to the problem of classifying whether two sensors are located
in the same place (person) or in different places (person).
Previously, studies to classify whether twomobile devices are
located in the same or different places for pairing two mobile
devices have been proposed.
Lester et al. [20] attempted to classify whether two devices

are located on the same person or on different people. To this
end, each device included a three-axis accelerometer, and the
similarity in the magnitude of acceleration of the devices
was measured to recognize whether they were located on
the same person. To measure the magnitude of acceleration
of the three-axis acceleration, a one-dimensional magnitude
of acceleration was extracted by taking the sum magnitude of
vectors (SMVs), and the similarity of the magnitude of accel-

eration of the two devices was measured through coherence.
To solve similar problems, Mayrhofer et al. [21] and Rain-
hard et al. [22] used coherence in a similar manner to that
of [20]. Moreover, Mayrhofer et al. confirmed that the area
under the receiver operating characteristic (AUC) exhibited
the highest coherence among various similarity measurement
methods. They utilized the rotation information to de-rotate
the orientation of two mobile devices yet they did not con-
sider the similarity of motion of the rotational direction.
Bosch et al. [23] measured the similarity of motions by cal-
culating the correlation of linear motion using accelerometers
and the rotary motion using compass sensors. The correlation
of the linear motion and the rotary motion was calculated
independently, and the weights that were determined heuris-
tically were multiplied to each correlation, and combined.

In the studies introduced above, the relative motion with
the body is fixed by holding the device in the hand or
attaching it somewhere else on the body. Moreover, most
of the studies measured the similarity of motions that are
somewhat monotonous such as walking [20] or shaking [21],
[22] based on the magnitude of acceleration. In contrast,
the safety hook in this study was not tightly attached to a
part of a body, but it is fastened to a part of the body or a
belt of a safety harness. Because it is in a fastening state,
it creates swinging motions based on the fastening anchor
point. Moreover, the construction site is an extreme environ-
ment in which various task-related activities occur, and the
motions of the task-related activities are complex [4], [7],
[24]. The motion of the task-related activities includes not
only walking or shaking motions but also rotary motions of
the body. Therefore, measuring the similarity of the rotary
motion with the magnitude of acceleration can be effective
for the fastening state recognition. The similarity of rotary
motion has been considered in [23], but heuristically deter-
mined weights were required to combine the similarity of the
magnitude of acceleration with the similarity of the rotary
motion. It is expected that a training dataset is needed to tune
parameters properly for other applications [22]. In this study,
we proposed a new non-parametric method for similarity
measurement between the motions of two mobile devices.
The magnitude of acceleration and rotation are jointly rep-
resented on the same coordinate system; thus, there are no
parameters to be tuned to combine the magnitudes of the
acceleration and rotation. In addition, a method of reducing
the effects from swinging motion of the safety hook was
introduced.

III. METHOD
In this study, we propose a new similarity measure-
ment method for safety hook fastening state recognition.
We achieve this by measuring the similarity of the magnitude
of acceleration and the rotation of two mobile devices in
the same coordinate system. The key concept is to mea-
sure the distance between two point sets in which the mag-
nitude of acceleration and rotation are represented in the
spherical coordinate system (SCS). Hereafter, we denote the
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IMU-embedded mobile device attached to the safety hook of
the safety harness as the mobile device of the hook and the
IMU-embedded mobile device attached to the chest strap of
the safety harness as the mobile device of the body.

A. ROTATION ALIGNMENT
We assume that, if the hook is fastened to the body, the
transformation of both rotations would be similar. Specifi-
cally, the local coordinate systems (LCSs) of both rotations
relative to each LCS at the initial time RL0Ln at the n

th sampling
time would be similar. However, both RL0Ln cannot be directly
compared because the initial orientations of each mobile
device are different. Therefore, a de-rotation process with
respect to the initial orientation is required. IMU sensors
could provide the rotation of the LCS at the nth sampling
time relative to the world coordinate system (WCS) RWLn . The
rotations consist of two rotations as shown in 1:

RWLn = RL0LnR
W
L0 . (1)

1. RWL0 : The rotation matrix of a LCS of a mobile device at
the initial time relative to the WCS.

2. RL0Ln : The rotation matrix of a LCS of a mobile device at
the nth sampling time relative to the LCS of a mobile device
at the initial time.

