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Abstract

This study focuses on improving a word embedding model to enhance the per-

formance of downstream tasks, such as those of dialog systems. To improve

traditional word embedding models, such as skip-gram, it is critical to refine

the word features and expand the context model. In this paper, we approach

the word model from the perspective of subword embedding and attempt to

extend the context model by integrating various sentence models. Our pro-

posed sentence model is a subword-based skip-thought model that integrates

self-attention and relative position encoding techniques. We also propose a

clustering-based dialog model for downstream task verification and evaluate

its relationship with the sentence-model-based subword embedding technique.

The proposed subword embedding method produces better results than previ-

ous methods in evaluating word and sentence similarity. In addition, the

downstream task verification, a clustering-based dialog system, demonstrates

an improvement of up to 4.86% over the results of FastText in previous

research.
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1 | INTRODUCTION

Recently, large-scale transfer learning has produced
promising results in deep-learning-based language
processing [1–3], indicating that large learning parame-
ters and long learning times are essential to system per-
formance. However, further research is required to apply
large-scale transfer learning to dialog systems. This is
because modern dialog systems depend on multiple
domains, knowledge bases, and modalities and thus
require more detailed approaches. Word embedding tech-
niques that can be easily used in various network designs
are a potential solution. In particular, [4] and [5] used

word embedding techniques in sentence generation to
obtain impressive results. Specifically, [4] integrated word
embeddings into the input/output space to capture and
utilize the output structure of the language. In addition,
[5] used independently learned word embeddings to train
a sequence model. The word embedding technique
played the role of a teacher network in the knowledge
distillation training method, which is a type of neural
network learning method. In [5], the performance of
word embeddings had a great influence on the perfor-
mance of the sequence model.

In this paper, we attempt to replace the sequence
model with a dialog model. We create a target based
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on word embeddings in the dialog model and then
train and evaluate the dialog model based on this. To
this end, we first focus on improving the performance
of word embedding technology. We propose a new
subword embedding technique that considers sentence
information and utilizes a clustering-based dialog sys-
tem methodology for verification. A typical word
embedding approach, such as the skip-gram model [6],
employs high-capacity text as learning data. However,
a problem with the skip-gram technique is that it
learns word embeddings only for a given lexical list.
This problem is solved by a method called subword
embedding, which expresses a given word as a set of
specific sub-features and performs embedding to learn
the sub-features [7]. Another problem is to determine
how to augment word vector models for the task of
sentence representation. The reason for needing to
augment the word vector models is that most language
processing systems require sentence context processing.
In particular, for a dialog system, a word embedding
technique capable of matching the input and output
sequences of sentences is essential, and the clustering-
based dialog system proposed in this study can be a
means of verifying the word embedding technique.

The proposed word embedding technique is based
on subword information and integrates the sentence
model by using the skip-thought model [8]. In this
study, various experimental results are presented in
the sentence model, and self-attention [9] and relative
position encoding [10] are considered. Korean is used
as the target language; therefore, the position encoding
technique for Korean syntactic words (Eojeol) is also
verified.

The clustering-based dialog system can be used as a
verification platform for various word embedding tech-
nologies. The dialog set response list is converted into
sentence representations through word embedding, and
response clusters are generated by K-means clustering
[11]. By encoding a unified sequence of the given context
and question, the decoder responds with the correct sen-
tence and simultaneously predicts the response class.
This is useful for validating word and sentence embed-
ding techniques suitable for a dialog system. In particu-
lar, in the case of dialog domains, the scope of responses
is limited. Therefore, a clustering approach based on sen-
tence embeddings for the corresponding responses is
available. It is thus considered that the dialog response
prediction performance is closely related to the sentence
embedding performance. We constructed 7236 conversa-
tion sets1 from a Korean dialog-based clothing recom-
mendation domain to evaluate the dialog system.

The contributions of this study are as follows:

• This study demonstrates that the proposed subword
embedding technique using sentence information from
various evaluation sets leads to improved results com-
pared with existing techniques. The evaluation set con-
sists of the lexical level, sentence level, and dialog
context level.

• The clustering-based dialog system indicates the
importance and utilization of word embedding
technology.

In Section 2, we discuss related work and describe
subword embedding techniques and dialog models.
Finally, we provide various experimental results and
conclusions.

2 | RELATED WORK

2.1 | Word embedding approaches

Recent research related to word embedding involves the
application of text mining and improvements to word
embedding. Specifically, research on text mining to
extract latent knowledge from large volumes of data in
scientific journals has recently been conducted [12]. In
addition, studies on improving word embedding have
proposed changes to the context model through depen-
dency structuring [13], multi-meaning embedding [14,
15], a meta-embedding technique for integrating various
word embeddings [16], and out-of-vocabulary problem-
solving [7,17,18]. This study starts by reviewing word
embedding technology that uses subwords to solve out-
of-vocabulary problems.

