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Abstract
To perform a quantum brute force attack on a cryptosystem based on Grover's algo-
rithm, it is necessary to implement a quantum circuit of the cryptographic algorithm.
Therefore, an efficient quantum circuit design of a given cryptographic algorithm is
essential, especially in terms of quantum security analysis, and it is well known that
T‐depth should be reduced for time complexity efficiency. In this paper, the authors
propose a novel technique to reduce T‐depth (and T‐count) when some quantum circuits
located in between two Toffoli‐gates are interchangeable with a controlled phase gate
(CP gate), and the authors apply this technique to five types of quantum adders, reducing
T‐depth by more than 33%. The authors also present new SHA‐256 quantum circuits
which have a critical path with only three quantum adders while the critical paths of
quantum circuits in the previous studies consist of seven or 10 quantum adders, and the
authors also apply our technique to the proposed SHA‐256 quantum circuits. Four
versions of SHA‐256 quantum circuit are presented. Among the previous results,
T‐depth of the circuit with the smallest Width (the number of qubits) 801 was
approximately 109,104. On the other hand, T‐depth of the proposed SHA‐256 quantum
circuit with the Width 797 is 16,055, which is remarkably reduced by about 85%.
Another proposed quantum circuit only requires 768 qubits, which is the smallest Width
compared to the previous results to the best of our knowledge. Furthermore, one other
version is the most time‐efficient circuit with an overall Toffoli‐depth (and T‐depth) that
is less than 5000.

1 | INTRODUCTION

Hash algorithms were created to provide secure data trans-
mission and data integrity in information and communication
protocols. Hash algorithms can be used for digital signatures,
keyed message authentication codes, random number genera-
tion, key derivation functions etc. [1]. In particular, the SHA‐2
hash family, published in 2002, is designated as a hash function
standard [2].

If a collision attack is performed on a hash algorithm, it is
known that the attack succeeds if the operation is performed
several times corresponding to half the length of the bit string
constituting the output value due to the birthday paradox.
SHA‐256 provides 128‐bit security strength against classical
collision attack [1, 2].

There have been many theoretical studies on hash func-
tions such as MD5, SHA‐1, and SHA‐512, and in a quantum
environment, it is known that the security strength of existing
hash functions is halved when using Grover's algorithm [3].
Previous studies dealt with several quantum attack algorithms
and methods of implementing quantum circuits of the cryp-
tographic algorithms that can perform pre‐image attack,
second pre‐image attack, and collision attack [4–6]. However,
the circuits presented in the previous studies have few details
on the implementation of the hash algorithm, and they are
forms made intuitively rather than created by efficient quantum
circuits, such as reducing Depth or Width (the number of
qubits) of the circuits. That is, the circuit is inefficient to use
the existing circuit as it is to verify whether the security
strength is reduced by half.
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Although there are various standardised hash families such
as MD5, SHA‐2, and SHA‐3, we focus on quantum design for
SHA‐2, since it is currently the most widely commercialised,
such as SSL digital authentication and IEEE 1609.2‐based
wireless V2X communication. There are 6 algorithms totally in
the SHA‐2 hash family, and the structures of these algorithms
are the same except for some constants and the number of
rounds. Hence, we concentrate on SHA‐256 and designed
quantum circuits in this paper. Before presenting the SHA‐2
quantum circuit, we present the quantum adder circuits to be
used in the SHA‐2 quantum circuit. Since many additions are
performed in SHA‐2, it is essential to use an efficient quantum
adder circuit. In general, in quantum circuits, as T‐depth
(Depth formed by T and T† gates in the critical path) and
Width increase, the computational complexity of quantum
computing exponentially increases, which degrades circuit
performance. We will present T‐depth (and T‐count) reduction
methods that can be used in quantum adders and SHA‐256
quantum circuits. In this paper, our contribution is threefold:

� We introduce a novel technique to be able to reduce T‐depth.
We show that if some quantumcircuits located in between two
Toffoli‐gates are interchangeable with a controlled phase gate,
then T‐depth six is reduced to four or five.

� We apply the above trick to five quantum adders—CDKM
adder [7], VBE adder [8, 9], TK (Y. Takahashi and N.
Kunihiro) adder [10], HRS (T. Häner, M. Roetteler and K.
M. Svore) adder [11] and QCLA [12]—and so our improved
adders have the effect of reducing the T‐depth by more than
33% compared to the previous adders. Additionally, a
modified version of the TK adder is presented by applying
the Toffoli‐count reduction rules. This adder has a new
ripple‐carry form and Toffoli‐depth is the same as the
CDKM adder's Toffoli‐depth.

� We propose a new SHA‐256 quantum circuit design that has
a critical path with only three quantum adders, while the
critical paths of quantum circuits in the previous studies
consist of seven or 10 quantum adders [5, 6]. We use our
improved adders in this new SHA‐256 quantum circuit, and
also this T‐depth reduction method is applied in the function
blocks such as Maj, and Ch in the SHA‐256 quantum circuit.
One of our resulting circuits requires only 797 qubits and has
12,023 Toffoli‐depth which is a huge reduction of 67%
compared to the previous work [6] with the smallest Width
801. Another proposed SHA‐256 quantum circuit only re-
quires 768 qubits which is the smallest Width of all the
previous results to the best of our knowledge. Furthermore,
another proposed circuit is the most time‐efficient SHA‐256
quantum circuit with Toffoli‐depth (and T‐depth) less than
5000. Additionally, the design of the Ch function block, one
of the SHA‐256 function blocks, is newly proposed.

This paper is an improved extension version of Ref. [13]
with the following contents added. Section 2 introduces the
pruning procedure [14]. The reason for introducing this pro-
cedure is that it will be used as a pre‐processing step of the
presented T‐depth reduction method in Section 3. We use a

modified version of the existing pruning procedure. This
procedure clarifies the area we cover. In Section 3, we added a
second T‐depth reduction process as well as the pruning
procedure. That is, a situation in which T‐depth can be further
reduced is presented. In this process, it is very difficult to
further reduce T‐count. The exchangeability determination
algorithm is revised and supplemented, and specific examples
of success and failure are presented. In Section 4, a modified
TK adder is presented. Toffoli‐depth of the suggested TK
adder is consistent with that of the CDKM adder. When
designing the SHA‐256 quantum circuit, we replaced CDKM
adders with these adders. QCLA is further covered. That is, the
proposed T‐depth reduction technique is applied to QCLA.
For the VBE adder and HRS adder, the reason why resources
vary according to the LSB value is explained. In Section 5,
Table 1, which presents resources for function blocks that do
not use Toffoli‐gates at all, is added. These can be imple-
mented by arranging CNOT gates in the reverse order of PLU
decomposition. Table 2 presents the improved T‐depth

TABLE 1 Σ0, Σ1, σ0, σ1 function block resources. These function
blocks can be implemented using only controlled‐NOT gate (CNOT) gates
and do not use work qubits at all. These circuits are implemented by
arranging CNOT gates in the reverse order of PLU decomposition [4]

Count Depth Swapping

Σ0 166 55 17

Σ1 166 44 22

σ0 193 50 20

σ1 142 40 23

TABLE 2 Function block resources in the SHA‐256 quantum circuit.
These T‐depth values are the results after our T‐depth reduction technique
is applied. All quantum adders are performed in modular 232. HRS and
VBE adders are only used when adding constant Kt. In the HRS adder, 8
work qubits are borrowed dirty, that is, they are in arbitrary states. Toffoli‐
depths and T‐depths of VBE and HRS adders depend on the value of LSB
of constant Kt. That is, if the value of LSB is 0, the lower values are taken.
TK‐v1, TK‐v2, and TK‐v3 adders in the table are modified versions we
made. They have the same Toffoli‐depth as the CDKM adder. The CDKM
adder is not used when designing the SHA‐256 quantum circuit, but it is
included for comparison with the resources of other adders

Width #Ancilla T‐depth Toffoli‐depth

Maj 3 0 2 1

Ch 3 0 2 1

Σ0, Σ1, σ0, σ1 32 0 0 0

VBE adder 61 29 60 or 62 57 or 59

TK‐v1 adder 64 0 122 61

TK‐v2 adder 65 1 62 61

TK‐v3 adder 67 3 61 61

HRS adder 40 8 424 or 432 384 or 392

QCLA 117 53 24 22

CDKM adder 65 1 64 61

Abbreviation: QCLA, quantum carry‐look ahead adder.
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(Toffoli‐depth) of each adder circuit. In Figure 27, the
arrangement of gates in the message schedule algorithm is
changed. A total of four circuits were presented by adding two
new circuits. They were named SHA‐Z1, SHA‐Z2, SHA‐Z3,
and SHA‐Z4, respectively.

The rest of the paper is constructed as follows: Section 2
introduces some background for the Toffoli‐gate and related
work for the SHA‐2 hash family and its quantum circuits. In
Section 3, we propose a T‐depth and T‐count reduction
method by gathering ideas from several papers. In Section 4,
we apply this reduction method to quantum adder circuits.
Section 5 presents the SHA‐256 quantum circuit made using
these improved quantum adder circuits. We present a new
design structure and apply the reduction method to the
function blocks used in SHA‐256. Finally, this section com-
pares the number of quantum resources with other existing
quantum circuits. Section 6 mentions the conclusions and
topics for further research in the future.

2 | BACKGROUND AND RELATED
WORK

2.1 | Toffoli‐gate

In classical circuits, NAND gates and Fanout gates form a
universal set of gates for classical computation. In a quantum
circuit, the Clifford + T set forms the standard universal fault‐
tolerant gate set [15]. {H, CNOT, T} is a minimal generating
set of the Clifford + T set. Hadamard gate (H gate), NOT gate
(X gate), T gate, P gate (= T2 gate), Z gate (= T4 gate), and
Controlled‐NOT gate (CNOT gate) belonging to Clifford + T
set are widely used and performed as follows. ⊕ stands for
modulo‐2 addition.

H : jx1〉 →
j0〉þ ð−1Þx1 j1〉

ffiffiffi
2
p X : jx1〉 → jx1 ⊕ 1〉

CNOT : jx1x2〉 → jx1ðx1 ⊕ x2Þ〉 T : jx1〉 → eπi4 x1 jx1〉

P : jx1〉 → eπi2 x1 jx1〉 Z : jx1〉 → ð−1Þx1 jx1〉
ð1Þ

In the next section, we will deal with the circuit composed
of H gate, X gate, Z‐rotation gate (Rz gate (T, P, Z gate)), and
CNOT gate. As the counterpart of AND gate in the classical
circuit, there is a Toffoli‐gate in the quantum circuit. A Toffoli‐
gate is a doubly controlled‐NOT gate (C2NOT gate), and it
causes a change in the remaining one value according to two
input values among three input values. This gate can be
decomposed into two H gates and one doubly controlled Z
gate (C2Z gate, Figure 1). A Toffoli‐gate can be implemented in
various ways by properly arranging two H gates, T/T† gates,
and CNOT gates. The reason Toffoli‐gates need to be
implemented in various ways is that with proper conversion,
Toffoli‐gates can share some T‐depth with Toffoli‐gates next
to them. We will call this T‐depth sharing. In Section 4, when

making quantum circuits, we will show that T‐depth can be
reduced by using T‐depth sharing and various implementation
methods such as the second implementation in Figure 1.