In order to extract RL0Ln , the rotation of the LCS at the nth

sampling time relative to the WCS RWLn should be de-rotated
as much as the rotation of the LCS relative to the WCS at the
initial time RWL0 .

RL0Ln = RWLnR
W
L0
T
. (2)

The de-rotation can be applied by multiplying the trans-
posed matrix RWL0

T
to RWLn as, shown in 2.

B. JOINT REPRESENTATION
We measured the similarity by using rotation in addition to
the magnitude of acceleration while existing studies [20]–
[22] used only the magnitude of acceleration to measure the
similarity of two motions. In our proposed method, the two
kinematic parameters must be jointly represented in the same
coordinate system to measure the similarity. Several studies
have attempted to represent accelerations and rotations in
the same coordinate system [25], [26]. These studies usually
attempted to analyze the movement of animals by visualizing
the accelerations and rotations in the Cartesian coordinate
system (CCS). However, the representation on CCS is hardly
applicable for similarity measurement where multi-turn situ-
ations should be considered.

Figure 1 presents an example of a multi-turn situation on
each coordinate system. There are three points at nth sampling
time. Each point indicates a different ϕ rotation with the same
magnitude of acceleration. In the CCS, the Euclidean distance
between the yellow point and the blue point is shorter than
that between the red point and the blue point, yet in fact the
actual ϕ rotation difference between the red point and the
blue point is smaller. On the other hand, the ϕ directional

FIGURE 1. An example of multi-turn situation on each coordinate system.
Blue points: Single-turn of a mobile device attached to a hook, Red
points: Single-turn of a mobile device attached to a body, Yellow points:
Multi-turn of a mobile device attached to a body. (a) and (b) indicate the
situation on CCS and SCS, respectively.

rotation occupies one of the dimensions of the SCS; thus,
the actual ϕ directional rotation difference is reflected in
the distance calculation. Therefore, it is outstanding that the
distance between the red and the blue point is shorter than that
of the yellow and the blue point on the SCS. In this study,
we represent the motion of a mobile device as a point set
on the SCS. The procedure for generating a point at the nth

sampling time is as follows:
A unit vector arranged on the center of X, Y, and, Z is

generated on the CCS at the initial time.

Eu[0] =
1
√
3
[1, 1, 1]T . (3)

The orientation of a mobile device at the nth sampling time
can be represented by multiplying the rotation matrix RL0Ln by
the unit vector Eu[0] as shown in 4.

Eu[n] = RL0LnEu[0]. (4)

The orientation represented in the CCS is transformed into
a representation in the SCS. This can be represented as the
polar angle θ and the azimuthal angle ϕ on the SCS as shown
in 5 and 6.

θ [n] = arccos(Eu[n] ∗ EZ ), (5)

ϕ[n] = arctan
Eu[n] ∗ EY

Eu[n] ∗ EX
. (6)

In the SCS, the polar angle directional rotation and
azimuthal angle directional rotation represent the rotation
about the vertical and horizontal planes on the surface of the
ground, respectively.

In addition to the rotations, the magnitude of acceleration
also represents themotion of themobile device. On represent-
ing the magnitude of acceleration ‖Ea[n]‖ on the radius axis of
the SCS (we denote the magnitude of acceleration ‖Ea[n]‖ as
the radius of a sphere r[n]), the orientation and the magnitude
of acceleration of the mobile device at the nth sampling time
are normalized and represented as a point of a hook pH [n] and
a point of a body qB[n] on the SCS as shown in 7 and 8.

pH [n] = [θ̃H [n], ϕ̃H [n], r̃H [n]], (7)

qB[n] = [θ̃B[n], ϕ̃B[n], r̃B[n]]. (8)
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FIGURE 2. A sample of point set that reflects the motion of mobile device
on the SCS.

As points are recorded at every sampling time, the motion
of the mobile device is represented as a point set on the SCS.

C. MEASURING SIMILARITY BETWEEN POINT SETS
In order to measure the similarity of two point sets, we adopt
the Hausdorff distance [27], which is conventionally used for
measuring the distance between two point sets. However, the
Hausdorff distance has a drawback that of being sensitive to
outliers [28], [29].

