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ABSTRACT Location prediction plays an important role in modeling human mobility. Existing studies
focused on developing a prediction model which is based solely on the past mobility of only the person
of interest (POI), rather than including information on the mobility of her/his companions. In fact, people
frequently move in a group, and thus, using mobility data of a person’s companions can enhance accuracy
when predicting that person’s future locations. Motivated by this, we propose a two-phase framework for
predicting an individual’s future locations that fully benefits from spatio-temporal contexts embedded in
that person’s and his/her companions’ mobility. The framework first determines the POI’s companions, then
predicts future locations based on mobility information for both the POI and selected companions. Two
companion selection methods are proposed in this work. The first method uses spatial closeness (SC) to
determine the companions of the POI bymeasuring the similarity of the individuals’ geographic distributions.
The second method builds person ID embedding (PIE) vectors, and cosine similarity is used to select the
POI’s companions. To mitigate the curse of dimensionality, the framework also uses a stacked autoencoder
in which the encoder compresses a high-dimensional input feature (e.g., location, time, and person ID) into
a low-dimensional latent vector. For the second phase of the framework, a bidirectional recurrent neural
network (BRNN)-based multi-output model is proposed to predict a person’s future locations in the next
several time slots. To train the BRNNmodel, weighted loss is used, which takes into account the importance
of each future time slot to predict the POI’s locations accurately. Experiments are conducted on two large-
scale Wi-Fi trace datasets, demonstrating that the proposed model can effectively predict human future
locations.

INDEX TERMS Human mobility, location prediction, deep learning, similarity mining, companion detec-
tion, embedding.

I. INTRODUCTION
Human mobility prediction is key in a wide range of appli-
cations, including advertising, traffic management, urban
planning, and contagious disease control [1]–[3]. Govern-
ments can conduct better transportation planning and can
implement scheduling to ease traffic jams and handle crowd
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aggregations by predicting where people will be [4]. Ride
services Uber and Grab, for example, rely largely on pre-
cise mobility prediction algorithms to better estimate their
customers’ travel demands, scheduling resources to satisfy
them [5], [6]. In opportunistic mobile social networks, where
a mobile user is considered a node, correctly predicting the
next node positions helps to reduce the number of route
discoveries as well as the hop counts for paths between
source and destination [7], [8]. Especially in industrial zones,
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FIGURE 1. Two-phase framework for predicting an individual’s future locations.

predicting the location of workers based on their recent loca-
tions is needed for improving safety and reducing the time
needed for rescue operations if an incident occurs [9], [10].

Existing methods use people’s recent and historical mobil-
ity information to predict their next locations [11]–[14].
Those authors focused on developing models that capture the
sequential nature of human mobility preferences. Note that,
these methods typically do not consider the spatio-temporal
context underlying movement by a person’s companions, and
thus, cannot benefit from companion-mobility information.
In fact, people frequently move with friends, colleagues,
or coworkers; therefore, incorporating mobility information
about companions can improve the performance of a location-
prediction model. Motivated by this, we propose a two-phase
framework that takes advantage of a person’s companions’
mobility information to predict the next location of the
person-of-interest (POI). In a nutshell, we propose two new
methods to choose companions of the POI. Then, utilizing
mobility information of both the POI and his/her chosen com-
panions, a bidirectional recurrent neural network (BRNN)
predicts the POI’s future locations.

For the first phase, two companion selection methods are
proposed to determine the POI’s companions so their mobil-
ity information can help predict the POI’s future locations.
The first method uses a spatial closeness (SC) [15] metric
that measures the similarity in mobility between the POI
and others, and then selects the most similar individuals as
the POI’s companions. For the second companion selection
method, a person ID embedding (PIE) matrix is learned. Each
embedding vector in the PIEmatrix represents an individual’s
mobility characteristics. Similarity scores between the POI’s
PIE vector and vectors of other people are calculated using
cosine similarity. Those who have PIE vectors with the high-
est similarity score to the POI’s PIE vector are selected as
her/his companions.

In machine learning, one-hot encoding vectors are usu-
ally used to represent the categorical input of the model.
However, using one-hot vectors often leads to the curse of
dimensionality when the length of the vectors becomes large.
This degrades the performance of the model and increases the
training time. Therefore, in the first phase of the framework,
we train a stacked autoencoder [16], then reuse the encoder
to mitigate the curse of dimensionality. To be more specific,
instead of directly feeding the one-hot vectors of different
input features (such as location, day of the week, time slot
of the day, and ID) into the prediction model in the second
phase, they first pass through the encoder layer of the autoen-
coder. The encoder layer converts input features into dense
representations. This not only reduces the input dimension
but also makes use of complicated correlations between input
features, which improves the model’s prediction.