C2NOT : jx1x2x3〉 → jx1x2ðx3 ⊕ ðx1x2 ÞÞ〉
C2Z : jx1x2x3〉 → ð−1Þx1x2x3 jx1x2x3〉

ð2Þ

The phase of the output value from the C2Z gate can be
expressed exactly as eπi4 4x1x2x3 . For x1, x2, x3 ∈ {0,1}, the
following expression holds [17].

4x1x2x3 ¼ x1 þ x2 þ x3 − x1 ⊕ x2 − x2 ⊕ x3
−x1 ⊕ x3 þ x1 ⊕ x2 ⊕ x3

ð3Þ

It can be seen that 4x1x2x3 consists of seven operands.
That is, C2Z gate consists of 4 T gates and 3 T† gates. T gates
make phases eπi4 x1 , eπi4 x2 , eπi4 x3 , and eπi4 x1⊕x2⊕x3 . T† gates create
phases e−πi

4 x1⊕x2 , e−πi
4 x2⊕x3 , and e−πi

4 x1⊕x3 .
Meanwhile, the controlled|‐P† gate (CP† gate) makes phase

e−πi
4 2x1x2 ð ¼ ð−iÞx1x2Þ. Since 2x1x2 = x1 + x2 − x1 ⊕ x2, it can

be seen that CP† gate consists of one T gate and two T† gates.
If CP† gates exist on the two control lines of the Toffoli‐gate,
these two gates become a C2(−iX) gate composed of two T
gates and two T† gates [17] (Figure 2).

x1 þ x2 þ x3 − x1 ⊕ x2 − x2 ⊕ x3 − x1 ⊕ x3 þ x1 ⊕ x2 ⊕ x3
− ðx1 þ x2 − x1 ⊕ x2Þ
¼ x3 − x2 ⊕ x3 − x1 ⊕ x3 þ x1 ⊕ x2 ⊕ x3

ð4Þ

2.2 | Pruning procedure: Identifying a
subcircuit consistingonlyof {X,CNOT,Rz} [14]

In the fault‐tolerant model, it is known that implementing the
T gate among the gates of the Clifford + T set is much more
difficult than all other gates and that the T‐depth determines

F I GURE 1 A Toffoli‐gate with T‐depth 3 and T‐count 7 [16]. Toffoli‐
gate can be designed in various ways as shown in the figure, and T‐depth is
at least 3 unless there is a work qubit (ancilla qubit)

F I GURE 2 A doubly controlled (−iX) gate [17]. When there is no
work qubit, at least 5 controlled‐NOT gate (CNOT) gates are needed to
make a C2(−iX) gate. The case of using 6 CNOT gates can be seen in
Figure 11
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the circuit runtime [18–20]. In a quantum circuit, if there are
two T gates consecutively, it can be converted to a P gate, and
the design cost of the quantum circuit can be lowered, and the
performance can be increased. In Ref. [14], the researchers
studied how to achieve merging when there are multiple Rz
gates in a quantum circuit in general. That is, they studied how
to merge one Rz gate with another Rz gate without changing
the overall operation. They formed a subcircuit composed of
NOT gates, Rz gates, and CNOT gates in the entire circuit and
attempted to merge Rz gate within it. The pruning procedure
was suggested as a method of forming a subcircuit. That is,
they confirmed whether Rz gates can be merged after clearly
defining the subcircuit including Rz gates through this pro-
cedure. Only gates that can be involved in merging are selected
to form a subcircuit.

We present the pruning procedure that can identify the
subcircuits presented in the previous study. This procedure is
governed by the following rules.

� The pruning procedure starts by designating one CNOT
gate as the start point. We decide whether to include X, Rz,
CNOT, and H gates that meet while traversing back and
forth of this CNOT gate in the subcircuit.

� The border constituting the subcircuit is called the termi-
nation border, and the termination border gets wider
through traversing. The basic termination border consists of
lines with the CNOT gate, which is the start point and is the
area just before reaching the termination points.

� If we encounter an X or Rz gate while traversing, we can
pass unconditionally and continue traversing. If the H gate is
met, it is designated as a termination point, and traversing in
that direction is stopped. Alternatively, if the end of the
circuit is reached, the end is designated as a termination
point and traversing is stopped.

� When we encounter the CNOT gate while crossing, we
must carefully consider whether we can pass or not. If this
CNOT gate shares both lines with the CNOT gate, which is
the start point, we can pass through this gate and continue
to cross. To be more precise, if the CNOT gate is included
in the existing termination border, we can pass the control
part or the target part of the CNOT gate. If a target part of a
new CNOT gate is encountered while traversing, the target
part is designated as a termination point and traversing is
stopped in principle. However, when a target part is
encountered, if the corresponding control part is contained
within the termination border, we can pass through the
target part and continue traversing. When a control part is

encountered, if only the control part is included in the
termination border, that is, if the target part is located
outside the termination border, this CNOT gate can be
passed because it creates new connectivity with a new line.
We designate the target part of this CNOT gate as the an-
chor point. The termination border (or subcircuit) can be
widened through this anchor point. If the control part of the
CNOT gate that cannot create new connectivity is
encountered, the CNOT gate is excluded. That is, this
CNOT gate is skipped, and traversing continues.

� After traversing at the two lines with the CNOT gate as the
start point, traverse at the anchor points. All gates passed
while traversing constitute a subcircuit. Gates that have been
skipped or not encountered while crossing are excluded.

Let us look at the example in Figure 3. There are a total of
6 Rz gates in the whole circuit, and it is composed of a total of
3 lines. We designate the top left CNOT gate in the circuit as
the start point. This CNOT gate exists on the first and second
lines. If we cross from the CNOT gate, which is the start point,
to the left in the first line, we see the Rz gate first, and then the
H gate. The Rz gate can be passed through and the H gate is
assigned as a termination point and the traversal is terminated.
Conversely, if we cross to the right, we can meet 3 Rz gates and
2 CNOT gates. The first CNOT gate can be passed because it
shares both wires with the start point. Rz gates can be passed
unconditionally, and in the case of the second CNOT gate, we
encounter a control part that creates new connectivity.
Therefore, this CNOT gate can be passed. The target part of
this CNOT gate is designated as an anchor point. After passing
through the Rz(θ4) gate, we reach the end of the circuit, so the
end becomes the termination point. Let us look at the second
line this time. We start from the CNOT gate, which is the start
point. If we cross to the left, we meet the control part of one
CNOT gate. However, since this CNOT gate does not form
new connectivity, it is skipped and continues traversing. We
reach the end of the circuit. If we turn to the right, we meet 3
CNOT gates and 1 H gate. The first CNOT gate is also an
exception because it cannot create new connectivity. The sec-
ond CNOT gate is passed because it is the gate that has already
been determined to be in the termination border in the first
line. Then, the target part of the third CNOT gate is met.
Originally, this target part should be designated as a termina-
tion point and traversal should be completed. However, due to
the target part of the other CNOT gate designated as the
anchor point made in the first line, both the control part and
the target part of this third CNOT gate are placed within the

F I GURE 3 Example: A subcircuit made by the pruning procedure [14]. It is used in rotation (Rz gates) merging. They identified a subcircuit consisting of X,
controlled‐NOT gate (CNOT), and Rz gates through the pruning procedure, and checked whether Rz gates can be merged within the subcircuit in the previous
work
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termination border. Therefore, we can pass through this
CNOT gate and continue traversing. Finally, we meet the H
gate at the far right and stop the crossing. Now let us look at
the third line. We start traversing at the target part we previ-
ously marked as the anchor point. Crossing to the left, we meet
and pass through the CNOT gate just mentioned. The Rz(θ5)
gate is encountered, and then the CNOT gate, which was
previously excluded, is encountered. We skip this CNOT gate
and meet the H gate. We end the crossing. If we cross to the
right, there is the Rz(θ6) gate. The end of the circuit becomes
the termination point. By summing all the gates passed during
traversing, one subcircuit is composed (Figure 3). As a result,
the subcircuit consists of 4 CNOT gates and 6 Rz gates. Three
Rz gates are merged into 1 Rz gate by judging the merging
possibility in this subcircuit and using the rules in Ref. [14].
More details can be found in Ref. [14]. We will modify this
pruning procedure as a pre‐processing step in the proposed
T‐depth reduction method.

2.3 | Quantum adder circuit

There are five types of quantum adder circuits covered in this
paper: CDKM adder, VBE adder, TK adder, HRS adder, and
Basic QCLA (Quantum carry‐look ahead adder) [7, 8, 10–12].
The first four adders follow the ripple‐carry form (QRCA,
quantum ripple‐carry adder), especially HRS adder is in‐place
constant‐adder. Quantum resources used by each adder can be
found in Table 2. In SHA‐256, all adders are used inmodular 232.

In the proposed SHA‐256 quantum circuit, the VBE adder
and HRS adder are used only when adding the constant Kt [9,
11]. It is decided whether some gates in the VBE adder and
HRS adder are included through bit‐values of constant. Also, it
is possible to obtain the sum of 32‐bit operands in modular 232

with only 61 and 40 qubits in total, respectively.
The CDKM adder [7] is a typical QRCA circuit that re-

quires at least one work qubit (ancilla qubit) regardless of
whether modular addition is performed. However, the TK
adder is a QRCA adder that does not use work qubits at all.
Since the TK adder uses fewer qubits than the CDKM adder,
Toffoli‐depth is larger than that of the CDKM adder. How-
ever, by using the Toffoli‐count reduction rules which are not
covered in detail in this paper, we will change the circuit to
have the same Toffoli‐depth as the CDKM adder. Because
Toffoli‐gates in the modified version of the TK adder are
executed sequentially, Toffoli‐count is consistent with Toffoli‐
depth. Therefore, if we use a total of 4 work qubits, T‐depth
can be consistent with these values by using the Matroid
Partitioning concept [21]. In fact, in the modified version of
the TK adder, T‐depth can be lowered to the Toffoli‐depth
with only 3 working qubits. Toffoli‐depth is a measure used
in Ref. [6] and is a concept used instead of T‐depth. In the
previous work, there are two main reasons for analysing circuit
resources with Toffoli‐depth. One is that T gates are mostly
used within Toffoli‐gates, so even if the circuit performance is
expressed with relatively inaccurate Toffoli‐depth, that is
logically justified. The other is that they do not decompose

quantum circuits down to Clifford + T gate sets to form basic‐
level circuits. That is, they omitted the T‐depth and T‐count
reduction process. In this work, we will refer to both
Toffoli‐depth and more accurate T‐depth.