As the construction site is an extreme environment,
we could expect the complexity of the motion of a worker [4],
[7], [24] can induce outliers even when the hook is fastened to
a part of the body or a belt of the harness. Therefore, we adopt
the average Hausdorff distance (AHD) [28] to alleviate the
effects from the outliers. The equation for the AHD is shown
in 9 where d(pH , qB) indicates the Euclidean norm between
two points each belonging to a point set of a hook PH and a
body QB.

dAHD(PH ,QB) = (
1
|PH |

∑
pH∈PH

min
qB∈QB

d(pH , qB)

+
1
|QB|

∑
qB∈QB

min
pH∈PH

d(pH , qB))/2. (9)

While the corresponding points are required to be prede-
termined in the AHD, the corresponding points are deter-
ministic with respect to the synchronized sampling time in
our application. Consequently, the formula for the similarity
measurement is derived from the Euclidean norm as shown
in 10.

dAHD(PH ,QB) =
1
N

N∑
n=1

‖pH [n]− qB[n]‖2 . (10)

D. PARTIAL ORIENTATION BIAS COMPENSATION
The problem we are focusing on in this study is similar to
those in existing studies in which attempts were made to

classify whether two sensors are located in the same place
(person) [20]–[23]. However, there aremajor differences with
the existing studies and ours in which the mobile devices are
attached to a part of the body. That is, the mobile device of
the hook is not attached but is fastened to a harness or a part
of the body. Because the hook is fastened, the mobile device
exhibits a swingingmotion around the fastening anchor point,
and the swinging motion makes the orientation of the hook to
be biased. The mobile device of the body follows the motion
of the body, but the mobile device of the hook follows the
motion of the body as its orientation is biased even when
the hook is fastened to the body. Therefore, it is necessary
to reduce the influence of the orientation bias.

The orientation bias does not have the same value over
the entire sampling time, but it occurs partially with differ-
ent values for each segment over the entire sampling time.
To compensate the partially occurred bias, the entire sampling
time is required to be divided intoM segments with boundary
points b[m] wherem = {1, 2, · · · , M}, and a registration for
the two point sets is executed in themth segment, respectively.
We assumed that an additional rotation occurs when the
magnitude of the angular velocity [30] of the mobile device
of the hook is higher than the maximum magnitude of the
angular velocity of the mobile device of the body, which
can induce the orientation bias. Based on this assumption,
boundary points are selected at the moments. Because all
points in both the point sets are paired according to the syn-
chronized sampling time, we adopted Kabsch algorithm [31],
which is a registration algorithm for two paired point sets.
The rotation and translation of the two point sets are usually
considered in the CCS. In contrast, the rotation of the point
set θ and ϕ, which are represented in each dimension in the
SCS, are orthogonal. Thus, only coinciding the centroid of
the two point sets is executed by subtracting the difference
between the centroid of the point set of the hook µH [m] and
the centroid of the point set of the body µB[m] from the point
set of the hook, as shown in 11.

µ[m] =
[ ∑b[m+1]−1

n=b[m] θ̃ [n]

b[m+ 1]− b[m]
,

∑b[m+1]−1
n=b[m] ϕ̃[n]

b[m+ 1]− b[m]
, 0
]T
,

8(m) = {x|x ∈ N, b[m] ≤ x < b[m+ 1]},

pHC [n] = pH [n]− (µH [m]− µB[m])
(
n ∈ 8(m)

)
. (11)

Because several points pH in point set PH are compensated
to pHC , the formula for the similarity measurement is modi-
fied as shown in 12.

dAHD(PH ,QB) =
1
N

N∑
n=1

‖pHC [n]− qB[n]‖2 . (12)

IV. EXPERIMENTAL SETUP
A. DATA COLLECTION
To the best of our knowledge, there are no existing public
activity datasets that incorporate the motion of a human body
and a hook in construction site activities. Although the tech-
nology for recognizing the fastening state of the safety hook is
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FIGURE 3. (a) Data acquisition in the construction site testbed. (b) One mobile device (Red box) is attached to the the chest strap of the safety
harness and the other (Yellow box) is attached to the neck of the safety hook.

TABLE 1. Hardware specification.

important for the prevention of FFHs, related studies have not
been actively conducted. Therefore, we collected dataset not
only to evaluate the effectiveness of the proposed similarity
measurement method, but also for future research on FFH
prevention. In the data collection process, a total of 10 adult
participants (mean age: 26.1 years, and standard deviation:
3.18 years) were asked to execute common construction work
tasks. Data collection was carried out at a scaffold test bed
that replicated the real construction site as closely as possible
in Figure 3a.