For the second phase, the BRNN-based multi-output pre-
diction model predicts future personal locations using recent
mobility information from the POI and his/her selected com-
panions. The RNN has a drawback in that it processes
input in the exact temporal sequence. This indicates that the
current input is contextualized by prior input, but not by
future input. The RNN processing chain is duplicated in the
BRNN, so input is processed in forward and reverse temporal
order. This enables the BRNN to consider the future context.
In addition, rather than simply predicting the individual’s
position in the very next time slot, the multi-output model is
designed to predict his/her location in several time slots with
different time gaps. For example, assume that the time slot
length is 15 minutes and a person is now in time slot t , the
model will predict positions in time slots t + 1, t + 4, t + 8,
t + 12, and t + 16 (15 minutes, one hour, two hours, three
hours, and four hours later, respectively).

The proposed model was trained and tested using two
large-scale Wi-Fi trace datasets, the Dartmouth dataset [17]
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and the UB dataset [18]. We compared our model’s perfor-
mance to that of several baselines: the Markov model [11],
SERM [12], VANext [13], and DPBPT [14]. The results show
that the proposed model outperformed the baseline models in
predicting the person’s next several locations.

In summary, our main contributions are as follows.
• A multi-output BRNN-based prediction model is pro-
posed to predict an individual’s future locations based
on recent locations. In addition, to mitigate the curse of
dimensionality, an autoencoder is proposed.

• Two companion selection methods are used to
determine companions whose mobility information
potentially helps predict the POI’s future locations.
In particular, a novel companion selection method based
on a person ID embedding vector is proposed.

• The proposed model is evaluated with two large-scale
Wi-Fi trace datasets, and the results demonstrate that
our model can effectively predict someone’s future
locations.

The rest of this paper is organized as follows. Section II
discusses the related works. Section III states the problem
definition. Then, the proposed companion mobility-based
human location prediction model is presented in detail in
Section IV. The experimental datasets are described in
section V. Section VI discusses the performance of the pro-
posed models and compares them with their counterparts.
Finally, the conclusions drawn from this work are discussed
in Section VII.

II. RELATED WORKS
A. HUMAN MOBILITY ANALYSIS
The study of human movement using modern monitoring
technologies like mobile phones [19], GPS [20], WiFi [21],
and RFID devices [22] has received a lot of attention recently.
A variety of research has been conducted with the goal
of identifying features of human movement [23]–[26], for
example, divided human mobility into three categories: geo-
graphic, temporal, and social connection. In terms of spatial
features, they concentrated on geographic mobility, or how
far and where a person moves. Temporal factors were taken
into account, such as pauses, which represent the amount of
time a person spends in a given area. Inter-contact time was
defined as the elapsed time between two adjacent contacts
for a pair of people, whereas the connectedness characteris-
tic indicates contact or encounter between two people. It is
worth noting that incorporating human mobility features aids
in precisely predicting human movement. Thus, a mobility
prediction model is developed in this paper, which takes into
account features of human movement such as time, location,
and social correlation.

B. LOCATION PREDICTION
Zhang et al. [30] found significant stability in the pre-
dictability of human mobility by calculating the entropy
of an individual’s trajectory. Many research attempts have
been made thus far to transform this predictability into

practical location prediction models [31]–[33]. The major-
ity of early location prediction approaches are based on
patterns [24]–[26]. The authors of [25] suggested Where
Next, a method for predicting the next position of a mov-
ing item with a high degree of precision. The prediction
is based on previously extracted movement patterns known
as trajectory patterns, which are a simple representation of
moving object behaviors as sequences of regularly visited
places with a standard journey duration. In [26], the authors
proposed geographic-temporal-semantic-based location pre-
diction (GTS-LP), a novel mining-based location prediction
approach that considers a user’s geography-triggered, tem-
porally triggered, and semantically triggered intentions in
order to estimate the likelihood of the user visiting a loca-
tion. The abovemethods extract pre-definedmobility patterns
(e.g., sequential patterns, periodic patterns) from trajectory
traces, and use these patterns to predict future positions.
However, these techniques suffer from the one-sided nature
of pre-defined patterns.

Several studies attempted to predict where a person will
visit based on past knowledge about that individual’s historic
locations [11], [27]–[29]. The Markov model is used in the
majority of these investigations. For example, the authors
in [11] expanded the Mobility Markov Chain (MMC) model
to include n prior visited sites, and they built a unique
future location prediction technique based on this mobility
model, named n-MMC. According to the authors, the sug-
gested Markov model has higher prediction accuracy than
the original Markov model. In [27], a novel division method
for pre-processing trajectory data was proposed in which
the original trajectory’s feature points are extracted based
on structural changes in the trajectory, and then important
locations are extracted by clustering the feature points with an
improved density, peak-clustering algorithm. Finally, a multi-
order fusionMarkov model based on the AdaBoost algorithm
predicts the next important location of mobile users. These
methods, on the other hand, are unable to detect the long-term
impact and periodicity of a person’s historical movements.