A quantum carry‐look ahead adder (QCLA) is a quantum
version of the classic carry look‐ahead adder. For bit‐length n
of operands, Toffoli‐depths of the preceding quantum adders
are OðnÞ, whereas Toffoli‐depth of QCLA is Oðlog nÞ. But it
uses a lot of work qubits. Note that one QCLA uses 53 work
qubits for 32‐bit module addition [12].

In the meantime, many studies have been conducted for
efficient QCLA design [22–25]. As mentioned earlier, we
consider using a circuit based on the Clifford + T gate set.
Also, we want to deal with a quantum circuit that is not based
on MBQC (measurement‐based quantum computation).
Because MBQC has an intermediate measurement process that
may affect time complexity as much as T‐depth. Among
QCLAs that satisfy these two conditions, we chose Basic
QCLA with the smallest Toffoli‐depth, and we will simply call
it QCLA from now on.

In the next section, we will provide a logic process that can
reduce the T‐count and T‐depth of these five adder circuits.
This process does not change Toffoli‐count or Toffoli‐depth.

2.4 | Secure hash Algorithm‐2

2.4.1 | Pre‐processing step

The SHA‐2 hash algorithm consists of two main steps: a pre‐
processing step and a hash computation step [2]. In the first
step, message padding and parsing are performed, and bits are
added so that the length of the padded message is a multiple of
512 bits. The original message must be less than 264 in length.
That is, the length of the message must be able to be expressed
in 64 bits. In this paper, it is assumed that the number N of
512‐bit message blocks after the pre‐processing step is 1.
There is a hash value update process after the main round
function algorithm is executed 64 times in SHA‐256. In this
process, if N is two or more, an operation to copy the value is
required. However, this cannot be carried out by the No‐
cloning theorem in quantum environment [26]. Therefore, it
is necessary to assume that N is 1, and that is why the hash
value update operation was omitted in previous studies [5, 6].
The maximum length of the original message that can be
handled by the SHA‐256 quantum circuit is 447 because the
minimum length of the padding is 65 in one message block.

2.4.2 | Hash computation step

In the hash computation step, a hash value (message digest) is
created. Depending on the number of message blocks of the
padded message, the entire algorithm iteration occurs. The
main hash computation algorithm has been repeated a total of
64 times each time this iteration is performed. In the main hash
computation algorithm, all additions are performed in modular
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232 and are largely divided into the message schedule algorithm
and round function algorithm.

In the message schedule algorithm, 48 Wt (t = 16, …, 63)
are created by using Wt (t = 0, …, 15), which is the existing 16
32‐bit words composed of padded message values. Also, two
logical functions σ0(x) and σ1(x) are used.

The initial hash value H(0) is a 256‐bit constant value and is
assigned to eight 32‐bit internal variables a, b, c, d, e, f, g, and h
used in the round function algorithm. Four logical functions
Maj, Ch, Σ0(x), and Σ1(x) are used in the round function Al-
gorithm. A total of 64 32‐bit words K0, K1, …, and K63 are
added sequentially for each round. The quantum circuit
implementation for each internal function is introduced in
section 5.

Wt ¼M
ð1Þ
t 0 ≤ t ≤ 15

¼ σ1ðWt−2Þ þWt−7 þ σ0ðWt−15Þ þWt−16 16 ≤ t ≤ 63
where σ0ðxÞ ¼ ROTR7ðxÞ⊕ ROTR18ðxÞ⊕ SHR3ðxÞ;

σ1ðxÞ ¼ ROTR17ðxÞ⊕ ROTR19ðxÞ⊕ SHR10ðxÞ
ð5Þ

h¼ g; g ¼ f ; f ¼ e; e¼ d þ T1;
d ¼ c; c ¼ b; b¼ a; a¼ T1 þ T2
where T1 ¼ hþ Σ1ðeÞ þ Chðe; f ; gÞ þ Kt þWt;

T2 ¼ Σ0ðaÞ þMajða; b; cÞ;
Majðx; y; zÞ ¼ ðx ∧ yÞ⊕ ðx ∧ zÞ⊕ ðy ∧ zÞ;
Chðx; y; zÞ ¼ ðx ∧ yÞ⊕ ð¬x ∧ zÞ;
Σ0ðxÞ ¼ ROTR2ðxÞ⊕ ROTR13ðxÞ⊕ ROTR22ðxÞ;
Σ1ðxÞ ¼ ROTR6ðxÞ⊕ ROTR11ðxÞ⊕ ROTR25ðxÞ

ð6Þ

After the 64th round iteration is completed, the interme-
diate hash value H(i−1) is added to the values of a, …, h and
updated to the value H(i). Since we assumed N = 1 earlier,
i = 1. Finally, we get the 256‐bit hash value
H(1) = Hð1Þ0 kH

ð1Þ
1 k…kH

ð1Þ
7 . In the proposed quantum circuit,

as in previous studies, we did not include the operation process
of adding internal variables to H(0). The reason is that it is a
meaningless part to implement the quantum cryptosystem
circuit required in Grover's algorithm. If you look at Figure 4,
you can see the procedure of the SHA‐256 algorithm.

H ð1Þ0 ¼H
ð0Þ
0 þ a;H

ð1Þ
1 ¼H

ð0Þ
1 þ b;H

ð1Þ
2 ¼H

ð0Þ
2 þ c;

H ð1Þ3 ¼H
ð0Þ
3 þ d;H

ð1Þ
4 ¼H

ð0Þ
4 þ e;H

ð1Þ
5 ¼H

ð0Þ
5 þ f ;

H ð1Þ6 ¼H
ð0Þ
6 þ g;H

ð1Þ
7 ¼H

ð0Þ
7 þ h

ð7Þ

In the classic SHA‐256 circuit, the critical path is a section in
which 7 operands are added using six adders to produce the
output value T1 + T2 [27]. Through repeated execution, T1 + T2

is updated 64 times and is continuously allocated to the internal
variable A. Studies to reduce the time taken by this critical path in
classical circuits have been conducted in several papers [27, 28].

2.4.3 | SHA‐256 quantum circuit

Ref. [4–6] presented quantum cryptosystem circuit imple-
mentations to investigate the security strength of the various
cryptosystems. Among them, the resources used for the SHA‐
256 quantum circuit can be seen in Table 3. We implemented
the circuit based on the Clifford + T set, as in previous studies.

F I GURE 4 Round function and message schedule algorithm in SHA‐
256 [6]

TABLE 3 SHA‐256 quantum circuit
resources comparison. Our four proposed
circuits are named SHA‐Z1, SHA‐Z2, SHA‐
Z3 and SHA‐Z4, respectively. When
constructing our circuits, we used adder
circuits with reduced T‐depth to which the
above T‐depth reduction technique was
applied

Width T‐depth Toffoli‐depth Used quantum adder

SHA‐256 [5] 2402 70,400 ‐ CDKM [7]

SHA‐C1 [6] 801 ‐ 36,368 CDKM [7]

SHA‐C2 & SHA‐C3 [6] 853 ‐ 13,280 QCLA [12]

SHA‐C4 [6] 834 ‐ 27,584 CDKM [7]

SHA‐C5 & SHA‐C6 [6] 938 ‐ 10,112 QCLA [12]

SHA‐Z1 768 43,510 32,895 HRS, TK‐v1

SHA‐Z2 797 16,055 12,023 VBE, TK‐v1, TK‐v3

SHA‐Z3 927 7304 6914 VBE, TK‐v3, QCLA

SHA‐Z4 962 4936 4418 QCLA, TK‐v2

Abbreviation: QCLA, quantum carry‐look ahead adder.
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In Ref. [5], the CDKM adder [7] was used throughout the
SHA‐256 quantum circuit, and the quantum circuit imple-
mentation of each internal function was briefly presented. The
round function algorithm and message schedule algorithm
were processed in parallel, and T‐depth and T‐count were
optimised by performing T‐par for the entire circuit [21].

In Ref. [6], SHA‐256 quantum circuit implementation was
presented in four versions, and the CDKM adder and QCLA
were used as adders [7, 12]. As mentioned earlier, in this pre-
vious study, only Width and Toffoli‐depth for each version
were mentioned without performing T‐depth and T‐count
reduction (optimisation) work.

In the quantum circuit we present, the round function and
message schedule algorithm are processed in parallel. Unlike
previous work, it is not implemented with only one adder, but as
a hybrid version in which several types of adders are placed in
appropriate positions. For accurate comparison with previous
papers, both T‐depth and Toffoli‐depth are written in Table 3.

3 | T‐DEPTH AND T‐COUNT
REDUCTION METHOD

Many studies have been conducted on T‐depth and T‐count
reduction to reduce and optimise quantum circuit construction
costs [14, 17, 21, 29]. We will use the Matroid Partitioning
concept in Ref. [21] and modify the optimisation subroutines in
Ref. [14].Wewill deal with a quantum circuit with a subcircuit (an
intermediate region) between two Toffoli‐gates. Our method is
applicable even if the Toffoli‐gate has off‐control parts.

If there are two Toffoli‐gates in the quantum circuit, their
relative positions exist in 10 cases [30] (Figure 5). Our method
can be applied to all 10 cases. Four of these cases will be dealt
with in detail in this paper. Three cases we will cover are when
both the control lines and the target line are shared, only the
control lines are shared, and only the target line is shared. The
fourth case is the fourth sub‐figure in Figure 5. One control
line is shared, but the rest of the parts share the lines by
crossing each other. That is, control parts and target parts
share lines. The remaining six cases will be briefly mentioned.
Because for the remaining six cases, our method can be applied
similarly to the four cases we will cover in detail. Our method

has a total of two processes and is called the first T‐depth
reduction process and the second T‐depth reduction process.
After performing the first T‐depth reduction process, if a
specific condition is satisfied, the second process can be per-
formed. Both of these processes are performed with the same
logic and algorithm.