For the experiment, two mobile devices each containing
a single IMU sensor were used. For the mobile device,
EBIMU24GV4 was used, which incorporates an accelerome-
ter, a gyroscope sensor, and a magnetic sensor. Tri-axis accel-
eration, angular velocity, and quaternion data were collected
at a sampling frequency of 250Hz from the mobile device.
An RF receiver, EBRCV24GV4, 2.4GHz, was connected
to a PC in which the collected data was saved. As for the
attachment location of the two mobile devices, one of them
was attached to the neck of the safety harness closer to the

hook and the other one was attached to the chest strap of the
safety harness. The exact locations are presented in Figure 3b.

In the data collection, seven construction site activities
were conducted; these are presented in Figure 4. Each
task consisted of a combination of construction site work-
ers’ activities [12], and these were confirmed by profes-
sional experts at the construction site. The data collection
process was approved by the Institutional Review Board
of Korea Advanced Institute of Science and Technology.
For the task scenarios, participants were asked to execute
four uniform (A,B,C, and G) and three multiple task sce-
narios (D,E, and F). Each uniform and multiple task sce-
nario was performed for 64 and 128 seconds respectively.
Overall, seven hours of construction site work activity data
were collected. The collected dataset can be requested via
https://sites.google.com/view/shfsr2022/.

The seven task scenarios can be divided into threemain cat-
egories.Walking&Climbing consists of tasks that require the
worker to (A) walk on a safety platform that is installed on the
scaffold, (B) walk on an unstable safety platform or on a pipe,
or (C) climb up or down a ladder. Assembling/Disassembling
Scaffold is largely comprises tasks related to the scaffold-
platform work. Task (D) involves assembling, transporting,
and disassembling scaffolding metal planks. Likewise, task
(E) involves assembling, transporting, and disassembling
scaffolding pipes for scaffold safety rails. Tasks performed
in both (D) and (E) are performed over three sequential
operations continuously within the given time. The last main
task scenario is related to formwork. Task (F) involves assem-
bling/disassembling of the Euroform; this requires the par-
ticipants to carry the Euroform to a designated location and
then assemble and disassemble the form work. The partic-
ipants were trained prior to performing the tasks. For task
(G), we initially aimed to replicate the Euroform removal
process which is performed after the concrete has solidified.
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FIGURE 4. The task scenarios at the construction site: (A), (B), (C), and (G) are uniform task scenarios and (D), (E), and (F) are multiple task
scenarios.

However, due to the difficulty in replicating this process,
we replaced this operation with picking the nails off a Euro-
form that was placed and fixed perpendicular to the ground.

The seven task scenarios were performed four times each
under various safety hook fastening states: properly (pipe,
rope, and anchor) or improperly (body). When the safety
hook is fastened to either pipe, rope or anchor, we consider it
as the proper usage of PPE; conversely, if the safety hook is
fastened to the body, we consider it to be an improper usage
of PPE.

B. EXPERIMENTAL DESIGN
Through the experiment, we planned to examine two factors:
effective method of representing the magnitude of accelera-
tion and the effectiveness of our proposed method compared
with conventional methods in which only the magnitude
of acceleration was used for the similarity measurement.
In addition, we evaluated the effectiveness of our proposed
method on various window sizes in order to consider real
application scenarios.

The collected dataset consisted of tri-axis acceleration,
angular velocity, and quaternion. In order to apply the col-
lected data to the proposed method, the magnitude of acceler-
ation, the magnitude of angular velocity and rotation matrix
are required. For the analysis of motion from acceleration,
the existing studies [20]–[22] removed the effect of gravity
from acceleration acquired by the accelerometer. Likewise,
we removed the effect of gravity by using the quaternion [32],
to analyze the pure dynamic motion [33] from acceleration.
We additionally applied a high pass filter with a cut off
frequency of 1Hz in order to alleviate the effect from thermal
drift error [33]. Subsequently, we extracted the magnitude
of acceleration and angular velocity [30] from the SMV,
as shown in 13 and 14. We then extracted the rotation matrix
from the quaternion as shown in 15 at the nth sampling time.