Deep learning approaches, particularly recurrent neural
networks (RNNs) like LSTM [34] and GRU [35], have
recently become popular for capturing long-term sequential
impacts and movement patterns. The authors of [12] pro-
posed an RNN-based architecture that learns the embedding
of many factors (e.g., user, location, time, keyword) as well
as the transition parameters of a recurrent neural network.
As a result, it successfully captures semantics-aware spatio-
temporal transition regularities to increase accuracy in loca-
tion prediction. The authors in [13] proposed an attention
recurrent network for mobility prediction. With historical
mobility attention, the authors suggested a latent variable
model that infers the user’s next location. However, train-
ing attention networks is challenging in location prediction
because they require a large amount of data to achieve opti-
mal parameters. More recently, the authors in [14] predict
a vehicle’s likely destinations and routes based on the most
recent partial trajectory and contextual data. Nonetheless,
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TABLE 1. Comparison of some location prediction approaches.

their model did not consider the vehicle ID, which aids the
model in distinguishing the pattern of vehicles and improves
prediction accuracy. A comparison of approaches presented
in this subsection can be found in Table 1.

The above methods, however, usually do not take mobil-
ity information from the POI’s companions into considera-
tion. In fact, incorporating companions’ mobility information
might improve model performance when predicting a POI’s
next location. In our proposed framework, we first define and
select companions of the POI. Then, we train a BRNNmodel
that uses mobility information from the POI and her/his
companions to predict the POI’s future locations.

C. SOCIAL CORRELATION DETECTION
Human decision-making is heavily impacted by social
contacts [36]–[38]. Studies on the similarity of human mobil-
ity [39] show that social ties are a substantial influenc-
ing factor in people’s mobility patterns. This has given
rise to the possibility of improving human mobility mod-
els by including companion movement. Graph clustering
has been used in a lot of research to find social groups in
which a network is separated into disjoint communities using
clustering techniques [40]. Several studies on community
detection have been published based on network members’
contact histories, such as encounter frequency and length, and
on a person’s total number of previous contacts [41], [42].
Authors in [41] proposed group discovery using co-location
(GDC) and decentralized GDC (DGDC) methods, which use
the frequency and length of meetings to reliably discover
groups. In [42], the authors used models that can reliably
assess, predict, and cluster multi-modal data from people and
groups within a population’s social network to reveal the
structure inherent in everyday activities. By evaluating the
Bluetooth-based encounter history from a real-life mobility
dataset, the work in [43] found social groupings within a
network of mobile users. The community discovery approach
focuses on creating similarity measurements that can depict
the degree of social ties between users by taking into account
spatio-temporal components of human interactions, and then
using clustering algorithms.

These social correlation detection approaches, however,
have drawbacks. They are unable to evaluate many aspects
of human movement at the same time, such as location,
time, and personal preference. Furthermore, if the data size

TABLE 2. Table of term.

increases (e.g., a large number of people, a long experimental
period), these methods become more time-consuming. Our
proposed social correlation detection (i.e., the companion
selection method) is based on a deep learning technique that
can incorporate many mobility features and that handles big
datasets.

III. PROBLEM DEFINITION
Assume a day is divided into equal time slots
(e.g., 15 minutes), and POI i is currently in time slot t .
This work considers the problem of predicting the location
of POI i in future time slot t + m (m ≥ 1) given that the
recent mobility information of POI i and his/her companions
are known. Instead of only predicting the POI’s location in
the very next time slot (i.e., m = 1), the proposed model is
designed to predict the POI’s locations in several time slots
based on different time gaps (e.g., example, m ∈ {1, 2, 3}).
Terms used in this paper are listed and defined in 2.

Let Lt i be the location of person i in time slot t , and let
X be the recent spatio-temporal information (e.g., location,
day of the week, time slot of the day, ID) of POI i and his/her
companions. Note thatX = (X it−k+1,X

i
t−k+2, . . . ,X

i
t ), where

k (k ≥ 1) is the number of recent time slots. The next location
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FIGURE 2. A toy example of how the prediction model work with
k = 3, L = {A, B, C}, m ∈ {1, 2, 3}.

prediction is now considered as a classification problem, and
the objective of this work is to learn P̂(L it+m|X ), which is
the probability that user i will visit each location during time
slot t + m.
A toy example of how the prediction model works is pre-

sented in Fig. 2. We consider a scenario in which the number
of locations is 3, L = {A,B,C}, the number of recent time
slots k = 3, and number of POI’s companions is 2. Assume
that the POI is in time slot t , the next locations prediction
model predicts the POI’s locations in time slot t+1, t+2, t+3
(e.g., m ∈ {1, 2, 3}). In Fig. 2, the output for time slot t + 1 is
(0.1, 0.6, 0.3), from which the predicted location of the POI
at time slot t + 1 is B.

IV. METHODOLOGY
In this section, we first provide an overview of the proposed
two-phase framework, and we then discuss in detail how
the proposed framework selects the POI’s companions and
predicts her/his future locations.