In a previous study [19], FastText [7] exhibited
more stable subword embedding performance than
byte-pair embeddings [20]. In the present study, we
integrate a sentence model into FastText, and the sen-
tence model integration follows the skip-thought [8]
structure. However, the sentence model is different
from the skip-thought model because instead of per-
forming sentence embedding using long short-term
memory [21], the sentence model is composed of only
subword parameters. Additionally, similar to the skip-
gram context model, similar sentences within a specific
distance are selected as the context sentence. Word
embedding using our sentence model is similar to the
Siamese CBOW model [22]; namely, it embeds the sur-
rounding sentences and target sentences into the con-
stituent word embedding average values and reflects
the cosine similarity of the sentence embedding pairs
to word embedding learning. However, we use the1https://fashion-how.org/ETRI/board.html.
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skip-gram model instead of the CBOW model for the
sentence model and use subwords as the embedding
unit. In terms of multi-prototype word embeddings, we
do not model directly as in previous studies [14,15]
but take an approach that considers the multi-meaning
at the point of application of word embedding. We
achieve this approach through self-attention and rela-
tive position encoding.

In this study, Korean is the target language. In
subword embedding for English, the subword features
can be composed of alphabetic characters. Similarly,
the subword embedding for Korean can use syllables
(characters), phonemes, and graphemes. According to a
previous study [23], there was no significant difference
between syllable and phoneme subword results. Fur-
thermore, in [17], syllable and grapheme subword fea-
tures exhibited similar results; however, by using two
features in combination, an increase in the word
embedding performance was reported. In this study,
we use syllables as subword features because the type
of subword feature is not the focus of this paper. We
use the evaluation sets provided by [17] for the evalua-
tion of word similarity and word analogy. In addition,
we construct a sentence similarity evaluation set
and examine the relationship between word
embedding and the dialog system using the dialog
evaluation set.

2.2 | Dialog model approaches

A dialog system can be largely classified into a task-
based approach and a non-task-based approach [24].
However, even for the task-based approach, most
recent research has followed an end-to-end approach
[25,26]. In the field of response generation, retrieval-
based [27–29], generation-based [30], and hybrid-based
[31–33] approaches have been studied. Recently,
approaches to reduce the search space of a conversa-
tion interaction by clustering the components of the
conversation set have been attempted [34–36]. In par-
ticular, [35] performed clustering through utterance
embedding and proposed a method of tracking and
predicting an utterance class. The dialog model in the
present study is similar to the approach proposed in
[35]. However, the difference is that we cluster only
the response results and employ a predictive approach
when decoding. In addition, a knowledge network
related to the dialog context is added to the encoder,
while for multi-task learning, a response generation
function is added to the decoder. This study focuses
mainly on the relationship between word embedding
and dialog modeling.

3 | SUBWORD MODEL

The main topic of this paper is how to project a sen-
tence context into subword vectors. The skip-gram
model [37] is a prototype of the proposed model and
describes a probability model in which the target word
predicts nearby words. In this study, we perform word
embedding by extending the skip-gram model to a
subword-based approach, referred to as the subword
skip-gram model (SSGM). Then, sentence modeling is
performed using a subword skip-thought model
(SSTM).

3.1 | Integration of the sentence model

The structure of the two models is presented in Figure 1,
which illustrates the connection between the two models
with the shared subword parameters Φt. Equation (1)
describes a model that integrates SSGM and SSTM. The
goal of this study is to determine the subword vectors Φt

that maximize the log-likelihood L. Here, T w denotes the
size of the subword embedding learning data W , while
T s denotes the size of the skip-thought learning data S.
Ct is a set of context words wc for the target word wt,
while N t is a set of context sentences sn for the target
sentence st .

L¼
XTw

t¼1

X
c � Ct

log p wcjwtð Þþ
XTs

t¼1

X
n � Nt

log p snjstð Þ: ð1Þ

SSGM. Equation (2) is an exponential language
model using the score function q of wt and wc. The exis-
ting subword model [7] uses only the constituent features
F t of the target word wt in (3), and the context word wc

uses the word vector vc. In (3), f is one of the many sub-
word features of wt . F t is a set of the subword features of
wt, and zf is the subword vector for f . Thus, f �F t and
zf �Φt.

p wcjwtð Þ¼ eqðwt ,wcÞPT w
i¼1e

qðwt ,wiÞ
, ð2Þ

q wt,wcð Þ¼
X
f � F t

z >
f � vc: ð3Þ

We modify vc in (3) as the sum of subword vectors zg
to reduce the computational burden because the number
of vocabularies is generally very large. Equation (4)
describes these modifications. It makes a relation, f �F c
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and zg �Φc. The score function q of (4) is a dot product
of two vectors, each using the sum of the subword
vectors.

q wt,wcð Þ¼
X
f � F t

ztf

 ! >

�
X
g � F c

zcg

 !
: ð4Þ

SSTM. Equation (5) describes a skip-thought model
in which the lexical object of a skip-gram model is
converted into a sentence object. This differs from the
previous approach [8] because we select the bilinear
model of sentence vectors through subword embeddings
rather than a recurrent neural network (RNN). Thus,
unlike the case of an RNN, all learning results are stored
in the target Φt and context subword vectors Φn.