3.1 | First T‐depth reduction process

3.1.1 | Case 1: Both control lines and a target line
are shared

Assume that two Toffoli‐gates share control lines and a target
line and there is a subcircuit named A between these two gates
as shown in Figure 6. Now we create CP† gate and controlled‐
P gate (CP gate) on the right side of Toffoli‐gate on the left
side of the circuit. Since these two gates have an inverse
operation relationship with each other, it is self‐evident to
constitute an identity circuit. Now consider the CP gate and
the existing subcircuit A. If these two partial circuits are
commutative, the CP gate can be moved to the left of the
Toffoli‐gate on the right side of the circuit. That is, if this
exchange is possible as shown in Figure 6, the total T‐depth
can be reduced from six to 4, and the total T‐count can be
reduced from 14 to 8. Two Toffoli‐gates become C2(−iX) gates
and C2(iX) gates, respectively.

3.1.2 | Case 2: Control lines are shared, but a
target line is not.

Figure 7 shows the case where the control lines are shared, but
the target line is not. T‐depth and T‐count can be reduced

F I GURE 5 Ten cases of relative positions for two Toffoli‐gates [30].
Of these, the first four cases are dealt with in detail. For the remaining six
cases, our method can be applied similarly to the four cases

F I GURE 6 Case 1: both control lines and a target line are shared. If
controlled‐P gate (CP gate) and subcircuit A are interchangeable, T‐depth
can be reduced from 6 to 4

F I GURE 7 Case 2: control lines are shared, but a target line is not. Even
if Toffoli‐gate has an off‐control part, T‐depth can be reduced from 6 to 4
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through the same logic. If there is a Toffoli‐gate with an off‐
control part, as in the figure below of Figure 6, a P gate or
P† gate could be created. Let the basis variables corresponding
to each line be x1, x2, x3, and x4 [21]. As we saw in the previous
section, these basis variables are the components of phase in
the Rz(θ) gate. It can be seen that T‐count can be reduced to
eight through Equations (8) and (9).

3.1.3 | Case 3: A target line is shared, but control
lines are not.

In this case, T‐count does not change, but T and T† gates
composing different Toffoli‐gates share T‐depth and conse-
quently reduce it. We drew Figure 8 using three Toffoli‐gates.
Unlike the previous two cases, this third case is a method
applicable even when three or more Toffoli‐gates exist.
Because the control lines are not shared among Toffoli‐gates,
T‐depth cannot be reduced with the same logic as in the
previous two cases. Looking at Figure 8, the rightmost Toffoli‐

gate maintains T‐depth 3 and T‐count 7 without any conver-
sion. If CP gates and subcircuits A1 and A2 are interchange-
able, T‐depth of the rightmost Toffoli‐gate could be shared.
That is, T and T† gates of these three gates are placed on the
same timeline to make T‐depth 3.

It is possible to reduce the T‐depth from 3n to 2n + 1 for
n (≥1) Toffoli‐gates in this case. If a CP gate is made on

control lines of the rightmost Toffoli‐gate and this gate is
interchangeable with subcircuit A2, T‐depth can be reduced by
one more. In all cases, if one work qubit is added, T‐depth can
be further reduced [17]. In particular, in the third case, the
T‐depth 2n + 1 can be reduced to n + 1.

3.1.4 | Case 4: One control line is shared, but the
rest of the parts share the lines by crossing each
other

In the fourth case in Figure 5, we should apply our method a
little differently from other cases. That is, T and T† gate should
be used instead of CP and CP† gates (Figure 9). The CP gate
cannot be used due to the existence of H gates constituting
Toffoli‐gates. The T gate and H gate are not commutative [17,
21]. So, the CP gate composed of T gates cannot be exchanged
with the H gate. To avoid wires with H gates, we have to use

ð−1Þx1x2x3ð−iÞx1x2ðiÞx1x2ð−1Þx1x2x4 ¼
�
eiπ=4

�x3−x2⊕x3−x1⊕x3þx1⊕x2⊕x3þ2x1þx4þx2⊕x4−x1⊕x4−x1⊕x2⊕x4

� ðx1 þ x2 þ x3 − x1 ⊕ x2 − x2 ⊕ x3 − x1 ⊕ x3 þ x1 ⊕ x2 ⊕ x3Þ þ ð − x1 − x2 þ x1 ⊕ x2Þ
þ ðx1 þ x2 − x1 ⊕ x2Þ þ ðx1 þ x2 þ x4 − x1 ⊕ x2 − x2 ⊕ x4 − x1 ⊕ x4 þ x1 ⊕ x2 ⊕ x4Þ

¼ ðx3 − x2 ⊕ x3 − x1 ⊕ x3 þ x1 ⊕ x2 ⊕ x3Þ þ ðx1 þ x2 − x1 ⊕ x2Þ þ ðx1 þ ð1 − x2Þ þ x4
− ð1 − x1 ⊕ x2Þ − ð1 − x2 ⊕ x4Þ − x1 ⊕ x4 þ ð1 − x1 ⊕ x2 ⊕ x4ÞÞ ¼ ðx3 − x2 ⊕ x3
− x1 ⊕ x3 þ x1 ⊕ x2 ⊕ x3Þ þ ð2x1 þ x4 þ x2 ⊕ x4 − x1 ⊕ x4 − x1 ⊕ x2 ⊕ x4Þ

�
�
For a; b ∈ f0; 1g; a¼ a⊕ 1¼ 1 − a; and a⊕ b ¼ a⊕ b:

�

ð9Þ

ð−1Þx1x2x3ð−iÞx1x2ðiÞx1x2ð−1Þx1x2x4 ¼
�
eiπ=4

�x3−x2⊕x3−x1⊕x3þx1⊕x2⊕x3−x4þx2⊕x4þx1⊕x4−x1⊕x2⊕x4

� ðx1 þ x2 þ x3 − x1 ⊕ x2 − x2 ⊕ x3 − x1 ⊕ x3 þ x1 ⊕ x2 ⊕ x3Þ þ ð − x1 − x2 þ x1 ⊕ x2Þ
þ ðx1 þ x2 − x1 ⊕ x2Þ þ ð − x1 − x2 − x4 þ x1 ⊕ x2 þ x2 ⊕ x4 þ x1 ⊕ x4 − x1 ⊕ x2 ⊕ x4Þ

¼ ðx3 − x2 ⊕ x3 − x1 ⊕ x3 þ x1 ⊕ x2 ⊕ x3Þ þ ð − x4 þ x2 ⊕ x4 þ x1 ⊕ x4 − x1 ⊕ x2 ⊕ x4Þ

ð8Þ

F I GURE 8 Case 3: a target line is shared, but control lines are not. For
n (≥1) Toffoli‐gates, T‐depth can be reduced from 3n to 2n + 1. If one
work qubit is added, T‐depth from 2n + 1 could be reduced to n + 1

F I GURE 9 The fourth case in Figure 5. T‐depth is reduced from 6 to
4 like the first three cases. But T‐count cannot be reduced to 8
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the T and T† gate instead. In these cases, T‐counts cannot be
reduced to 8.

3.1.5 | The other six cases

For the remaining six cases, we can reduce T‐depth by applying
our method similar to the four cases mentioned above. In the
fifth case, as in the fourth case, T and T† gates should be used.
Two lines can be considered at this time (Fig. 10). If subcircuit
A and T (or T†) gates are interchangeable on both wires,
T‐depth can be reduced to 4. If an exchange is not possible on
one line, it can be reduced to 5. In the sixth case, the Toffoli‐
gate on the right becomes a C2(−iX) gate, and the CP gate that
passes through subcircuit A from right to left shares T‐Depth
with the Toffoli‐gate on the left (Figure 10). We cannot reduce
T‐count to 8 at this time. In the seventh case, since the target
line is shared as in the first and third cases, the possibility of
performing the second reduction process mentioned below
while reducing T‐count is higher than in other cases (Figure 5).
The eighth case is similar to case 6. In the ninth and tenth
cases, a process of sharing T‐depth should be used as in case 3
because the control lines are not shared at all.

3.2 | Second T‐depth reduction process

In the previous section, we showed that the C2(iZ) gate or the
C2(−iZ) gate is made of five CNOT gates [17]. On the other
hand, in Ref. [31], 6 CNOT gates were used to make the C2(iZ)
gate. The advantage of adding one CNOT gate is that it can
prevent one T or T† gate from being surrounded by CNOT
gates (Figure 11). The basis variable corresponding to this T
(or T†) gate is x3 (or ‐x3).

Now, let ω = (−1)1/4 = eiπ/4 and consider the first case in
Figure 5. As shown in Figure 12, let us combine subcircuit A
and two H gates to form a large subcircuit B. If B is inter-
changeable with T gate, T‐depth can be reduced from four to
two. As a result, the C2(−iω−1X ) gate and C2(iωX) gate will
exist on both sides of subcircuit A, respectively. The second
reduction in this way can be applied similarly to all cases,
except for the fourth and fifth cases. In the fourth and fifth
cases, as it can be seen from Figures 9 and 10, even if a pair of
T and T† gates are deleted, T‐depth cannot be reduced. That is,

unlike all other eight cases, one T gate or T† gate does not form
one T‐depth after finishing the previous first T‐depth reduc-
tion process. Therefore, if T and T† gates were used in the first
reduction process, the second reduction techniques would
become meaningless. If we want to perform this second
reduction, we should perform the decision algorithm
mentioned below in subcircuit B instead of in A.

Certainly, from the overall circuit point of view, the
T‐count remains unchanged and the overall T‐depth can be
lowered through T‐depth sharing. This is because, in general,
various Toffoli‐gates appear in different cases in the entire
circuit. However, it is not likely that this second T‐depth
reduction technique while reducing T‐count is performed. As
mentioned earlier, since the H gate and T gate are not inter-
changeable, the H gate reduction process mentioned below
must succeed in two H gates on both sides of subcircuit A.
Also, as mentioned in the next subsection, the state of the basis
variable corresponding to the third line in Figure 12 should not
be changed. The simplest situation that holds these two con-
ditions is that there is no gate in subcircuit A on the third line,
where two H gates exist. Then, since two H gates are inversely
related to each other, they disappear obviously, and this second
T‐depth reduction process while reducing T‐count can be
performed.

