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ABSTRACT In this paper, we propose a novel curiosity-based learning algorithm for Multi-agent
Reinforcement Learning (MARL) to attain efficient and effective decision-making. We employ the central-
ized training with decentralized execution framework (CTDE) and consider that each agent has knowledge
of the prior action distribution of others. To quantify the difference in agents’ knowledge, curiosity,
we introduce conditional mutual information (CMI) regularization and use the amount of information
for updating decision-making policy. Then, to deploy these learning frameworks in a large-scale MARL
setting while acquiring high sample efficiency, we consider a Kullback-Leibler (KL) divergence-based
prioritization of experiences. We evaluate the effectiveness of the proposed algorithm in three different levels
of StarCraftMulti Agent Challenge (SMAC) scenarios using the PyMARL framework. The simulation-based
performance analysis shows that the proposed technique significantly improves the test win rate compared to
various state-of-the-art MARL benchmarks, such as the Optimistically Weighted Monotonic Value Function
Factorization (OW_QMIX) and Learning Individual Intrinsic Reward (LIIR).

INDEX TERMS Multi-agent reinforcement learning, curiosity, conditional mutual information, prioritized
experience replay.

I. INTRODUCTION
In spite of unprecedented success in many applications,
uncertain and non-stationary environments pose a serious
challenge in finding an efficient solution in multi-agent sys-
tems. The nature of the complexity comes from constant
interactions among agents, which are viewed as a part of envi-
ronments in Multi-agent Reinforcement Learning (MARL).

A common approach adopted widely across various mod-
ern MARL techniques is the greedy algorithm, where agents
are trained to maximize their individual rewards [1], [11],
[17], [18]. Although several works proposed to train the
agents to learn high-level strategic behaviors such as individ-
ual agent’s sacrifice for the greater good [2], [3], [4], [5], [6],
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an agent’s action selection is still based on a technique called
epsilon greedy. For example, an agent mostly chooses actions
that are expected to give maximum rewards or selects random
actions that have not been explored before in search for a
possible better reward. Thus, an agent’s exploration solely
relies on small randomness, and the inefficient exploration
often contributes to a longer training time or results in subop-
timal solutions. In addition, each agent explores the problem
spaces independently, and the exploration can be significantly
overlapped.

To address these problems, various techniques have been
proposed based on intrinsic motivation [7], counters [8], and
curiosity [9] concepts. However, these approaches require
additional structure or complicated parameter optimizations.
[10], [11] were proposed in a coordinated exploration con-
cepts based on a shared reply buffer. Under these approaches,
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the agents simultaneously explore a wide range of problem
spaces using a set of policies, whereas learning a good policy
requires extensive sharing of information through communi-
cation and training time increases with the growing action
spaces.

Recently a hybrid learning framework for distributed trans-
mission (HDT) in MARL was presented in [12]. The authors
introduced cloud-edge computing to attain network-wide
low-delay performance. The novelty of this paper is in the
reward function design, which considers the instantaneous
QoS constraint utilizing the Lagrange technique. The pro-
posed strategy produces a local maximum rather than a
global maximum when building reward functions using the
Lagrange multiplier technique.

In social science, observation is known as a primary source
of the intellectual process of acquiring knowledge. Young
children often observe and imitate their older siblings, and
such activities are known to contribute to their cognitive
development [13], [14]. In this paper, we propose a novel
curiosity-based learning technique inspired by such a con-
cept. The idea of curiosity-based learning is to exploit peer
agents’ acquired knowledge. Using the knowledge of other
agents can affect an agent’s learning process in positive or
negative ways. However, the agent can quickly investigate
such cases via their various experiences, and thus the training
time can be significantly reduced.

As children learn from their siblings’ knowledge, often
more mature than them, an agent exploits others’ knowledge
if it is different from the agent itself. In real time strategy
applications, an agent exploits others’ knowledge if it is
different from their own. To quantify the difference between
agents’ knowledge, in this paper, we introduce the curiosity
concept defined by conditional mutual information (CMI).
The main significance of this method is that it reduces the
uncertainty in the knowledge of the target agent’s decision-
making policy, given the knowledge of other agents. By doing
so, each agentmanages the long-term visitation counts, which
are in the form of the probability distribution of state-actions.

FIGURE 1. An example of how an agent exploits other’s knowledge to
take a wise decision. Game Scenario 1 (left): Inexperienced agent Z
shoots agent S but missed the target and get penalty as −1. Game
Scenario 2 (right): Inexperienced agent Z shoots agent S by observing
behaviors of experienced agent Z ′ and get a reward as +1.