p snjstð Þ¼ eqðst ,snÞPT s
i¼1e

qðst ,siÞ
: ð5Þ

Equation (6) describes the score function of a target
sentence st and context sentence sn. Each sentence vector
is calculated as an average of the constituent word vec-
tors. Because the word vector is calculated as the sum of
the constituent subword vectors, the learning result is
reflected in Φt and Φn.

q st,snð Þ¼
P

wt � st

P
f � F t

ztf
stj j

 ! >

�
P

wn � sn

P
g � Fn

zng
snj j

� �
:

ð6Þ

For learning, the computational complexity of the
denominators in (2) and (5) is excessive. The general solu-
tion is to convert the problem into a binary classification
problem, such as Monte Carlo noise-contrastive estimation
[38]. Negative samples for wt and st are generated using
negative models q and q0, respectively, and the equation
for modeling the binary classification is described in (7).
Learning is performed by maximizing this formula.

LMC
NCEk

¼
X

ðwc,wtÞ �W

log pðD¼ 1jwc,wtÞþ
Xk

i¼1,wt
��q

log pðD¼ 0jwc, wt
�Þ

0
@

1
A

þ
X

ðsc ,stÞ � S

log pðD¼ 1jsc,stÞþ
Xk

i¼1, st
��q0

log pðD¼ 0jsc, st
�Þ

0
@

1
A:

ð7Þ

3.2 | Extension of the sentence model

In the SSTM, the sentence model uses the mean of the
word vector values and combines a variety of approaches.
We extend the model according to self-attention [9], rela-
tive position encoding [10], and Korean sentence
structure.

F I GURE 1 (A) Subword skip-gram model (SSGM) and (B) subword skip-thought model (SSTM). Here, Φt is a set of subword vectors

for the SSGM target word and SSTM target sentence, while Φc is a set of subword vectors for the SSGM context word. Φn is for the SSTM

target sentence. In addition, ztf is the subword vector. The subscript f is the subword feature of the target word. The subword features are the

same in all three tables, Φt , Φc, and Φn, with the vector values of the subword features being learned simultaneously. In the verification of

the learned subword embeddings, we conduct an experiment using only Φt (CV) and an experiment integrating Φt , Φc, and Φn (IV) (see

Section 5.1)
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Self-attention. We utilize the query–key–value
(QKV) self-attention described in [9]. First, the sentence
is converted into a matrix S of word vectors, and the
matrix is set to a constant value for each Q, K, and V.
Here, the attention operation, softmaxðQK >

=
ffiffiffiffiffi
dk

p
ÞV, is

performed, and the matrix V is updated using the result.
In this process, we do not use additional learning param-
eters, such as linear layers for Q, K, and V. Finally, the
average of S and the self-attention result V is used.

Relative position encoding. The authors of [10]
proposed two relative position encoding parameters, rpev

and rpek, which are integrated with the self-attention
operations. In the softmax operation, rpev is added to V
according to the relative distance of words, and rpek is
added to K. Both values consist of n vectors according to
the relative distance n, a hyperparameter.

Let an element αij of softmaxðQK >
=
ffiffiffiffiffi
dk

p
Þ be the

attention weight of the jth word vector with respect to
the ith word vector of the sentence matrix V. In this case,
rpevdði,jÞ is added to V j according to the relative distance

dði, jÞ between V i and V j, and the attention operation is

performed. Here, rpekdði,jÞ is a value added to Kj according

to the relative distance dði, jÞ during the QK>
operation.

Sentence model for Korean. Because Korean is an
agglutinative language, grammatical morphemes are
integrated into lexical morphemes to form syntactic
words called Eojeol.2 The Korean sentence model adds an
Eojeol layer, which is an intermediate step between a
word and sentence that assigns weights according to posi-
tions of the words constituting the Eojeol. An Eojeol is
described as e in (8), where the weight of the word is
expressed by η. Because the number of words in each
Eojeol is different, the first lexical morpheme receives the
highest value, while the remaining morphemes receive
the same value.

q st,snð Þ ¼
P

et � st

P
wt � et

ηstwt �
P

f � Ft
ztf

h i
stj je

0
@

1
A

>

�

P
en � sn

P
wn � en

ηsnwn
�
P

g � Fn
zng

h i
snj je

0
@

1
A:

ð8Þ

4 | CLUSTERING-BASED DIALOG
MODEL

The purpose of the dialog model is to evaluate the sub-
word embedding approach. From another point of view,
we examine the relationship between utterance
clustering-based dialog models and word embedding tech-
niques. A sentence is described as a vector with the mean
value of the constituent word embeddings. K-means clus-
tering is performed using the sentence vector. Here, simi-
lar sentences in vector space are located close to each
other, while different sentences are located far from each
other. The vector space becomes the clustering represen-
tation space. One drawback of the model proposed in this
paper is that it does not consider the validity of cluster-
ing. However, because clustering is applied to learning
and evaluation in a limited domain, and response sen-
tences of a limited type are targeted for clustering, it is
assumed that the clustering error is insignificant. The
proposed dialog approach is illustrated in Figure 2.