A typical example of performing this second T‐depth
reduction process is the k‐controlled Toffoli‐gate (CkNOT
gate, k ≥ 3). This gate can be decomposed into 4(k − 2)
Toffoli‐gates if k − 2 dirty borrowed qubits (qubits in arbitrary
states) exist by Lemma 7.2 in Ref. [32]. For instance, we can see
the process of decreasing T‐depth of C4NOT gate in
Figure 13, and Figure 4 in Ref. [31]. They deleted some H gates
and placed CP and CP† gates appropriately so that they could
be self‐evidently exchanged with subcircuit A. In other words,
the first T‐depth reduction process that we will be discussing

F I GURE 1 0 The fifth and sixth cases in Figure 5. In the fifth case, the
CP and CP† gate cannot be used. In the sixth case, a pair of CP and CP†

gates can be used, but the T‐count cannot be reduced to 8

F I GURE 1 1 A doubly controlled iωX gate [31]. A doubly controlled
iX gate can be decomposed into two H gates, one T† gate and a doubly
controlled iωZ gate

F I GURE 1 2 Second T‐depth reduction process. If we want to
perform this second reduction, we could perform the decision process
mentioned below in subcircuit B instead of in subcircuit A. That is, it is
necessary to check whether subcircuit B and T or T† gate are
interchangeable
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can be performed easily. The second T‐depth reduction pro-
cess can also be performed. At this time, they explained that
the reason that the outermost extra phase gates (a pair of T and
T† gates) can be erased is that the state of dirty borrowed
qubits is restored in Figure 4 in Ref. [31]. We can state in our
way why these gates can be deleted. That is, the quantum
subcircuit between these two extra phase gates is inter-
changeable with T or T† gates. After the exchange, T and T†

gates become adjacent to each other and are erased. In sum-
mary, for every k ≥ 3, if there are k − 2 qubits in arbitrary
states, then the CkNOT gate can be implemented as a circuit
with T‐depth 4(k − 1) [31, 33].

In practice, it is very difficult to find a circuit implemented
with only two Toffoli‐gates. Pairs of Toffoli‐gates can be
selected in various ways in the quantum circuit, and T‐depth
can be further reduced without changing T‐count through
T‐depth sharing as in case 3. The process of applying these
first and second reduction techniques will be looked at in
quantum adder circuits in the next section.

3.3 | Exchangeability determination
algorithm

We consider the characteristics of subcircuit A interchangeable
with the CP gate before presenting the process of determining
exchangeability. The CP gate works as follows.

Controlled − P : jx1x2〉 → e
πi
4 2x1x2 jx1x2〉 ð10Þ

It can be seen that x1 and x2, which are basis variables
corresponding to each wire, are maintained as they are, and
ix1x2 is generated. For the subcircuit A to be exchangeable with
the CP gate, the above operation must be possible as it is. That
is, the global phase ix1x2 should be generated even after passing
through the subcircuit A first.

Now, we present a method to determine the exchange-
ability between subcircuit A and CP gate. More precisely,
without changing the overall operation of the entire circuit, we
determine whether a part of subcircuit A can be converted into
a circuit that can be exchanged with the CP gate. After

confirming the possibility of conversion, some kind of resto-
ration work is required so that the entire operation does not
change. It was mentioned earlier that a circuit consisting of the
H gate, X gate, Rz gate, and CNOT gate would be considered,
and our technique is applicable even if some control parts of
the Toffoli‐gate are off. We will use variants of the optimisation
subroutines in Ref. [14]. The following subroutines are
executed sequentially. The order of subroutines has been
carefully chosen.

3.3.1 | Step 0: Pruning procedure to identify RoI
(Region of Interest) in subcircuit A between the CP
gate and Toffoli‐gate

We present a modified pruning procedure as a pre‐processing
step. This procedure identifies RoI (Region of Interest) in
subcircuit A. After completing this procedure, we will see if
RoI can be converted into a circuit that can be exchanged with
a CP gate. We will try to modify the pruning procedure pre-
sented in the previous section. Again, our first concern is
whether the CP gate can move to the left of the Toffoli‐gate.
That is, the values of the basis variables corresponding to the
two lines with the CP gate should be maintained after passing
through subcircuit A first. Gates that do not have any effect on
the changes in the values of these basis variables can be, for
example, CNOT gates that do not share a line with a CP gate.
Conversely, all single‐qubit gates and two‐qubit gates located
on the two lines with CP gates are gates that can be affected.
Our main lines of interest are the two lines with CP gates. This
modified procedure complies with the following rules.

� We designate the CP gate as the starting point. In the sit-
uation where the CP gate, the subcircuit A (the intermediate
region), and the Toffoli‐gate are sequential, our pruning
procedure will only traverse to the right. The Toffoli‐gate is
the endpoint.

� The basic termination border is determined by two lines
with CP gates between the timeline with the CP gate and the
timeline with the Toffoli‐gate.

� Unlike the original pruning procedure, even if an H gate is
encountered while traversing, this gate is passed. When the
Rz or X gates are met, it is passed through the same as the
original pruning procedure.

� It should be carefully considered when meeting with CNOT
gates. If one of the two lines with a CP gate shares only the
control part, we make an exception and continue crossing.
However, if the target part also belongs to the termination
border, it can be passed. The reason for the exception of the
CNOT gate with a target part outside the termination border
is clear. This is because it does not affect the phase generation
of theCP gate at all. If only the target part of theCNOTgate is
shared with one of the two lines with the CP gate, it is passed,
and the control part is designated as the anchor point.
Through these anchor points, the termination border is
widened. Even if new connectivity cannot be created, it is
passed differently from the original pruning procedure.

F I GURE 1 3 T‐depth reduction process in the C4NOT gate [31]. The
positions of CP and CP† gates in this figure are slightly different from
Figure 4 in Ref. [31]. As a result, the same T‐depth 12 is obtained
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� When traversing is completed on two lines with CP gates,
traversal is performed with the same logic at anchor points.
Anchor points also traverse only to the right and traverse to
the timeline of Toffoli‐gate. If we encounter the CNOT gate
that we set as an exception, we skip it and continue
traversing. All gates passed during traversing constitute RoI
(or RoI0), which is a part of subcircuit A.

Our pruning procedure is mostly the opposite of the original
pruning procedure. Again, the reasonwhy it is different from the
original pruning procedure is that the reason for doing this
procedure is different. The original pruning procedure aims to
designate the subcircuit as wide as possible for merging between
Rz gates in the subcircuit created through the procedure. On the
other hand, our pruning procedure is used as a pre‐processing
step to unambiguously form (identify) RoI between the CP
gate and the Toffoli‐gate. That is, since it is used to exclude gates
that do not cause any change in the basis variables and do not
affect them at all, we try to designate RoI as small as possible.

We can put the carry function block in the HRS adder as an
example to show the sure effect of this pruning procedure
(Figures 23 and 3 in [11]). The presented circuit consists of a
total of ten Toffoli‐gates. We want to specify exactly RoI be-
tween the first Toffoli‐gate and the last Toffoli‐gate. The CP
gate is placed on two lines with the two control parts of the
first Toffoli‐gate. Since subcircuit A consists of many Toffoli‐
gates, it may be thought that it is very difficult to determine
whether the T‐depth is reduced, but it is very simple. Through
the pruning procedure presented by us, it can be easily
confirmed that the CNOT gate at the bottom of the centre is
an exception. As a result, RoI created by excluding this CNOT
gate can become an identity circuit. This is because gates
placed in inverse relationships with each other can be
sequentially deleted. Therefore, it can be seen that the total
T‐depth composed of the first and last Toffoli‐gates can be
reduced from 6 to 4 without performing the main process after
the pruning procedure.

If you look at the example Figures 16 and 17, RoI (RoI0)
made through the pruning procedure is indicated by a dotted
line.

3.3.2 | Step 1: X gate propagation

In the first step, move all X gates to the right using X gate
propagation [14, 26] (Figure 14). If an X gate has reached the
left of the Toffoli‐gate through X gate propagation, it can be
moved to the right of the Toffoli‐gate. At this time, an on‐
control part of the Toffoli‐gate that meets the X gate is
changed to an off‐control part. Through this process, it is
possible to ensure that there are no X gates in RoI. As
mentioned earlier, our technique is applicable even if some
control parts of the Toffoli‐gate are off. RoI and the control
parts of Toffoli‐gate on the right may be slightly changed in
this step. Of course, the overall operation does not change. RoI
after this step is completed is called RoI1. Now, only CNOT,
Rz(θ), and H gates exist in RoI1.

3.3.3 | Step 2: CNOT and Rz gate propagation

Let us consider the right side of RoI1. By using CNOT and Rz
gate propagation, some CNOT gates can be moved to the right
of the Toffoli‐gate (Figure 15). That is, we take as many CNOT
and Rz gates as possible out in RoI1. In the case of Rz gates, if
they are adjacent to one of the two control parts of the Toffoli‐
gate, they can move to the right of the control part. Conversely,
if the Rz gate is adjacent to the target part, it cannot move.
There are a total of eight cases of relative positions between
the Toffoli‐gate and CNOT gate. CNOT and Rz gate propa-
gation is performed sequentially from the CNOT gate or Rz
gate adjacent to the Toffoli‐gate. If the relative position during
execution is one of the fourth, fifth, and sixth cases, this step is
finished.

The reason for performing this step is to make the
calculation in steps three and four easier. The smaller the
number of CNOT gates in steps three and four, the faster we
can move to the next step.

Let RoI after this step be called RoI2. Of course, after
completing this step, if there are no gates on the two lines with
CP gates, that is, if it becomes an identity circuit, it can be said
that subcircuit A can be converted into an interchangeable
circuit. If any gates remain in RoI2, proceed to the next step.

F I GURE 1 4 Commutation rules in X gate propagation [14]. If the X
gate reaches the right end of subcircuit A, it is also exchanged with the
Toffoli‐gate on the right. At this time, if the X gate is adjacent to the control
part of the Toffoli‐gate, the control part is flipped

F I GURE 1 5 Eight cases of relative positions for the controlled‐NOT
gate (CNOT) gate and Toffoli‐gate. In cases 4, 5, and 6, the CNOT
propagation process cannot be performed to the right. That is, the CNOT
gate cannot be exchanged with the Toffoli‐gate. (Exchange is possible only
by adding one more Toffoli‐gate.) Of the remaining five cases, only in the
first case, one of the control parts of the Toffoli‐gate is flipped [30]
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3.3.4 | Step 3: Hadamard gate reduction

The CP gate consists of two CNOT gates, two T gates, and
one T† gate. As mentioned earlier, the H gate is not commu-
tative with the T gate. Therefore, H gates on lines with the CP
gate in A must be reduced and erased using the circuit iden-
tities shown in Figure 4 in Ref. [14] and Figure 8 in Ref. [34].
At this time, if X gates occur while performing H gate
reduction, X gate propagation is performed as in the first step.
Also, using Figure 5 in Ref. [14] and the rules of Ref. [35], the
positions of Rz gates and CNOT gates are changed to further
perform H gate reduction. If two adjacent gates are placed in
an inverse relationship with each other during position
movement, they are deleted. The movement of all gates is
finally performed for H gate reduction on lines with the CP
gate in this step. Let us call the region after this step RoI3. If at
least one H gate remains in the two lines with the CP gate after
this step, it can be said that subcircuit A cannot be converted
into a circuit that is interchangeable with the CP gate. If the H
gates in both lines disappear, go to the next step.