Figure 1 depicts an overview of the proposed method,
which consists of two phases. In Phase 1, two models are
trained. The first is a selection model to determine the POI’s
companions. The secondmodel in Phase 1 is the location, day,
time, ID autoencoder (LDTI-AE), which is trained to recon-
struct a concatenated vector of those features. The encoder in
the LDTI-AE is reused as one layer of the prediction model
in the second phase.

In Phase 2, the BRNN-basedmulti-output model is trained.
This model takes data from the POI and his/her compan-
ions as input and predicts the POI’s future location for the
next several time slots. In this model, the encoder from the
LDTI-AE (e.g., the model trained in Phase 1) is used to
compress input features (e.g., location, time slot index, the
day of the week, and ID) into dense latent representations that
help to mitigate the curse of dimensionality. In the remainder
of this section, the details of each part are presented.

A. COMPANION SELECTION METHODS
In this subsection, two companion selection methods are
presented for identifying the POI’s companions. Each uses
different metrics to estimate the similarity between mobility
patterns. The most similar companions are then chosen. The
key advantage of these methods is that they just use the corre-
lation in movement behavior of people, rather than requiring

TABLE 3. Samples of location-person vectors.

the information on actual social relationships between them.
Note that, even if a person moves alone, the companion
selection methods still can identify her/his companions.

1) Spatial closeness: The first method uses spatial close-
ness [15] metric. This metric compares the geographic
distributions of individuals to measure the closeness
between them in terms of mobility.
a) Location-person vector construction: First, a

location-person vector with a length equal to
the number of locations is constructed for each
person. Each element in the vector presents the
probability of an individual being seen at a spe-
cific location. Table 3 shows samples of location-
person vectors.

b) Spatial closeness calculation: The SC score
between the two people with vectors u and v is
calculated as shown below:

SC score = 1−
u.v

‖u‖2‖v‖2
(1)

The SC score indicates the distance between
vectors u and v in the location-person vector
space. Those who usually visit the same location
(i.e., companions) will get a low SC score, other-
wise, the SC score between vectors will be high.

2) Person ID embeddingmodel: The embedding approach
is used in the second companion selection model.
In neural networks, embedding represents a low-
dimensional, learned, continuous vector of discrete
variables by mapping a discrete (categorical) variable
to a vector of continuous numbers. In addition, they
capture the semantics of the input features by grouping
semantically similar input features in the embedding
space.
a) Person-ID-embedding matrix:

An embedding-based companion selection model
is developed to find a group of companions whose
mobility information can help to predict the POI’s
future locations. The model learns a person ID
embedding matrix that replaces a discrete person
ID with a continuous PIE vector that represents
the mobility characteristics of that person. Cosine
similarity is then used to measure the similarity
between the PIE vector of the POI and vectors of
other people.
The architecture to train the PIE matrix is shown
in Fig. 3. The model consists of 2-input branches.
The first branch takes IDi – a one-hot vector
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FIGURE 3. Model architecture for learning a PIE matrix in phase 1.

FIGURE 4. LDTI - Autoencoder architecture in phase 1.

representing the ID of person i as input. It then
passes through PIE matrix Eid such that every
person’s ID can be transformed into a PIE
vector, eID. The second branch takes as input
one-hot vectors for the day of the week and the
time slot index (Dt and Tt ). Then, each of the two
branches is fed into a dense layer, as shown in
Fig. 3, and those two dense layers have the same
number of neurons (e.g., the number of neurons
equals the number of locations). The weights of
the dense layer in the second branch are frozen.
Lastly, outputs from the two dense layers are pair-
wise summed and softmax activated to estimate
the individual’s current location (Lt i).

b) Similarity measurement: Given the PIE matrix,
a cosine similarity metric is used to calculate the
similarity score between PIE vectors u and v of
two people, as shown below:

Cosine similarity score =
u.v

‖u‖2‖v‖2
(2)

As described above, temporal information
(e.g., the day of the week, the time slot index)
and spatial information (e.g., locations) are used

to train a model that can estimate a person’s
current location. Note that weights of the dense
layer in the second branch are frozen (as shown
in Fig. 3), and therefore, the model only updates
parameters of the dense layer and the embedding
layer in the first branch. This requires the PIE
matrix to be updated in a way that effectively
reflects the correlation between a person and
his/her visited locations. So, if two people usually
move in a similar way (i.e., visit the same place
at a specific time), their PIE vectors are forced
to be close to each other in the embedding space.
Thus, the similarity score between these two PIE
vectors will be high. On the other hand, if the two
people’s movements differ, their PIE vectors in
the embedding space are far apart, and their PIE
vectors’ similarity score is low.