First, the dialog dataset is described. In the ith step of
a conversation, the history is Hi ¼fsi�n,si�nþ1, :::,sig,
where si is the utterance at time i. Knowledge consists
of m sentences with Ki ¼fk1,k2, :::,kmg. The response Ai

is siþ1.
The history encoder is a bidirectional multilayer gated

recurrent unit (GRU) [39] that converts the unified
sequence of Hi into subword form and receives it at the
input layer. The knowledge encoder receives as input Ki

consisting of m sentences determined by Hi at time i.
Here, Ki is converted into m0ð<mÞ sentences through a
filtering process by measuring the similarity with the
sequence embedding of Hi. They are integrated, scaled,
and combined with the final state of the history encoder
and passed through the fully connected (FC) layer to the
decoders.

The response decoder consists of a multilayer GRU.
Multiple attentions are applied to the history encoder

2Two Eojeols are provided as an example. “ ” can be read as
“dari-ro ga” and translated to English as “go to the bridge.” Here
“ (dari-ro)” means “to the bridge” and “ (ga)” means “go.”
Furthermore, “ (dari)” means “bridge,” and “- (-ro)” is a
postpositional particle.

F I GURE 2 Clustering-based dialog model. The history,

knowledge, and response are represented as subword embeddings.

FC, fully connected
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and knowledge encoder in different decoder layers. The
response decoder then performs response generation. For
the response class prediction block, the response list of
the dialog dataset is converted into the response class by
K-means clustering in advance. The response class pre-
diction infers response class CðAiÞ using the state infor-
mation transmitted from the encoders. Training the
dialog model attempts to maximize (9).

L¼
X
i

log p AijHi,Kið Þþ log p C Aið ÞjHi,Kið Þ: ð9Þ

5 | EXPERIMENTS

5.1 | Evaluation of subword embedding

This section describes our evaluation of the sentence-
model-based subword embedding performance. We used
the word similarity, word analogy, and sentence similar-
ity evaluation sets.

5.1.1 | Settings

Evaluation data. The word similarity evaluation set was
the released version of the WS353 evaluation set (WS)
provided in [40] translated into Korean [17].3 It used the
average similarity of two words (353 pairs) assigned on a
scale of 0 to 10 by 10 or more evaluators. Word embed-
ding values for the word pairs were expressed as two vec-
tors, where the performance was evaluated by comparing
the cosine similarity of the two vectors with the values
assigned by the human graders.

The authors of [17] also released the word analogy
evaluation set (WA), which consisted of 5000 items for
evaluating semantic features and 5000 items for evaluat-
ing syntactic features. Additionally, the WA set with
10 000 items was the Korean translation of the English
word analogy test sets [37]; however, [17] applied a con-
siderable degree of modification to the evaluation set
reflecting the characteristics of the Korean language.

We constructed an evaluation set for our sentence
similarity (SS) experiments. This set was composed of
1000 sentence pairs consisting of 7 to 15 words each. The
average on five scales of the values assigned by 10 evalua-
tors was used as the similarity of the sentence pairs. In
this study, we compared the similarity assigned to the
sentence evaluation set and the cosine similarity of the
two sentence embedding vectors.

Corpus. The training corpus used in the experiment
is described in Table 1. The training corpus consisted of
Korean Wikipedia,4 newspaper articles,5 and broadcast
interviews.6 An effort was made to emulate the training
dataset used in [17].

Parameters. The vocabulary used was limited to
words with 10 or more occurrences in word_seg, and a
vocabulary set of 192 445 was constructed. We extracted
subwords with syllable lengths of 2–4 in the subword
extraction step for single words. A total of 41 451 sub-
words were constructed by selecting a subword set with
90% coverage of the entire vocabulary set. The SSGM
batch size was 400, the negative sample size was 45, and
the distance between the target and context vocabularies
was maximally 5. Moreover, the SSTM batch size was
32, the negative sample size was 32, and the distance
between the target and context sentences was maximally
5. The size of the subword vector was 300 dimensions.
We used the Adagrad optimizer and started with an ini-
tial learning rate of 1.0. As the learning progressed, expo-
nential decay was performed. Most parameters were
selected empirically.

Comparison. The subword embedding model was
largely classified into a word-based sentence model
(WSM; 6) and a Eojeol-based sentence model (ESM; 8).
The training of the subword model was based on the inte-
grated SSGM and SSTM model illustrated in Figure 1.
The learning results consisted of three embedding results
for the input subword feature set. The first result was Φt,
which was shared by SSGM and SSTM, while the second
two results were Φc and Φn, which constituted the SSGM
and SSTM contexts, respectively. According to the use of

3https://github.com/SungjoonPark/KoreanWordVectors.