3.3.5 | Step 4: Z‐rotation gate (Rz(θ) gate)
cancelation

The overall operation did not change through the previous
three steps. Now, after completing step 4, the overall operation
may be different. If it is different, it is necessary to restore
RoI3 after this step or step 5 is finished. Now, only Rz gates
and CNOT gates exist in RoI3. We are interested in whether
the basis variables x1 and x2 corresponding to the two lines on
which the CP gate lies do not change. Therefore, Rz(θ) gates
in RoI3 that do not affect the change of these two basis
variables can be ignored. After erasing all Rz gates, we can
reduce the number of remaining CNOT gates using rules in
Ref. [35].

In this step, the Rz gate cancelation operation can change
the entire operation for the first time. If RoI3 becomes an
identity circuit RoI4 after this step is over, it can be said that
subcircuit A can be converted into a circuit that is inter-
changeable with the CP gate. If it is determined that the ex-
change is possible, restore gates that are erased in this step.
They are restored to the ‘original position’. If at least one
CNOT gate remains in RoI4, go to the next step.

3.3.6 | Step 5: Discrimination between the
remaining CNOT gates

In this last step, we check whether the basis variables x1 and x2
have changed after passing through RoI4 where only CNOT
gates are left, that is, whether we can make the desired phase.
The change of basis variables is examined, considering the
basis variables corresponding to all lines in subcircuit RoI4.
After passing through RoI4, if x1 and x2 do not exist in the two
lines with the CP gate, we cannot create the desired phase.
That is, subcircuit A cannot be converted into a circuit that is
interchangeable with the CP gate. If the states are maintained
even if x1 and x2 pass through RoI4, then RoI4 is a circuit that
can swap positions with the CP gate.

3.3.7 | Examples

Let us take a concrete example with Figure 16, and the basis
variables corresponding to each line be x1, x2, x3, and x4.
Through the pruning procedure, the two CNOT gates in the
middle are not included in RoI. Through X gate propagation,
one X gate is moved to the right of the Toffoli‐gate. Then, 3 Rz
gates and 1 CNOT gate are moved to the right of the Toffoli‐
gate through CNOT and Rz gate propagation. Then, the H
gate reduction is performed. We can clear all H gates on the
first and second lines. Now, only Rz(θ) gates and CNOT gates
remain in RoI3. After erasing all Rz gates (T gate), reduce the
number of CNOT gates using the rules in Ref. [35]. As a result,
only 3 CNOT gates remain and x2 is changed to x2 ⊕ x4. Since
the basis variables x1 and x2 do not appear in the first and
second lines, this subcircuit A cannot be converted into a
circuit that can be exchanged with the CP gate. The CP gate
cannot create the phase ix1x2 after exchanging with RoI4.

Although RoI4 is not interchangeable with the CP gate, it is
not that the T‐depth formed by two Toffoli‐gates cannot be
reduced. We can see that there is no gate on the first line of
subcircuit RoI4. That is, subcircuit A can be converted into a
subcircuit that can be exchanged with the T gate if the T gate
exists on the first line. When using T and T† gate, T‐depth can
be reduced to 4 as when using the CP gate, but T‐count cannot
be reduced to 8.

Let us look at another example where the exchange suc-
ceeds this time. Figure 17 is very similar to Figure 16, but one

F I GURE 1 6 Example: subcircuit A (the intermediate region) that cannot be converted into a circuit interchangeable with the controlled‐P gate (CP gate).
However, this subcircuit A is interchangeable with the T gate if the T gate exists on the first line
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CNOT gate is deleted in the middle. RoI can become identity
circuit RoI4 through the above process. Therefore, Rz gates
and CNOT gates deleted in step 4 are restored to their original
positions. Then, the positions of CP gate and restored RoI3 are
exchanged. Through this process, T‐depth is reduced, but the
overall operation does not change.

3.4 | Remark and caution

3.4.1 | Remark: An unpaired Toffoli‐gate can only
attempt T‐depth sharing

Some readers may have recalled relative phase decomposition
in NISQ (noisy intermediate‐scale quantum computing) cir-
cuits while reading this paper [36]. Or one might wonder why it
does not cover the case where a single Toffoli‐gate is alone. As
mentioned in the introduction, we aim to create an efficient
quantum cryptosystem circuit to verify security strength. A
typical quantum attack algorithm used in this case is Grover's
algorithm [3]. In this case, Grover's algorithm uses the phase
kick‐back technique. If there is only one Toffoli‐gate, and it is
combined with the CP† gate, phase ‐i occurs, and it cannot be
removed. A quantum circuit that does not maintain the input
phases þ 1ffiffiffiffi

2n
p for the number n of bits of the superposed input

value cannot be used in Grover's algorithm. Therefore, when
modifying the circuit to reduce T‐depth and T‐count, we must
take care that the phase þ 1ffiffiffiffi

2n
p of each state is maintained after

passing through all gates in the quantum crypto‐system circuit.
So relative phase decomposition cannot be used.

Of course, even if the Toffoli‐gate is alone, the T‐depth of
the entire circuit can be reduced through T‐depth sharing.
In other words, T‐depth made by other Toffoli‐gates can
be shared. In this case, the T‐count does not decrease like in
case 3.

3.4.2 | Caution: There are cases where two or
more Toffoli‐gates can be converted into one
Toffoli‐gate.

If subcircuit A has a special shape, then Toffoli‐gates on both
sides can be reduced to one. For example, assume that two
Toffoli‐gates share both two control lines and one target line as
the second case in Figure 18. At this time, suppose that sub-
circuit A is a CNOT gate that uses one of two control lines of

the Toffoli‐gates as a target line and the fourth line as a control
line. Then two Toffoli‐gates can be reduced to one Toffoli‐gate
having a different control line (Figure 18). That is, there is a
situation in which the Toffoli‐count can be decreased. In this
case, T‐depth can be reduced from six to three instead of four.
There are various other situations in which the Toffoli‐count
can be reduced (Figure 18, [30, 37, 38]).

4 | APPLICATION 1: APPLYING T‐
DEPTH AND T‐COUNT REDUCTION
TECHNIQUE TO QUANTUM ADDERS

Now we apply the technique presented in the above section to
some quantum adders. In all five quantum adders, T‐depth
reduction rate is more than 33%. These changed T‐depth
values can be seen in Table 2.

4.1 | CDKM adder

First, let us take a look at the CDKM adder. As can be seen
from Figure 6 in Ref. [7], all Toffoli‐gates, except for one, can
be paired by two and share two control lines and one target
line. In the central part of the circuit, RoI is composed of X
gates and CNOT gates. The situation corresponds to case 1
in Figure 5. T‐depth 1 can be further reduced through
T‐depth sharing near the centre. As a result, in modulo 232,
Toffoli‐depth is 61 and T‐depth is 64. The T‐depth reduction
rate is about 65%. Unfortunately, this CDKM adder is not
used when we construct the SHA‐256 quantum circuit. The
reason is that it is an inferior circuit to the TK‐v2 adder
below. The TK‐v2 adder uses one work qubit like the
CDKM adder, and Toffoli‐depth is also the same, but
T‐depth is smaller.

F I GURE 1 7 Example: the subcircuit A that can be converted into a commutative circuit with the controlled‐P gate (CP gate). Contrary to the previous
example (Figure 16), one controlled‐NOT gate (CNOT) gate has been removed in subcircuit A (RoI). After step 4, RoI4 is an identity circuit, so T‐depth
reduction is possible. We restore Rz(θ) gates, and CNOT gates deleted in step 4 to the ‘original positions' in RoI4 so that the entire operation is maintained. The
restored RoI3 swaps positions with the CP gate, and as a result, the CP gate is located on the left side of the Toffoli‐gate

F I GURE 1 8 Toffoli‐count reduction rules [30, 37, 38]
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4.2 | VBE adder

The VBE adder consists of carry function blocks and sum
function blocks, and you can see the circuit in Figure 1 in Ref.
[9] and Figure 19 when one operand is a constant. In the SHA‐
256 quantum circuit to be mentioned in the next section, the
VBE adder is used in a situation where one of the two oper-
ands is a constant. In the VBE adder, most Toffoli‐gates
constitute case 1 such as the CDKM adder. Since RoIs are
identity circuits, T‐depth reduction is of course possible. For
this VBE constant adder, Toffoli‐depth varies according to the
LSB (Least‐Significant bit) value of the constant. Toffoli‐depth
is 57 or 59 and T‐depth is 60 or 62 in modulo 232. In SHA‐256,
among 64 constants Kt (t = 0, …, 63), there are 33 Kts with
LSB of 1 and 31 Kts with LSB of 0. Consequently, the T‐depth
reduction rate is about 65%.

4.3 | TK adder

The TK adder is shown in Figure 5, and Figure 7 in Ref. [10]
(Figure 20). We will not use this adder circuit as it is, but use a
modified version by reducing the Toffoli‐depth (Toffoli‐count)
using the Toffoli‐count reduction rules (Figure 18). Let us
explain the configuration of the modified circuit (Figure 21).
First, to add the operands A and B, which are n‐bit numbers,
these values are stored in arrays A and B, respectively. The
modified TK adder proceeds as (11).

From now on, this modified TK adder will be called TK‐v1
or TK‐v2 or TK‐v3 adder. The TK‐v1 adder does not use
work qubits at all like the original TK adder. The TK‐v2 adder
uses one work qubit, so after T‐depth reduction operation is
finished, T‐depth of all C2(−iX) and C2(iX) gates can become
one. The TK‐v3 adder uses three work qubits so Toffoli‐depth
and T‐depth can be the same by the Matroid Partitioning
concept [21]. For the bit length n of the operand, Toffoli‐depth
of this adder is 2n − 3. That is, when performing addition in
modulo 2n, these modified versions have the same Toffoli‐
depth as the CDKM adder [7].

Like the CDKM and VBE adder, most Toffoli‐gates
constitute case 1, and one Toffoli‐gate in the centre cannot
participate in the first T‐depth reduction process. However, it
can share one T‐depth with Toffoli‐gate (or C2(iX) gate) on the
right. The T‐depth reduction rate is about 33% in the TK‐v1
adder.

4.4 | HRS adder

The design of HRS (constant) adder is much more complicated
than those of the three adders above [11] (Figure 22). Unlike

VBE and TK adders, there is no need to use clean work qubits.
Instead, we can use borrowed dirty qubits so that the states of
dirty borrowed qubits are the same after the operation is
finished. As module 232 addition is performed, it consists of a
total of five layers. Each layer consists of two carry function
blocks (Figure 23) and two controlled‐incrementer function
blocks [39] (Figure 24). In the last layer, there is no Toffoli‐
gate.