B. LOCATION-DAY-TIME SLOT-ID AUTOENCODER (LDTI-AE)
An autoencoder is an artificial neural network that can learn
dense representations of input data, which are referred to as
latent representations or codings. The autoencoder is use-
ful for dimensionality reduction since these codings have
a much lower dimensionality than the input data. In this
paper, we propose using a stacked autoencoder that takes
one-hot vectors for the location, day of the week, time slot,
and the person’s ID as input. This LDTI-AE is forced to
reconstruct the input vectors, and the LDTI-AE compresses
the spatio-temporal and personal features into dense latent
representations that can reflect complicated user mobility
characteristics. The architecture of the LDTI-AE is shown
in Fig. 4.

The proposed LDTI-AE consists of three hidden layers
along with an input layer and an output layer. Lt ,Dt ,Tt , IDi
are one-hot vectors that represent the location, day of the
week, the index of time slot t , and the ID of person i,
respectively. The hidden layer is much smaller than the total
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FIGURE 5. The BRNN-based future locations prediction model.

size of all input vectors, and the ReLU activation function is
used for hidden layers 1 and 2. Since the output is the con-
catenated vector of Lt ,Dt ,Tt , and IDi, the sigmoid activation
function is used in the output layer, and cross-entropy loss is
used to train the autoencoder.

C. BRNN-BASED FUTURE LOCATION PREDICTION MODEL
To predict future locations, a BRNN-based multi-output
model using an LSTM cell is proposed. Data from the POI
and his/her two selected companions is used as input for
the BRNN model. The model will then predict the loca-
tions the POI may visit in the next time slots, t + m,m ∈
{1, 4, 8, 12, 16}. Figure 5 shows the architecture of the pro-
posed model.

As shown in Fig. 5, the proposed model consists of four
layers: the encoder layer, the embedding layer, the recur-
rent layer, and the output layer. Details of each layer are as
follows.

1) The encoder layers: These employ the encoder
(i.e., up to hidden layer 2 of the LDTI-AE) to compress
the spatio-temporal and personal features of the POI
and his/her companions into dense latent representa-
tions. Note that all encoder weights are frozen in this
phase.

2) The embedding layers:

a) Location embedding: This layer learns embed-
ding matrix, El , such that every location L can be
transformed into embedding vector eL .

b) Person ID embedding: The ID embedding layer
learns embedding matrix, Eid , such that the ID of
person i, IDi, can be transformed into embedding
vector eID. Please note that embedding matrix Eid
in this layer is different from the PIE matrix that
is described in the Companion Selection Model
subsection in Section IV.

3) The recurrent layer: Output from the encoder
and embedding layers is then concatenated before
being fed into the recurrent layer. In this work,
the recurrent layer is a BRNN that uses LSTM
cells.

4) The output layers: The last hidden state of the LSTM
cell then passes through five identical branches, each
of which includes a fully connected layer with ReLU
activation, a dropout layer, and a fully connected layer
with a softmax activation function. As illustrated in
Fig. 5, each branch corresponds to predicting the POI’s
location in a certain time slot. In particular, the output
of the branch that predicts the location of POI i in time
slot t + m,m ∈ {1, 4, 8, 12, 16} is P̂(L it+m), which is
the probability the POI will visit each location in time
slot t + m.
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TABLE 4. Statistics on the two experimental datasets after pre-processing.

D. PARAMETER LEARNING
To train and update model parameters, the cross-entropy loss
function is utilized. The total loss of the five outputs is
computed as follows:

Total loss =
batchsize∑ ∑

m

− log(P̂(Lt+m)) (3)

where m ∈ {1, 4, 8, 12, 16} corresponds to output of the pre-
diction model; P̂(L it+m) is the model’s predicted probability
for the POI’s location in time slot t + m.
In practice, the predictions for near-future time slots are

usually more useful than the predictions for distant time slots.
Thus, weighted loss is applied to the model’s five output loss
terms. The concept of weighted loss applies a higher penalty
to the loss term for output that corresponds to a predicted
location in the near future but applies a lower penalty to
the loss term for output that corresponds to the location in
a distant-future prediction. The weighted total loss of the five
output losses is computed as follows:

Weighted total loss =
batchsize∑ ∑

m

−Wm log(P̂(L it+m)) (4)

where

Wm =
1
m
× h; h =

1∑
n∈{1,4,8,12,16}

1
n

=
48
73

(5)

is the weight for the loss term of the output that predicts the
POI’s location in time slot t + m; h is the constant that keep∑

m∈{1,4,8,12,16}Wm = 1

V. DATASETS
Two large-scale datasets of Wi-Fi traces were used to train
and test the proposed framework. Due to the relatively short
communication range ofWi-Fi technology, the location of the
connected access point (AP) can be considered the location of
the mobile user at that time [44], [45]. Thus, human mobility
can be represented as a sequence of connected APs. The
first dataset is the Dartmouth dataset [17], which provides
Wi-Fi logs of 13,888mobile device carriers on the Dartmouth
College campus. A log including a timestamp, the device ID,
and the basic service set identifier (BSSID) was recorded
when each mobile device associates or disassociates itself
with a Wi-Fi AP. The second dataset is the Buffalo/phonelab-
wifi dataset (UB dataset) [18], which contains five months of
data from smartphones carried by a group of 284 University
at Buffalo (UB) faculty members, staff, and students.