TABL E 1 The words and sentences in the training corpus

word_seg are composed of morphemes as a result of word

segmentation and are used for the subword skip-gram model

Dataset Words (#) Sentences (#)

Wikipedia 55.8 M 4.6 M

Online news 46.2 M 3.5 M

Online interview 27.2 M 2.2 M

Total 125.8 M 10.3 M

Total word_seg 213.7 M 10.3 M

Total word_segþ sent_div 206.7 M 11.6 M

Note: sent_div is the result of separating sentences into 15–30 to extract
sentence pairs for the subword skip-thought model and remove short
sentences.

4https://dumps.wikimedia.org/kowiki/20181001/.
5https://www.chosun.com/, 2013–2015, include all domains.
6https://www.cbs.co.kr/radio, http://radio.ytn.co.kr, http://nbbs3.sbs.co.
kr.
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the embedding results, the experiment was classified into
a common subword vector (CV; Φt) and an integrated
subword vector (IV; (ΦtþΦcþΦn)/3). Each had the fol-
lowing sentence model comparison groups:

• NORMAL (N): sentence model without position
encoding.

• NORMAL SINUSOID PE (N-SIN): sentence model
with sinusoidal position encoding [9].

• SELF-ATTENTION (S): sentence model with self-
attention.

• SELF-ATTENTION RELATIVE PE (S-REL): sentence
model with self-attention and relative position
encoding.

• SELF-ATTENTION SINUSOID PE (S-SIN): sentence
model with self-attention and sinusoidal position
encoding.

5.1.2 | Results

The experimental results are presented in Table 2. SISG
experimental results were taken from a previous study
[17]. SISG(ch) is a model that uses syllable-based fea-
tures, while SISG(ch + jm) is a model that uses graph-
eme-based features in addition to syllable-based features.
The FastText7 experiment was conducted with the same
experimental settings as in this study except for the
default hyperparameter. SISG and FastText used (3) pres-
ented in Section 3.1. The WSM.*.* and ESM.*.* experi-
ments were conducted four times in total, and Table 2
presents the average evaluation results. The reason for
this is that word embedding learning was performed
based on random context selection, and there was thus
variation in the experimental values according to the
learning results.

Overall, SIN appeared to be inadequate for SSTM. In
the ESM experiment, both SIN and S-REL exhibited poor
performance, which occurred because ESM included a
Eojeol-based position encoding design. The overlapping
use of position encoding thus produced poor perfor-
mance. In the WS evaluation, ESM.N.IV exhibited the
best performance, which was a slight improvement over
the results of similar studies. In the SS evaluation, WSM.
N.CV and WSM.S-REL.IV produced good results. In the
WA evaluation, however, FastText performed best. The
degradation in the WA evaluation was due to
unregistered subwords within 90% coverage. Therefore,
we conducted experiments using 1-length syllables as an
additional feature and 95% subword coverage. As a result
of the experiment, (WSM.N.CV) exhibited a performance

of 48.78, close to that of FastText, for WA. For SS, (ESM.
N.IV) demonstrated the highest performance of 0.541.
However, none of the models performed well on any of
the evaluation sets. It was also difficult to detect perfor-
mance differences between CV and IV. However,
Figure 3 demonstrates that IV was more stable in the
learning process than CV. Overall, Table 2 suggests that
WSM.N and ESM.N were superior to the other model
extensions.

Analysis of WA results. The WA evaluation verified
the linear additive properties of the word embedding
[41]. The poorer performance of WSM and ESM than that
of FastText indicates that WSM and ESM disrupted the
linear additive properties of the existing FastText model.
This is because WSM and ESM were configured to reflect
additional sentence context information in FastText. It
can be concluded that integration of the sentence context
information of word embeddings negatively affects with
the linear additive properties in the vector space. How-
ever, the better performance of WSM and ESM in down-
stream task evaluation signifies that WA evaluation is not
appropriate for language understanding tasks.

5.2 | Experiments on dialog model

5.2.1 | Settings

Dialog dataset. A dialog was created for recommending
clothing through language interactions between a user
and the system. It contained 100 user profiles and
329 TPOs (time, place, occasion). It also contained vari-
ous functional tags, such as persuasive utterances
(EXP_RES), recommendation success (SUCCESS), and
failure (FAIL). We assembled a set of 7236 dialogs, which
consisted of user utterances (52 599), system utterances
(77 392), and clothing recommendations (25 744).
Table 3 presents an example of a conversation.

Evaluation. After removing EXP_RES from the
entire dialog, we created a total of 48 292 triples con-
sisting of the conversation history, related clothing infor-
mation, and responses. The reason for removing
EXP_RES is that persuasive utterances are composed of
too many expressions for clustering. We decided that a
new language generation technique is required to handle
EXP_RES; thus, we excluded it from the experiment. The
responses here refer only to system utterances (S) in
Table 3. There were a total of 2604 pieces of clothing, and
an individual item was represented by a maximum of
47 sentences. The number of words for the encoder and
decoder was 11 305 and 1731, respectively. The training
set used 43 292 triples, while the evaluation set used the
remaining 3000 triples. To create the response class, we7https://github.com/facebookresearch/fastText.
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TAB L E 2 WordSim (WS) and SentSim (SS) use the Spearman ρ