‖Ea[n]‖ =
√
a2x[n]+ a2y[n]+ a2z [n], (13)

‖Eg[n]‖ =
√
yaw2[n]+ pitch2[n]+ roll2[n], (14)

RWLn =

1− 2y2 − 2z2 2xy− 2wz 2xz+ 2wy
2xy+ 2wz 1− 2x2 − 2z2 2yz− 2wx
2xz− 2wy 2yz+ 2wx 1− 2x2 − 2y2

 .
(15)

The total number of instances in the collected dataset is 280
(uniform tasks: 160, multiple tasks: 120). The lengths of the
uniform task and multiple task instances are 64 seconds and
128 seconds, respectively. We split the multiple task instance
into three samples with a 50% hop size for an evaluation
at the same window size of 64 seconds. Therefore, the total
number of samples yielded 520 samples with window size
of 64 seconds. To evaluate the performance, we set up
various window sizes on a base-2 logarithmic (log2) scale
64, 32, . . . , 2, and 1. The number of samples varied from
520 samples (64 seconds) to 33,280 samples (1 second),
depending on the window sizes.

In order to evaluate the effectiveness, we adopted the
AUC, accuracy (Acc), sensitivity (Sen), specificity (Spe) and
Youden’s index (YI) as the evaluation criteria. Each criterion
is a combination of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
, (16)

Sensitivity =
TP

TP+ FN
, (17)

Specificity =
TN

TN + FP
, (18)

Youden′sindex =
1
2
(Sensitivity+ Specificity). (19)

The positive class and negative class indicate the case
that PPE is being used properly and improperly, respectively.
In this experiment, the number of samples in positive class
and negative class is imbalanced because there are three type
of cases (fastening to pipe, pope, and anchor) in the positive
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TABLE 2. Evaluation results of each similarity measurement method for
the magnitude of acceleration. Continuous variable: Coherence, PCC,
proposed(aC ). Ordinal variable: KRCC, SRCC, proposed(aO).

class but there is only one case (fastening to body) in the
negative class. Therefore, YI was used as the main criterion
in this experiment.

V. RESULTS AND DISCUSSION
A. REPRESENTATION OF MAGNITUDE OF ACCELERATION
The existing studies in which the magnitude of acceleration
has been used for recognition mainly represented the motion
data as a continuous variable. Although it is possible to
represent the data as an ordinal variable, when the data are
represented as a continuous variable, it showed a compara-
tively better performance [21]. In particular, Pearson corre-
lation coefficient (PCC) that measures the linear correlation
between two sets of continuous data has been commonly used
in the studies [21], [23] as a similarity measurement method.
In order to measure the linear correlation through PCC effec-
tively, there exists a prerequisite that the data should have a
normal distribution. We examined whether the collected data
could satisfy this prerequisite. From the test results, we have
identified a rejection in the null hypothesis in which the
magnitude of acceleration of both the hook and body comes
from a normal distribution at the 1% confidence level through
Kolmogorov-Smirnov test [34]. In other words, all the mag-
nitude of acceleration in the collected dataset comes form
non-normal distribution. Therefore, similarity measurement
methods such as Kendall rank correlation coefficient (KRCC)
and Spearman’s rank correlation coefficient (SRCC), which
do not necessarily satisfy normality would be effective for the
recognition.

As shown in Table 2, the similarity measurement of the
magnitude of acceleration using KRCC and SRCC showed
comparatively better performance than that of using PCC.
As KRCC and SRCC measures the correlation coefficient
of two sets of ordinal data, we could expect that repre-
senting the magnitude of acceleration as an ordinal variable
would more effective. Although the proposed method has
three dimensions, only the magnitude of acceleration of the
hook and body were used for the performance comparison;
here, we represented the magnitude of acceleration as a con-
tinuous variable (aC ) or an ordinal variable (aO) and then
compared their performances. In this case, the similarity
measurement method was simply Euclidean norm of the
two one-dimensional time-series signals. Consequently, as aO
(82.95%) exhibits a higher YI than aC (74.87%), as shown in

TABLE 3. Evaluation results of each representation combination. (
∥∥Ea

∥∥:
representation of the magnitude of acceleration, R: polar angle θ and
azimuthal angle ϕ, C : compensation of partial orientation bias).