Dartmouth data from the 50 most active mobile users over
118 days (from January 3 to April 30, 2004) were selected
as the dataset for training and testing the models. In this
experiment, 623APs (locations) were chosen. Similarly, from
the UB dataset, the 50 most active mobile users for 90 days
were selected, along with 1243 APs.

Since data samples in both datasets were collected at differ-
ent time intervals, the data were pre-processed. We assumed
a working day to be from 8:00 to 18:00, and is divided
into time slots, then timestamp of each record was mapped
to pre-defined time slots. In the two datasets, mobile users
typically stay at a location for a period of time (e.g., during
a class). We fixed the time slot duration to 15 minutes in
this work. Thus, there are total of 41 time slots per day,
including the last time slot. It should be noted that the user’s
most recent location within a specific time slot is considered
the location of the user in that entire time slot. Furthermore,
time slots with no data records were labeled with a dummy
location. Table 4 shows statistics of the two datasets after
pre-processing.

Because the two datasets were sparse, a large portion of
time slots was labeledwith the dummy location. Owing to this
imbalance in the data, the model kept predicting the dummy
location, which was of no value. To avoid this problem,
all training and validation samples labeled with the dummy
location were eliminated (i.e., all five labels for five outputs
t + 1, t + 4, t + 8, t + 12, and t + 16 had a real location
rather than the dummy location). It is worth noting that we
only trimmed dummy locations from the labels, so dummy
locations could still exist in the input features. Furthermore,
to ensure that the model could predict all the time slots
between 9:00 and 18:00, extra time slot data from 8:00 to
22:00 were used in the training phase.

Please note that for a fair assessment, in the test phase, the
model was assessed independently with each output. During
this phase, only the label for the considering output is required
to have a location (e.g., the labels of other outputs can be
dummy locations). For instance, to evaluate performance
when predicting the location in time slot t+1, the model only
needed to ensure the label for output t+1 was not the dummy
location. Therefore, five distinct test sets were created during
the testing phase to evaluate the model with each output for
t + 1, t + 4, t + 8, t + 12, and t + 16. Figure 6 shows the
input-label timelines of the five test sets.

Recall that in the UB and Dartmouth traces, the experiment
periods were 90 and 118 days, respectively. For the day
dimension, each dataset was randomly divided into training,
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FIGURE 6. Input-Label timelines of five test sets.

validation, and test sets at a 6:2:2 ratio. The first two sets
were used to fit the models and determine the best hyper-
parameters, while the last set was used to evaluate model
performance.

VI. EXPERIMENT RESULTS
In this section, we provide the results from a series of exper-
iments carried out to evaluate the efficacy of our proposed
framework. We begin with the baseline models and then
move on to the implementation details. Finally, we present
the experiment results followed by validation of the proposed
approaches.

A. BASELINE MODELS
The proposed model was compared with the following base-
line methods. The Markov model [11] learns to define move-
ment regularities, then is used to select the place with the
highest probability for a future location. SERM [12]captures
diverse contexts underlying human movement, and enables
semantics-aware next-location prediction by learning the
embedding vectors of several variables (ID, location, time,
keyword) and the transition parameters of a recurrent neural
network. VANext [13] is a variational attention mechanism
that predicts the next position of a person by combining past

mobility pattern periodicity with recent check-in preferences.
In [14], the next location is predicted based on the most recent
locations and we use ’DPBPT’ to present this baseline model.

B. IMPLEMENTATION DETAILS
The proposed and baseline models were implemented using
the TensorFlowKeras library on a four-core Xeon CPUwith a
single Titan-XP GPU. Each model was trained for 50 epochs,
and the best set of hyper-parameters was chosen based on
validation accuracy. The model is optimized by the RMSprop
optimizer with a learning rate of 0.001, and the batch size is
set to 1024. The baseline models were tuned to obtain the best
performance with each dataset.

C. EXPERIMENT RESULTS
Figure 7 shows the top-1 test accuracy from the proposed and
the baseline models when predicting an individual’s locations
in the next time slots (e.g., t+1, t+4, t+8, t+12, and t+16).
Comparisons of these methods resulted in the following.

RNN-based models (SERM, VANext, the proposed model
with SC, and the proposed model with PIE) outperformed the
Markov-based model by a large margin when predicting the
target person’s location in future time slots, owing to two fac-
tors. First, the Markov model is based on assumptions about

VOLUME 10, 2022 68119



Q. T. Ngo et al.: Companion Mobility to Assist in Future Human Location Prediction

FIGURE 7. Top-1 accuracies on the two datasets from the different methods predicting POI locations in
several time slots.

personal movement distributions. Second, Markov models
can only model first-order dependencies for a person’s move-
ment characteristics, while RNN-based models can model
long-term dependencies. Note that the performance of the
Markov model when predicting the individual’s location in
the next time slot, t+1, was high thanks to the characteristics
of the user’s movements in the two datasets, where mobile
users frequently stayed in one place for a couple of time slots.