Model WS WA SS

SISG(ch) 0.658 - -

SISG(ch + jm) 0.677 - -

FastText 0.656 50.52 0.423

WSM.N.CV 0.689 (0.645) 45.13 (48.78) 0.501 (0.485)

WSM.N.IV 0.658 (0.577) 40.80 (43.69) 0.465 (0.528)

WSM.N-SIN.CV 0.640 (0.557) 31.43 (37.59) 0.373 (0.370)

WSM.N-SIN.IV 0.594 (0.523) 39.45 (41.06) 0.404 (0.386)

WSM.S.CV 0.671 (0.573) 44.21 (39.30) 0.489 (0.447)

WSM.S.IV 0.680 (0.610) 40.93 (42.75) 0.465 (0.474)

WSM.S-REL.CV 0.685 (0.651) 43.98 (47.52) 0.484 (0.479)

WSM.S-REL.IV 0.670 (0.636) 40.91 (44.49) 0.501 (0.521)

WSM.S-SIN.CV 0.622 (0.521) 31.88 (31.25) 0.369 (0.391)

WSM.S-SIN.IV 0.621 (0.533) 39.38 (42.17) 0.456 (0.444)

ESM.N.CV 0.691 (0.683) 43.82 (47.65) 0.500 (0.500)

ESM.N.IV 0.703 (0.639) 38.12 (39.43) 0.494 (0.541)

ESM.N-SIN.CV 0.554 (0.595) 34.27 (36.84) 0.420 (0.407)

ESM.N-SIN.IV 0.568 (0.254) 36.41 (34.83) 0.407 (0.478)

ESM.S.CV 0.696 (0.408) 44.92 (34.61) 0.500 (0.430)

ESM.S.IV 0.684 (0.320) 38.32 (37.76) 0.482 (0.412)

ESM.S-REL.CV 0.531 (0.472) 39.54 (43.92) 0.457 (0.480)

ESM.S-REL.IV 0.443 (0.553) 36.55 (38.17) 0.442 (0.515)

ESM.S-SIN.CV 0.628 (0.586) 38.96 (40.71) 0.445 (0.487)

ESM.S-SIN.IV 0.618 (0.427) 37.26 (40.41) 0.459 (0.509)

Note: WordAnalogy (WA) evaluates the syntactic and semantic sets together and uses accuracy. SISG values are taken from [17]. The experiments (*) include

1-length syllables and increase the subword coverage to 95%. In Table 2, bold means the best result in WS, WA, and SS evaluation. Similarly, bold in Table 4
also displays the best result in each evaluation. The correlation between the results of the two experiments is that the dialog experiment in Table 4 is highly
correlated with the SentSim (SS) experiment in Table 2. In other words, it means that WSM.S-REL, an optimal word embedding approach for dialog
environment, can be found through a simple SentSim (SS) experiment.

F I GURE 3 WordSim results of (A) ESM.CV and (B) ESM.IV for different time steps
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generated a response of 29 399 by removing duplicates
from the 48 292 response list. We generated 1000 classes
through K-means clustering.

Parameters. For response set clustering, PQk-
means8 was used. Each vector was divided into four
parts, and each part was 8-bit encoded, resulting in a
32-bit product-quantized (PQ) code. We constructed the
dialog model with a three-layer GRU for the encoder and
for the decoder. The cell size was 512, and a
300-dimensional vector was used for word embedding.
Learning was performed using a batch size of 16, and
optimization was performed using the Adam optimizer
[42]. The learning rate was set to 0.0001. The maximum
sentence length of the knowledge encoder was 47, and
the maximum input length of the encoder was 300. For
the correct response class prediction, softmax was used
after six FC layers.

Comparison. Evaluation was performed using the
accuracy of the response class prediction when the
encoder–decoder dialog model encoded the input history
and knowledge. The evaluation procedure first clustered
the response set using the subword embedding results
and then determined the training and evaluation data
based on the clustering results.

The models to be compared selected good effective
from CV and IV, except for SIN, which performed poorly
on WSM and ESM. The selected group performed
K-means clustering three times, each of which was

trained and evaluated. FastText was performed in a simi-
lar manner. The subword embedding comparison groups
were as follows:

• WSM.N and ESM.N: basic sentence models
• WSM.S and ESM.S: self-attention sentence models.

The input layer of the encoder–decoder model also had
a corresponding self-attention structure.

• WSM.S-REL and ESM.S-REL: self-attention sentence
models with relative position encoding. The input
layer of the encoder–decoder model also had the same
sentence model structure.

Three experiments were conducted for each compari-
son group according to the word embedding structure
and learning parameters in the encoder–decoder model:

• SW/W: uses the subword or word embeddings as they
are and sets it to “trainable = False” during learning.

• W-Train: uses the word embedding structure in the
input layer and sets it to “trainable = True” during
learning.

• SW-Train: uses the subword embedding structure in
the input layer and sets it to “trainable = True” during
learning.