Table 2, it can be deduced that representing the magnitude of
acceleration as an ordinal variable is more effective.

B. EFFECTIVENESS OF JOINT REPRESENTATION OF
MAGNITUDE OF ACCELERATION AND ROTATION
In order to verify the effectiveness of the similarity mea-
surement method of the two point sets, we compared the
performance of each combination. The point set samples for
each combination are presented in Figure 5.

In the overall results in Table 3, there exist three notable
tendencies. First, representing the magnitude of acceleration
as the ordinal variable provides a better performance. This
trend was maintained even when the rotation information (R)
was considered in the similarity measurement. Second, for
combinations that include rotation information, combinations
that compensate for partial orientation bias (C) showed better
performance than combinations that did not compensate for
partial orientation bias regardless of the representation of
the magnitude of acceleration. Therefore, we confirmed that
compensating for partial orientation bias for combinations
with rotation information is more effective for the fasten-
ing state recognition. Finally, representing the magnitude
of acceleration with the rotation rather than using only the
magnitude of acceleration shows better performance in terms
of similarity. However, not all the representation of the mag-
nitude of acceleration with rotations showed a performance
improvement.When themagnitude of acceleration as an ordi-
nal variable aO and the polar angle θ are jointly represented
(65.64%), it showed lower YI than that of using aO only
(82.95%). It can be seen that using θ information without par-
tial orientation bias is redundant. When the partial orientation
bias of ϕ is not compensated, the best Acc (90.38%) is shown
but this phenomenon occurs because it has the highest Sen
(93.85%) in the imbalanced dataset.

Although the representation of aO only with the azimuthal
angle ϕ showed the higher Acc (90.38%) than that of the
representation of aO with all of the compensated rotations
(87.18%), it showed a lower YI (86.92%), which was used
as the main criterion, than the representation of aO with all
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FIGURE 5. The representation of the point set according to each fastening state. The upper row each of (a) and (b) indicates the case in which
the partial orientation bias doesn’t be compensated and the lower row indicates that of compensated. The representation of the point sets in
which the magnitude of acceleration is a continuous variable (a) and an ordinal variable (b). Purple: point set of motion of a hook; Green:
point set of motion of a body.

of the compensated rotations. In particular, in the application
scenario of this study, Spe is important because it is necessary
to prevent FFHs by recognizing the moment that a worker
is using the safety hook improperly. The representation of
aO with all of the compensated rotations showed the highest
YI (90.64%) and Spe (97.69%); therefore it was the most
effective in this experiment.

C. PERFORMANCE EVALUATION ACCORDING TO
WINDOW SIZE
Considering a scenario that the system is applied to a real
construction site, the recognition result should be delivered to
a worker and safety manager as quickly as possible. There-
fore, the window size corresponding to the time when the
recognition result outputs should be as short as possible while
maintaining the performance as much as possible. In this
experiment, we evaluated the value of YI that was maintained
for each combination while the window size was reduced.

Table 4 presents the YI for the window size of each repre-
sentation combination. The last column shows the difference
in YI when the window size is reduced from 64 seconds to

1 second. As the window size becomes smaller, a perfor-
mance degradation can be observed in all the combinations.
However, it can be observed that representing the magnitude
of acceleration with partial bias compensated rotation could
maintain the performance better even when the window size
is reduced. In particular, as the window size becomes smaller,
the representation of the magnitude of acceleration with the
compensated ϕ (aC : 77.94%, aO: 78.75%) could maintain the
performance better than the representation of the magnitude
of acceleration with all of the compensated rotations (aC :
75.63%, aO: 76.25%). Moreover, the representation of aO
with the compensated ϕ showed the highest YI (78.75%)
among all the combinations for 1 secondwindow size. Conse-
quently, it was effective to represent the magnitude of accel-
eration with ϕ for the similarity measurement when the early
stage of the scenario in the construction site was considered.

D. DISCUSSION
In this study, a method for recognizing whether a safety
hook is fastened to a temporary structure is proposed to
prevent FFHs. We verified the effectiveness of the proposed
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TABLE 4. YI each of representation combination for each window size.

method by experimenting with a newly collected dataset. The
proposed methodology is based on the assumption that the
motion of the hook and the motion of the body are similar
when the safety hook is fastened to a part of the body.
In contrast to existing studies [20]–[22] that only focused on
measuring the similarity of themagnitude of acceleration, this
study proposes a new method for measuring the similarity by
representing the magnitude of acceleration and the rotation in
the same coordinate system.