In carry function blocks, we can perform a first T‐depth
reduction process and a second T‐depth reduction process
(Figure 23). All Toffoli‐gates participated in our T‐depth
reduction work. Both processes are executed in case 1. How-
ever, in each process, the partners of Toffoli‐gates constituting
case 1 are different. In these function blocks, there are
generally four Toffoli‐gates that share two control lines and
one target line. At this time, when performing the first T‐depth
reduction process, the first and fourth Toffoli‐gates are paired,

1: For 1 ≤ i ≤ n − 2; B½i�⊕¼A½n − 1�; and A½i�⊕¼A½n − 1�: And then B½n − 1�⊕¼A½n − 1�:
2: For 1 ≤ i ≤ n − 2; A½n − 1�⊕¼A½i − 1�B½i − 1�; A½i�⊕¼A½n − 1�; and B½i�⊕¼A½n − 1�:
3: B½n − 1�⊕¼A½n − 2�B½n − 2�; B½n − 1�⊕¼A½n − 1�; and A½n − 2�⊕¼A½n − 1�:
4: For 2 ≤ i ≤ n − 2 in reverse order; A½n − 1�⊕¼A½i − 1�B½i − 1�; and A½i − 1�⊕¼A½n − 1�:

And then A½n − 1�⊕¼A½0�B½0�
5: For 2 ≤ i ≤ n − 1; A½i − 1�⊕¼A½n − 1�:
6: For 0 ≤ i ≤ n − 1; B½i�⊕¼A½i�:

ð11Þ

F I GURE 1 9 VBE constant adder circuit in modulo 26 [9]. Whether
gates are included is determined according to bit values of A, which is a
constant. In particular, if the LSB (Least‐Significant bit) value of a is 0, two
Toffoli‐gates at the top of the circuit are not included

F I GURE 2 0 Original TK adder circuit in modulo 25 [10]
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and the second and third Toffoli‐gates are paired. In the next
second T‐depth reduction process, the first and second
Toffoli‐gates are paired, and the third and fourth Toffoli‐gates
are paired. Also, in general, the top two Toffoli‐gates in this
function block cannot perform the second T‐depth reduction
process. Toffoli‐count reduction was not performed on carry
function blocks.

In controlled‐incrementer function blocks, all Toffoli‐gates
constitute case 1. In addition, T‐depth can be further reduced
in the remaining Toffoli‐gates except for the top two Toffoli‐
gates and the bottom two ones.

Since the circuit is created by the divide‐and‐conquer
technique, operations are performed in parallel within the
entire adder circuit. In mod 232, the HRS adder does not
perform parallel execution only in the first layer. In the first
layer, the process of generating and adding the 16th carry, c16,
is performed. At this time, a15…a0 is used for the 32‐bit
constant A (a31…a0). Therefore, like the VBE constant
adder, the change in Toffoli‐depth (T‐depth) according to the
LSB value of the constant a can be considered. If the LSB
value of the constant a is 0, Toffoli‐depth is decreased by two
in the carry function blocks in the first layer. If we want to
account for the change in Toffoli‐depth in the second layer, the
value of the 17th bit a16 as well as LSB must be 0. For
convenience, only the first layer was considered to change
Toffoli‐depth.

As a result, in modulo 232, Toffoli‐depth is 384 or 392 and
T‐depth is 424 or 432. Therefore, the T‐depth reduction rate is
about 63%.

4.5 | QCLA

The structure of QCLA will be briefly introduced first, and
then the process of applying the T‐depth reduction algorithm
will be explained. QCLA is largely divided into an addition step
and an uncomputation step (Figure 5 in [12]). In the addition
step, it goes through P, G, C, P−1 rounds in sequence, and the
order of rounds is reversed in the uncomputation step. Each P
round and P−1 round consists of 3 layers in modulo 232.
Except for the first layer in P round, the remaining two layers
are processed in parallel with G round. In P−1 round, except
for the last layer, the first two layers are processed in parallel
with C round. Each G round and C round consist of 4 layers,
respectively.

In the addition step, P and P−1 rounds constitute case 1.
The same goes for the uncomputation step. We can use CP and
CP† gates to decrease T‐count as well. Each G round in these
steps constitutes Case 3 (Figure 8). Therefore, the T‐depth
reduction process can be performed in G rounds. Then, the
Toffoli‐gate, which forms the last layer in round G, can share
T‐depth with the first and second layers in round C. So
T‐depth reduction can be performed once more. Two C

F I GURE 2 2 The HRS adder for n = 8. The operand X and the
constant a are added to calculate the sum s in mod 28. This circuit has three
layers. In the last layer, it consists of controlled‐NOT gate (CNOT) gates
and NOT gates, and execution is decided according to the value of a. For
example, if the value of LSB a0 is 0, the CNOT gate and NOT gate located
at the top are not executed

F I GURE 2 3 A carry function block in the HRS adder [11]. For bit‐
length n = 4, the operand X is added with the constant 10112. The output
value is the Most‐significant bit (MSB) of sum. When performing the first
T‐depth reduction process and second T‐depth reduction process, two
Toffoli‐gates constituting Case 1 are selected differently. RoIs(RoI0s) and
RoI4s shown in the figure are used in the first T‐depth reduction process.
g0, g1, and g2 are dirty borrowed qubits

F I GURE 2 4 An incrementer for n = 5. |gi〉 (i = 0, …, 4) are dirty
borrowed qubits, and it shows the process in which the operand v
expressed in 5 bits becomes v + 1. The controlled‐incrementer for n is
equivalent to one X gate added to the incrementer for n + 1 [39]. RoI0s and
RoI4s shown in the figure are used in the first T‐depth reduction process

F I GURE 2 1 A modified TK adder circuit in modulo 25. We will use
this better version of the TK adder in modulo 232 instead of the original
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rounds in each step constitute Case 1, so T‐depth is reduced by
using a pair of T and T† gates. After that, T‐depth can be
shared among the layers as in the G round.

After doing all of the above, in the addition step, C2(−iX)
gates constituting the first layer of P round and C2(−iX) gates
forming the first layer of G round can share one T‐depth.
Similarly, C2(iX) gates constituting the last layer of P−1 round
and C2(iωX) gates (or C2((−iω−1X )) gates) constituting the
last layer of C round can share one T‐depth. T‐depth can be
shared in the uncomputation step as well. Some Toffoli‐gates
do not belong to the addition step and uncomputation step
in the front part and the back part of QCLA. These constitute
case 1, and T‐depth reduction can be performed by using
T and T† gates. As a result, the total T‐depth becomes
24. Toffoli‐depth is 22, so the T‐depth reduction rate is about
64%.

4.6 | Relationship between Toffoli‐count
and T‐count

What we realised while doing the process of reducing T‐depth
of the above five adder circuits is that the optimised T‐depth
can be obtained by reducing T‐count as much as possible
and then selecting the appropriate location of T and T† gates.
Based on the above method, CDKM, VBE, TK adder, and
QCLA with reduced T‐depth are circuits with T‐depth opti-
mised by the Matroid Partitioning concept [21]. However, it
cannot be said that the HRS adder has become a circuit
optimised for T‐depth (and T‐count). Because the HRS adder
did not perform T‐depth reduction for the entire circuit. It was
only executed within the function blocks. Also, the HRS adder
is a circuit in which the Toffoli‐count can be reduced
(Figure 18). The reason that the Toffoli‐count operation is not
performed is that if T‐depth reduction operation is performed
after the Toffoli‐count operation is executed, T‐depth is the
same, but T‐count comes out with a larger value. In other
words, it does not seem that Toffoli‐count reduction neces-
sarily leads to T‐count reduction. Investigating the correlation
between Toffoli‐count reduction work and T‐depth and
T‐count may be a future research task.

5 | APPLICATION 2: USING REDUCED
QUANTUM ADDERS IN OUR NEW
QUANTUM SHA‐256 CIRCUIT

5.1 | Function blocks in the SHA‐256
quantum circuit

Now, we configure the SHA‐256 quantum circuit using the
above adders with reduced T‐depth. In Figure 25, you can see
the internal function blocks composing the SHA‐256 quantum
circuit we present. Work qubits are not shown in the figure. In
the ADD function block, of course, the adder circuits dis-
cussed in the previous section are used. In the case of the Maj
function block, the circuit of Ref. [7] is used as it is. On the

other hand, the Ch function block is our newly created func-
tion block, which consists of one CNOT gate and one Toffoli‐
gate. Both function blocks do not use work qubits and have
Toffoli‐depth 1. These function blocks can be seen in more
detail in Figure 26.

Σ0, Σ1, σ0, and σ1 function blocks receive a 32‐bit string as
an input value and output a 32‐bit string, respectively (Table 1).
Since these quantum circuits can be constructed using only
CNOT gates in the reverse direction of the PLU decomposi-
tion [4], T‐depths are all zero. The output values of these four
function blocks are all used as the operands of addition and
then restored to their original input values through the inverse
operation in quantum circuit. Since they consist only of CNOT
gates, they do not significantly affect the performance speed of
the circuit. For example, in the case of the σ0 function block,
this quantum circuit with Depth 50 can be made by using a
total of 193 CNOT gates. Although 20 swapping occurs, we do
not need to change the swapping process to three CNOT gates
because we only need to change the positions of the lines. If it
is converted to three CNOT gates, a total of 253 CNOT gates
are required.

5.2 | SHA‐256 quantum circuit
implementation

There are three main ideas introduced when designing the
SHA‐256 quantum circuit. We introduced a path balancing
technique that makes some operations run in the next round.
And instead of making T1 (or T1 + T2) first, we made d + T1

F I GURE 2 5 Function blocks in SHA‐256 quantum circuit. In Maj
and Ch function blocks, phases are not indicated ((−i)(a⊕c)∧(b⊕c) and
(−i)e∧(f⊕g))

F I GURE 2 6 Maj function block and Ch function block in the SHA‐
256 quantum circuit. In the SHA‐256 circuit, the qubits' states of each wire
are maintained after passing through subcircuit A (RoI). Thus, our T‐depth
reduction process is possible in these blocks
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first to reduce the length of the critical path of the entire cir-
cuit. In addition, T‐depth is reduced as much as possible by
providing enough work qubits to all adders performing in
parallel.

In our proposed quantum circuits, we perform a total of 11
additions and 1 subtraction per round. This subtraction is used
to restore the values of the internal variables e, f, and g in the
circuit. When performing subtraction, we will use the sub-
tractor version of TK‐v1 or TK‐v3 adder or QCLA, so
T‐depth and T‐count are not different from one of these ad-
ders. The adder circuits used in the proposed circuit are VBE,
TK‐v1, TK‐v2, TK‐v3, HRS adder and QCLA mentioned in
the previous section (Table 2). In the previous studies, only one
adder circuit was used to construct each SHA‐256 quantum
circuit. We present circuits with reduced Width or T‐depth by
arranging several types of adder circuits in appropriate
positions.