5.2.2 | Results

The clustering-based dialog model experiments with sub-
word embeddings are described in Table 4. FastText was
excluded from the SW-Train experiment because it did
not provide a list of subwords. Overall, the ESM.S-REL
model did not perform well; namely, according to
Table 2, it demonstrated poor subword embedding per-
formance. This was because different position encodings
were used redundantly. This result suggests that the word
embedding approaches significantly affect the perfor-
mance of the dialog system.

In the W-Train experiments, all models except for
ESM.S-REL demonstrated better performance than
FastText. Furthermore, in the SW/W experiments, all
experiments except for ESM.N and ESM.S-REL demon-
strated better performance than FastText. In particular,
WSM.S-REL had an accuracy of 4.13% and 4.86% higher
than that of FastText in the SW and W-Train experi-
ments, respectively. The best performance, 58.1%, was
achieved by the WSM.S-REL model when it was trained
by SW-Train. The results demonstrate that the experi-
mental deviations were also minimal ðþ0:20, �0:20Þ.
These results imply that a sentence model approach
based on self-attention and relative position encoding is8https://github.com/DwangoMediaVillage/pqkmeans.

TAB L E 3 Dialog example presenting dialog between the

system S and a user U

Utterance Tag

S Welcome to Codibot. How can I help you? INTRO

U Can you show me what clothes I can wear

when I’m shooting the wedding?

S Can I show you some clothes including a
white dress?

SUGGEST

U Yes.

SP JK-030 OP-017 SE-014

S I recommend it as a dress that can be
coordinated with

EXP_RES

a bold style with an open shoulder and
items that go well with it.

S Do you like it? CONFIRM

U One piece looks like a vacation look. FAIL

U Can you show me another dress. FAIL

Note: SP denotes the recommended clothing IDs. The original dialog was in
Korean.

CHUNG ET AL. 9

https://github.com/DwangoMediaVillage/pqkmeans


appropriate when multiple sentence sequences, such as
dialogs, are required.

The authors of [10] improved transformer self-
attention using relative position encoding technology.
However, we extended the word embedding part of the
RNN’s input layer to an SSTM and applied self-attention
and relative position encoding. The parameters for rela-
tive position encoding, rpev and rpek, were pre-trained in
the subword embedding process. This had the effect of
pre-trained relative position encoding parameters with
large general text. In summary, the results indicate that
our proposed subword-based sentence model using self-
attention and relative position encoding is an effective
approach for clustering-based dialog models.

As indicated in Table 4, the relative position encoding
(-REL) experiments require additional learning parame-
ters. When learning parameters of the same size were con-
sidered, ESM.S exhibited the best performance, 56.03%, in
the SW/W experiment. This demonstrated the validity of
the ESM model for executing downstream tasks.

5.3 | Experiments as pre-trained models

5.3.1 | Sequence and token classification

Dataset. We additionally performed evaluations using
the Naver Sentiment Movie Corpus (NSMC)9 and
Named Entity Recognition (NER) dataset.10NSMC was
intended for the sequence classification problem, while
the NER dataset was intended for the token classifica-
tion of a sequence. NSMC was an internet bulletin
board that contained many non-grammatical sentences.
This dataset consisted of text samples tagged with posi-
tive/negative binary tags for movie review results. It
consisted of a training set of 150 000 and a test set

consisting of 50 000. The NER dataset was assigned
named entity tags in Korean word units. All 14 entity
names were marked with B and I additional classifica-
tion tags depending on their location. The NER dataset
consisted of a training set of 81 000 samples and an
evaluation set of 9000 samples.

Models. The learning model for the two evaluation
sets used the same three-layer bidirectional GRU as the
conversation model. For sentimental classification, an
additional FC layer was added to the state value of the
model for input, and this was extended to a model for
binary classification. The NER dataset extended the
model to classify tokens by named entity tags by adding
an additional FC layer to the output hidden value of
the RNN.

The FastText and WSM models were tested on both
evaluation sets as embedding values and compared with
an existing pre-trained model, the Electra-based
approach [43]. The experimental results are presented
in Table 5.

Comparison. The experiment used the pre-trained
subword embeddings (WSM) of the conversational task
evaluation. Fine-tuning was performed with the learning
data of each task, and evaluation was performed with the
test data. That is, the word embedding process for addi-
tional learning of FastText and WSM was not performed
using the training corpus of the task. Both FastText and
WSM exhibited similar results in the experiment. On
NSMC, FastText exhibited superior performance, while
WSM exhibited superior performance on NER. This result
is due to the noisy text in NSMC and the pre-processing
of WSM without normalizing numbers and English in
tokens.