From the results, two main factors can be identified. First,
representing the magnitude of acceleration as an ordinal vari-
able showed more meaningful results than representing it as
a continuous variable. It was confirmed that the magnitude
of acceleration did not satisfy normality. We expected that
the unsatisfaction of normality is induced by outliers of the
motions of task-related activities that are comparatively more
complex than the motion of the existing studies. In Figure 5a,
it can be confirmed that outliers were occurred in the mag-
nitude of acceleration dimension, whereas the outliers were
removed by representing the magnitude of acceleration as
an ordinal variable in Figure 5b. Therefore, the performance
would be improved by the effects from the outliers being
alleviated by representing the magnitude of acceleration as an
ordinal variable. In addition, in the existing studies, coherence
was used as a representative method for measuring similar-
ity because it showed effective recognition performance; in
contrast, in this study, it was confirmed that the performance
was relatively lower than that of other similaritymeasurement
methods. This is possibly due to the redundant frequency
components among all the frequency components for recog-
nition [22], and the performance was degraded by averaging
them equally.

Second, it was confirmed that the method of measuring the
similarity by representing the magnitude acceleration with
rotation in the SCS is more effective for recognition. It is
notable that the performance improved when the partially
occurring orientation bias was compensated. Since compen-
sation was performed for the samples in all the states, the
distance between the point sets can be small when the hook

is either fastened to a part of the body, or to a temporary
structure. Nevertheless, it can be observed in Figure 5a that
the rotation of the hook fastened to a part of the body after
compensation overlaps the rotation of the body; this does
not when the hook is fastened to the temporary structure
(especially the hook fastened to the anchor). This is because
that the tendency of rotation of the body and the hook in
the compensated segments are different even if the samples
are compensated in the case where the hook is fastened to
the temporary structure. Moreover, it was confirmed that it is
more effective to measure the similarity by representing only
ϕ with the magnitude of acceleration rather than representing
both ϕ and θ with the magnitude of acceleration at small
window sizes. It is expected that the rotation information
in the θ direction is relatively redundant in the recognition.
However, when the hook is fastened to a part of the body, valid
local patterns for the recognition can occur from rotation in
the θ direction, andwe expect that the pattern can be extracted
by using a point set based deep learning algorithm.

Finally, it can be observed that YI improves as the window
size increases as shown in Table 4. Considering real scenar-
ios, it can be implemented as follows: Just after recogniz-
ing that the safety hook is fastened somewhere via existing
technologies [14], [35], motion data accumulates as the time
passes from 1 second when the initial recognition result is
outputted. Concurrently, reliable recognition results are incre-
mentally outputted. In particular, it would be more effective
to utilize the recognition results based on the representa-
tion of aO only with the compensated ϕ in the early stages
(within 16 seconds), and the recognition results based on the
representation of aO with all of the compensated rotations
in the later stages (after 16 seconds). If the results indicate
an improper use of safety harness consistently, the safety
manager is notified in order to prevent FFHs in advance.

VI. CONCLUSION
Improper use of safety harnesses can cause workers to FFH.
We proposed a new approach to prevent FFHs in advance by
recognizing whether a safety hook is fastened to a temporary
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structure. Our assumption was that if a safety hook is fastened
to a part of the body, the motion of the hook and the body will
be similar compared to when the hook is fastened to a tempo-
rary structure. Based on this assumption, we collected a new
human activity dataset using two IMU sensors attached to the
chest strap of a safety harness and to a safety hook. Through
experiments, we confirmed that representing the magnitude
of acceleration as an ordinal variable with the rotation in
SCS is effective for safety hook fastening state recognition.
The highest performance in this study was limited to 90.64%
YI because the high dimensional data were directly used to
measure the similarity. It is expected that the performance can
be further improved by extracting effective features from the
given data applying a learning-basedmethod such as machine
learning or deep learning in the future. We expect that the
proposed motion representation can be extended to other
research fields in human activity recognition. Furthermore,
the dataset was collected on a testbed that replicated the real
construction site, and the task scenarios in the construction
site were reflected. We hope that the collected dataset will be
useful for future research related to the prevention of FFHs at
construction sites.
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