A path balancing technique is introduced when con-
structing the proposed circuits. This technique repositions
some operations so that they can be performed in the next
round. As a result, the round function algorithm consists of 65
rounds instead of 64 rounds in our proposed circuits. The
difference between the classic circuit and the proposed quan-
tum circuits is that the classical circuit repeats 64 times for one
message block, whereas the proposed quantum circuits repeat
a total of 65 times. In Figure 27, the function blocks painted in
red are added in round 2, black in round 4, green in round 5
and yellow in round 6. The upper area is the round function
algorithm and the lower area is the message schedule algo-
rithm. Function blocks painted in red at the top of the circuit
run from round 2 to round 65. In the final round 65, only the
function blocks painted in red at the top are executed. For
example, the internal variables a = T1 + T2, and b = a used in
round t are created just before the Maj function block in the
upper right of the circuit is executed. In other words, they are
created almost at the end of round t. After each round, the
position of qubits is adjusted through swapping according to
the hash algorithm.

In each round, the critical path can be composed of only
three adders. That is, we design circuits to execute in parallel
three out of nine adders for each time slice in the round
function algorithm. The critical paths of the quantum circuits
created in previous studies [5, 6] consist of seven or 10 adders.
Function blocks painted in blue are function blocks consti-
tuting a critical path with T‐depth that determines the per-
formance of a quantum circuit.

In the classical circuit, T1, which is commonly required for
d + T1 and T1 + T2, is made first, but in our quantum circuits,
d + T1 is made as quickly as possible using Wt twice. If you
look at Figure 27, you can see that Wt is used twice as an
operand. In the round function algorithm, 8 adder circuits and
1 subtractor circuit are used, and in the message schedule al-
gorithm, 3 adder circuits are used. Both sub‐algorithms are
processed in parallel. In round t, the adder circuit with a long
vertical line located to the centre of Figure 27 is to add Wt−1,
so it is one of the adders constituting the round function
algorithm.

As mentioned above, Wt is used twice as an operand in
round t + 1 and round t + 2. It should be noted that σ0(Wt+1)
is first added to Wt at round t + 4, not round t + 3. If it is
added in round t + 3, it is serially processed with the part using
operands in the round function algorithm, so T‐depth may
increase. We add Wt+9 when round t + 5 and σ1(Wt+14) when
round t + 6. When adding these two operands to Wt, the order
of these additions does not matter. As a result, at round t + 6,
Wt becomes Wt+16. W16 is made in round six and W63 is made
in round 53. The black parts no longer exist from round 52,
the green parts from round 53, and the yellow parts from
round 54. That is, the message schedule starts at round four
and ends at round 53.

5.3 | Our proposed circuits

There are four circuits presented by us. Our four proposed
circuits are named SHA‐Z1, SHA‐Z2, SHA‐Z3, and SHA‐Z4,
respectively (Table 3). SHA‐Z1 consists of a total of 768
qubits, and one HRS adder and eleven TK‐v1 adders are used.
If you look at Figure 27, constant Kt is added using the HRS
adder at the front, and five TK‐v1 adders are located in the
same time slice. The remaining six TK‐v1 adders are grouped
by three for parallel processing. Of the 768 qubits, 256 qubits
are used to represent the internal variables a, …, h in the round
function algorithm, and 512 qubits are used in the message
schedule algorithm. When we use the HRS adder, we can use
idle qubits in the message schedule algorithm as the borrowed
dirty qubits. The HRS adder and TK‐v1 adder do not use clean
work qubits at all.

SHA‐Z2 is a circuit with a total of 797 qubits, which
consists of one VBE adder and five TK‐v1 adders and six TK‐
v3 adders. Compared with the previous version, the HRS adder
is replaced by the VBE adder. Five TK‐v1 adders are still in the
same time slice. The remaining six TK‐v3 adders using 3 work
qubits are located in the second and third time slices (Our
quantum circuits consist of three time slices in one round, and
the reason is that the critical path that determines the T‐depth
consists of three adders.). In this circuit design, there are a total
of 29 work qubits because the VBE adder needs 29 work
qubits and TK‐v1 adders do not use work qubits at all. The
remaining six TK‐v3 adders can be used in a form in which the
T‐depth is reduced as much as possible by using 3 (or 4) work
qubits each. Since up to three TK‐v3 adders operate at the
same time, the number of work qubits required in second and
third time slice is up to 9, respectively. In fact, it is not
necessary to use the method presented in the previous section
for T‐depth reduction in the second and third time slices in
SHA‐Z2. This is because work qubits can be sufficiently
provided. In this time, our method only reduces T‐count. In
the final round 65, there are 31 work qubits in our second
proposed circuit, so all three additions can use the TK‐v3
adder.

SHA‐Z3 uses 927 qubits, of which 159 are work qubits.
Comparing with SHA‐Z2, five TK‐v1 adders are replaced by
TK‐v3 adders and six TK‐v3 adders are replaced by QCLAs.
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SHA‐Z4 uses three TK‐v2 adders and nine QCLAs and uses
a total of 194 work qubits. In the round function algorithm,
all additions and subtractions are performed only with
QCLA, and the message schedule algorithm is performed
only with the TK‐v2 adder. Since QCLA is used when
adding constants, 32 additional work qubits are required to
hold constants.

SHA‐Z1's critical path consists of one HRS adder, two
TK‐v1 adders, Ch function block's inverse and Σ1 function
block's inverse. On the other hand, the critical paths of the
remaining three circuits consist of Ch and its inverse, Σ1 and its
inverse, and three adders. T‐depth of these critical paths are
670 (or 678), 248, 113, and 76, respectively. Recall that
T‐depths are not optimised for the HRS adder to which our
T‐depth reduction technique is applied. Also, we did not
perform our T‐depth reduction technique on the entire cir-
cuits. Therefore, T‐depth of these SHA‐256 circuits may be
further reduced.

5.4 | Quantum circuit resources comparison

SHA‐Z1 has been implemented with fewer qubits than any
previous circuits. SHA‐Z2 has a smaller Toffoli‐depth than
SHA‐C2 and SHA‐C3 implemented by QCLA with Toffoli‐
depth O(log n). SHA‐Z3 uses fewer quantum resources than
SHA‐C5 and SHA‐C6, so it can be said that it is a superior
circuit. SHA‐Z4 is the only circuit with T‐depth less than 5000,
so it is the most time‐efficient SHA‐256 circuit. If more work
qubits were available, T‐depth 4936 could be reduced to 4418
which is Toffoli‐depth.

6 | CONCLUSION AND FUTURE WORK

In the fault‐tolerant model (QECC circuit), T‐depth is an
important factor that determines the running time of a
quantum circuit. We have proposed a novel method that re-
duces T‐depth (T‐count) when there are two Toffoli‐gates
and a subcircuit between them. Our method is largely
divided into two processes, and for each process, our pre-
sented algorithm is applied once. Each process was named
the first T‐depth reduction process and second T‐depth
reduction process, respectively, and the algorithm was
named the exchangeability determination algorithm. Our main
idea is to check whether the subcircuit and the CP gate (or
T gate) are interchangeable. More precisely, without changing
the overall operation of the entire circuit, we determine
whether a part of subcircuit A can be converted into a circuit
that can be exchanged with CP gate. In our process, T‐depth
can be further reduced without reducing T‐count through
T‐depth sharing.

By using our method, CDKM adder, VBE adder, TK ad-
der, HRS adder, and QCLA became circuits in which T‐depth
was reduced by more than 33%. In most adders, two Toffoli‐
gates are paired to share both control lines and a target line, so
the T‐depth can be greatly reduced. As a side note, we made a
modified TK adder. This adder is an adder that cannot use any
work qubits, and Toffoli‐depth is the same as that of the
CDKM adder. These adders are placed appropriately for use in
our SHA‐256 circuits.

In addition, we present a new construction of SHA‐256
quantum circuit so that the critical path consists of only
three adders. A total of four versions are presented with a new

F I GURE 2 7 SHA‐256 quantum circuit. The function blocks painted in red are added in round 2, black in round 4, green in round 5 and yellow in round 6.
Function blocks coloured in blue constitute a critical path in one round. For each round, the critical path consists of only 3 quantum adder circuits. Two‐qubit
gates at the end of each round are SWAP gates

18 - LEE ET AL.



design. There are two main ideas used in the circuit design: 1)
some operations are performed in the next round through the
path balancing technique, and 2) d + T1 is created first among
the values T1, d + T1, and T1 + T2. In previous works, critical
paths consisted of seven or 10 adders. However, by introducing
these two ideas, the critical path can be made to consist of only
three adders. This circuit's construction and performance are
much better than SHA‐256 circuits in previous work. During
design, we made a new Ch (Choice) function block. This
function block is made of one CNOT gate and one Toffoli‐
gate.

Figure 5 presents 10 cases in which two Toffoli‐gates can
appear in a quantum circuit. When there are many Toffoli‐gates
in a quantum circuit, it is necessary to find a suitable pair to
apply our method. When choosing one Toffoli‐gate and
looking for another Toffoli‐gate to mate, we have to determine
the order for these 10 cases. Determining the order of these
cases may be a future research task. Case 1 in Figure 5 may be
the first case to consider because this case can reduce T‐count
in the first T‐depth reduction process and can also reduce in
the second T‐depth reduction process.

The Toffoli‐count reduction (or optimisation) technique is
not covered in detail in this paper (Figure 18). As mentioned
earlier, Toffoli‐count reduction does not seem to necessarily
lead to T‐count reduction. Algorithm research to optimise
Toffoli‐count or Toffoli‐depth seems to be necessary. If this
algorithm that optimises the Toffoli‐count or Toffoli‐depth is
made, then the correlation study with the T‐depth or T‐count
optimisation algorithm will be an interesting research topic.
There are previous studies that provided hints for imple-
menting this algorithm [30, 37, 38].

We also do not know if our proposed circuit design is
optimised in a quantum environment. Are proposed circuits'
Toffoli‐depth (or T‐depth) optimised? Can we further reduce
the length of the critical path? There may be more efficient
circuit designs available for SHA‐256. Finding or imple-
menting more efficient adder circuits that can be used for
SHA‐256 also could be a future research task. One candidate
would be to build a multi‐operand adder circuit specialised
for the SHA‐256 quantum circuit. Of course, the perfor-
mance of this adder should be better than that of the three
adders composing our proposed circuit's critical path. That
is, T‐depth of this adder must be less than T‐depth of three
consecutive adders that make up the critical path in our
proposed circuit.
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