The performance of the VANext model and the DPBPT
when predicting an individual’s location in distant time slots

dropped significantly. The major issue is that both models do
not consider the person ID, which has an important role in
future location prediction. The person ID helps the model dis-
tinguish mobility characteristics between people, and makes
for a more accurate prediction when estimating that person’s
future location. And SERM was a strong baseline when
predicting a person’s location in future time slots cause this
model considered the person ID.

Models that utilized companion mobility information
(e.g., the suggested model with SC and PIE) outperformed
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TABLE 5. Average top-1, top-3, and top-5 accuracies with Dartmouth data.

TABLE 6. Average top-1, top-3, and top-5 accuracies with UB data.

models that do not use companion mobility information
(Markov, SERM, VANext, and DPBPT). This demonstrates
that using companion mobility information improves the
model’s accuracy. Models using the PIE approach surpassed
the models that use the SC approach because the PIE
approach incorporates both spatial and temporal aspects in
people’s movements, whereas the SC technique just considers
the spatial component.

The average top-1, top-3 and top-5 test accuracies of the
five outputs of different models are shown in Table 5 and
Table 6. As can be seen, the proposed models that consider
companion mobility (with SC and with PIE) outperformed
baseline models that do not include companion informa-
tion. Again, this proves that human movement is highly
dependent on companions; consequently, incorporating com-
panion mobility information into the prediction model
enhances performance when predicting the POI’s future
locations.

Table 7 shows the number of parameters for each model
on the two experimental datasets. In general, the proposed
models (with SC and PIE) have fewer parameters than the
SERM and DPBPT models, demonstrating the effectiveness
of our proposed model. Although the VANext model has the
fewest parameters, its performance in distant time slots is
significantly lower than other models.

D. SENSITIVITY OF HYPER-PARAMETERS
The impact of different model hyper-parameter settings on
location prediction performance is investigated in this sub-
section. Specifically, we evaluate the sensitivity of four
hyper-parameters: person ID embedding size, the location
embedding size, the number of bi-LSTM hidden units,
and the first fully connected layer size. We set the per-
son ID embedding size and the location embedding size to

TABLE 7. Number of parameters of different models on the two datasets.

{8, 16, 32, 64, 128}, the number of bi-LSTM hidden units
to {8, 16, 32, 64, 128}, and the first fully connected layer
size to {32, 64, 128, 256, 512}. Except for the parameters
under test, all other parameters were left at their default
settings. Figure 8 shows the performance comparison when
we vary the values of model parameters on the Dartmouth
dataset. In general, we find that using a larger value of the
hyper-parameters improves performance by allowing for a
more powerful representation. However, this increases the
model’s complexity and makes it prone to overfitting. In our
experiments, based on the results in Fig. 8, we chose the
following hyper-parameters to account for the effectiveness
vs. computational cost trade-off: the location and user embed-
ding sizes are set to 64, the number of bi-LSTM hidden units
is set to 64, and the size of the first fully connected layer is
set to 128.

E. EFFECTIVENESS OF WEIGHTED LOSS
In this subsection, the effectiveness of using weighted loss
is validated. Figure 9 depicts the performance of the pro-
posed model with PIE as trained on the two experimental
datasets using normal loss and weighted loss. The weighted
loss, as shown in the figure, improves the models’ accuracy
when predicting the POI’s location in near-future time slots
(e.g., t+1 and t+4). As previously stated, adopting weighted
loss forces the model to be tuned to predict locations in

VOLUME 10, 2022 68121



Q. T. Ngo et al.: Companion Mobility to Assist in Future Human Location Prediction

FIGURE 8. Performance with varying parameters on Dartmouth dataset. (a) Person ID embedding size. (b) Location embedding size. (c) Bi-LSTM hidden
unit size. (d) The first fully connected layer size.

near-future time slots, which improves performance for these
time slots. It is worth noting, however, that themodel’s perfor-
mance when predicting locations in distant-future time slots
(e.g., t + 8, t + 12, and t + 16) improved with the two exper-
imental datasets. One possible explanation is that assigning
different weights to the loss term of each model’s output
impacts the learning rate while tuning the model parameters
upon output. This is an example of an adaptive learning rate
that increases the accuracy of amulti-outputmodel with every
output.

F. PERSON ID EMBEDDING COMPANION SELECTION
VALIDATION
In this subsection, the proposed PIE-based companion selec-
tionmethod is validated. This step’s purpose is to demonstrate
that the PIE vectors of two people with similar mobility are
close to each other in the embedding space. Otherwise, their
PIE vectors remain apart. For the demonstration, the t-SNE
technique [46] was employed to visualize the PIE vector.