In contrast, the NER dataset was composed of
grammatically correct sentences, as it is a corpus with
NER tags assigned to each word. Because of this, the
performance of WSM seems to be well reflected.
Another reason why the performance advantage of
WSM was not demonstrated by the task is that the

TAB L E 4 Results of clustering-based dialog model response class prediction experiment based on subword embedding models

Model SW/W W-Train SW-Train

FastText 53.77% (+0.63, �0.57) 52.87% (+1.13, �0.67) -

WSM.N 55.43% (+0.57, �0.43) 54.63% (+1.07, �1.13) 55.47% (+0.73, �1.37)

WSM.S 55.10% (+2.30, �3.30) 55.17% (+2.63, �4.17) 55.23% (+1.97, �3.13)

WSM.S-REL 57.90% (+1.00, �0.70) 57.73% (+0.47, �0.63) 58.10% (+0.20, �0.20)

ESM.N 53.40% (+2.00, �3.50) 53.53% (+2.07, �3.03) 53.57% (+1.83, �3.07)

ESM.S 56.03% (+0.77, �0.43) 55.50% (+0.60, �0.90) 55.07% (+1.43, �2.07)

ESM.S-REL 52.23% (+0.47, �0.73) 52.30% (+1.70, �1.10) 51.93% (+1.47, �0.93)

Note: The input layer structure of the dialog model was composed of a word structure (W) and subword structure (SW). We also conducted experiments based
on whether the embedding parameters reflected learning (W-Train, SW-Train).

9https://github.com/e9t/nsmc.
10https://github.com/naver/nlp-challenge.
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input text itself was dependent on the RNN model. For
the conversation task, the sentence embedding part is
necessary for processing the metadata of clothing;
therefore, the usefulness of the sentence structure
model of WSM was demonstrated.

Electra exhibited better performance than BERT and
GPT and had an optimal model structure for application
to sequence and token classification. For WSM, the result
was far less than the corresponding performance; how-
ever, when considering the number of learning parame-
ters, this approach can be considered effective. There was
no significant difference in the fine-tuning speed between
WSM and FastText compared with that of Electra. How-
ever, the amount of text data required for pre-training
and the learning speed required only several hours on a
single server.

5.3.2 | Large pre-trained model for dialog
task

A pre-trained model with advantages in language
processing was selected and applied to the dialog task in
this study. Two experiments were conducted: one that
predicted the response class by combining the conversa-
tion history and knowledge and another that predicted
the response class using only the conversation history.
Electra [43] was selected as the transformer-based pre-
trained model because its performance is superior to that
of BERT and GPT. The experimental results are pres-
ented in Table 6. The hyperparameters were carried out
by referring to the NSMC model.

The response class was clustered using the average of
Electra’s hidden vector values. For knowledge, the
descriptions of clothing were shared by Electra, and class
prediction was performed by combining the logit of the
Electra conversation history and the logit of knowledge
with the weight. The experimental results indicate that
adequate performance could not be obtained using a sim-
ple sequence prediction model.

5.4 | Description of case study

An embodiment of this study is a clothing recommenda-
tion system. First, we must build a dialog set such as that
in Table 3. Online chats between a customer and sales-
person recommending clothing according to the cus-
tomer’s requirements can be used as learning data. In
subword embedding, pre-learning is performed using
large-capacity text. Thereafter, subword embedding con-
verts each of the system utterances of the dialog set into a
sentence vector representation, performs clustering, and
then generates an ID of the system utterance. The dialog
model takes the history prior to the system utterance as
input and performs supervised learning in the form of
predicting the system utterance ID. Here, both learning
and evaluation depend on clustering using subword
embeddings; therefore, an error in the embedding can
affect the entire dialog system. In addition, because the
system utterance ID is the ID of the utterance set through
clustering, the correct sentence can be estimated once
more from the corresponding set. This will be pursued in
a future study.

6 | CONCLUSIONS AND FUTURE
WORK

In this study, the proposed subword embedding tech-
nique using sentence information produced better results
than existing techniques on word and sentence similarity

TAB L E 5 Results of sequence classification (NSMC) and token classification (NER)

Model NSMC (acc.) NER (F1) Parameters (#)

Random 49.65 76.35 17 M

FastText 88.35 79.89 17 M

WSM.N 88.06 80.33 17 M

WSM.S 87.89 78.61 17 M

WSM.S-REL 88.02 79.16 17 M

KoElectra [43] 90.63 88.11 110 M

Note: NSMC uses accuracy (acc.), while NER uses the F1 measure.

TABL E 6 Results of the dialog task

Model Prediction (acc.)

KoElectra (conversation history) 47.4

KoElectra (conversation
history + knowledge)

44.5

WSM.S-REL 58.1

Note: Electra was used for response clustering and response class prediction.

The WSM.S-REL results are taken from Table 4 (acc.: accuracy).
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evaluation sets. In particular, we investigated the impor-
tance and application of word embedding technology
through a clustering-based dialog system. We conducted
various experiments to determine the relationship between
subword embedding performance and dialog system per-
formance. We found that the subword-based sentence
model using self-attention and relative position encoding
is a promising approach for clustering-based dialog
models. We also conducted a dialog experiment using a
large-capacity pre-learning model. We determined that
high performance can only be achieved by introducing a
more complex and task-appropriate structure. Further-
more, we found that it is difficult to use the large-capacity
pre-learning model for a task with structural complexity.

In the future, we plan to review the generality of this
study in English. In addition, we plan to apply various
subword embedding models to sentence generation.
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