The Dartmouth dataset was used for this subsection.
Besides the original data from 50 people, synthetic data of
four new people (IDs 51, 52, 53, and 54) were generated from
the original data. The data preparation is described as follows.

• Step 1: Pick training data of five people at random
from a pool of 50 original people. Here, randomly
chosen people are the persons with IDs 1, 34, 44, 10,
and 50.

• Step 2: Create data of the four new people by randomly
combining data samples of the five people chosen in
Step 1. The synthetic data construction of the four new
people (IDs 51, 52, 53, and 54) is shown in Fig. 10.
Please note that the data of each chosen person were
randomly selected at the sample level. For example,
to create data for person 51, 50% of the sample data of
person 1, and 50% of the sample data of person 34 were
randomly chosen and combined.

Given the data from 54 people, a PIE model was
trained to get the PIE vectors, which were then visual-
ized into two-dimensional space using the t-SNE technique.
Figure 9 shows the t-SNE plot of the PIE vectors for all
54 people. Each point in the plot indicates a PIE vector.
We focused on the PIE vectors of the following IDs: 1, 10,
34, 44, 50, 51, 52, 53, and 54.

Some observation can be made from the t-SNE plot:
• The mobility of person 50 and person 54 are the same,
and thus, the PIE vectors of that pair (50 and 54) are close
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FIGURE 9. Performance comparison of the proposed model with PIE, trained using normal loss and weighted loss.

FIGURE 10. Synthetic data construction for four new people with IDs 51,
52, 53, and 54.

FIGURE 11. t-SNE plot of the PIE vectors for all 54 people. Each point in
the plot indicates a PIE vector.

to each other. It is worth noting that, despite the fact that
the PIE vectors of 50 and 54 are highly similar, the two

TABLE 8. The cosine similarity scores between different people’s PIE
vectors.

vector points that represent them do not overlap. This is
due to the randomness in the t-SNE algorithm [46].

• The same observation can be seen for the PIE vectors of
the following pairs: 44 and 52, 10 and 53, and 51 and 34.

• The PIE vectors of group 51, 52, and 53 are near the PIE
vector of person 1 because their mobility is similar to
that of person 1.

The cosine similarity scores of the PIE vectors of the four
new people and the five chosen people are shown in Table 8.
Some conclusions can be drawn from the table.

• The cosine similarity score between person 50 and per-
son 54 PIE vectors is approximately 1 (e.g., 0.9999).
This is because the mobility of these two people is the
same. Similarly, the cosine similarity score between PIE
vectors of 44 and 52, 10 and 53, and 51 and 34 are
relatively high.

• The cosine similarity score between PIE vectors for
person 53 and person 1 is lower than the scores for
person 51 and person 1 and for person 52 and person 1
(e.g., 0.5522 vs. 0.7127 and 0.6954, respectively). This
is because the mobility data for person 53 used only 25%
of the mobility data from person 1, whereas the mobility
data for persons 51 and 52 used 50% of the mobility data
from person 1.

• The mobility data for persons 54 and 1 are unrelated.
Thus, the cosine similarity score between their PIE vec-
tors is relatively low (e.g., 0.0601).
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• Themobility data for person 53 used 75%of themobility
data from person 10. As the result, the cosine similarity
score between their PIE vectors is high (e.g., 0.8447).

VII. CONCLUSION
In this paper, a two-phase framework for predicting a person’s
future locations is proposed. Our framework uses mobil-
ity information from the POI and her/his companions to
predict the POI’s future locations. Two companion selec-
tion methods were used, which efficiently determined POI
companions whose mobility information aided in accurately
predicting the POI’s future locations. In particular, a novel
companion selection method was proposed, which is based
on the embedding technique. Furthermore, the autoencoder
architecture is used to learn the latent vector with multiple
factors (location, day of the week, time slot in the day, and
person ID) underlying human motion and to tackle the
curse of dimensionality. Lastly, a BRNN-based multi-output
model was trained using mobility information of the POI
and his/her companions under the supervision of weighted
loss to predict the location of the POI in the next several
time slots. It is worth noting that the companion selection
methods in our framework use on the similarity in movement
behavior between persons rather than their true social ties.
Thus, the proposed approach is broadly applicable to var-
ious types of spatio-temporal datasets (e.g., the framework
does not require the social relationship information between
people). We evaluated our model with two real-world
datasets, and the results showed that it outperformed base-
line methodologies when predicting an individual’s future
locations.

Due to data limitations, our work does not consider the
semantic context of individual mobility. For future work,
we plan to include this semantic context in the model in order
to predict not just the person’smovement, but also the purpose
behind it. Many other factors, such as time (workdays vs.
weekends), and personal preferences, will also be taken into
account to improve the model’s accuracy.
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