Moreover, to quantify the interdependence between proba-
bility distributions, we compute the CMI and use this quantity
to update an agent’s decision-making policy. An example of
curiosity-based learning is presented in Figure 1. We apply

this curiosity concept in experience sampling as well. Reply
buffer or prioritized reply buffer are widely applied tech-
niques to address the sample efficiency problem in MARL.
However, the prioritized technique only selects the samples
based on an agent’s maximum expected reward, so the agent’s
experience can be biased. To address this problem, we con-
sidered a Kullback-Leibler (KL) divergence-based prioritiza-
tion of experiences that helps an agent acquire more diverse
experiences and, in turn, achieve a better learning curve.

To the best of our knowledge, the most relevant approach
to ours is [15], where curiosity-based exploration for episodic
MARL is presented. Though both approaches share the sim-
ilar name of ‘‘curiosity’’, the definitions are quite different.
Authors in [15] used prediction errors of individual Q-values
as intrinsic reward (called curiosity) for coordinated explo-
ration and employed episodic memory to exploit explored
informative experience to enhance policy training. On the
other hand, curiosity is defined by CMI to measure the differ-
ence in policy learned in this paper. The performance of [15]
can be limited due to the lack of adaptable exploration, which
can significantly affect the resilience of the system.

Our proposed technique was evaluated in the StarCraft
Multi-Agent Challenge (SMAC) [16], which is one of the
most widely used simulation testbeds for multi-agent sys-
tems, and compared against previous techniques, including
[3] and [17]. In the simulation-based experiments, the pro-
posed scheme showed improved performance overall. In par-
ticular, our simulation results demonstrate the efficiency of
curiosity-based learning in MARL by significantly acceler-
ating the convergence speed. On the super-hard game sce-
narios, the test win rate of our proposed scheme is 1.7 and
1.2 times better than the benchmarks [3] and [17], respec-
tively. The technical contributions of this paper are summa-
rized as follows:

• We proposed a novel curiosity-based reward individual-
ization for fully cooperative agents in a partially observ-
able environment MARL. To quantify the difference in
agents’ knowledge, curiosity, we introduce conditional
mutual information regularization (CMIR) and use the
amount of information for updating decision-making
policy.

• We proposed the Kullback-Leibler (KL) divergence-
based prioritization of experiences to deploy our pro-
posed learning frameworks in a large-scale MARL,
which can acquire a high sample efficiency.

The rest of the paper is organized as follows. Section II
describes the related work in MARL. Thereafter, the pro-
posed technique is presented in Section III. Section IV
explains the performance results and discussion. Finally,
we conclude the paper in Section V.

II. RELATED WORK
In this section, we briefly summarize and discuss previ-
ous techniques proposed to address the issues in MARL.
In reinforcement learning environments, curiosity has been
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extensively studied as a means of accelerating learning.
A mixing neural network is proposed in [1] to connect the
joint action-value function and decompose the action-value
functions. Each action-value function is called an individ-
ual utility function under a monotonic constraint. QMIX
is learned by minimizing the squared temporal difference
error of the joint action-value function. Coordination explo-
ration problems are discussed in [3]. Existing work exploited
curiosity-based learning techniques for single-agent learning
environments [2], [9], [19], which focus on the individual
agent’s curiosity-based reward for learning tasks indepen-
dently. However, due to the stochastic nature of the environ-
ment, a wide range of learning is restricted. Some similar
methods are the intrinsically motivated approach as success-
ful learning bonuses are presented in [4], [5], [20], which
alleviate hard learning problems. Using curiosity as a form
of intrinsic reward, finding an agent’s action that has the
highest impact on other agents’ actions is the main aim of this
paper. In a similar direction, another learning technique [21]
focuses on agents’ coordination to attain better learning of
the action spaces. The problem is that the agents’ action-
spaces are predicted directly without taking environmental
state characteristics into account. Thus, the above learning
techniques cannot extend their applicability in non-stationary
MARL settings, where the policies of agents are always
changing.

Many researchers focus on the concurrent learning frame-
work to accelerate efficient learning. A variable filtration
method is applied to measure the reward loss due to learn-
ing [22]. This paper propagates multiple agents’ parametric
distributions to attain fast learning of the state-action space.
Scalable coordinated exploration [23] considers unrestricted
communication as a means to coordinate the agent’s behav-
iors. This method fails to provide significant performance
improvement in large action space real-world applications
due to the high cost of communication. The main difference
between all these approaches and our proposed approach is
that our proposed approach addresses the multi-agent learn-
ing problem by coordinating agents’ control policies using
state transition characteristics.

Lately, the inequality aversion method has been used in
MARL to encourage fast and successful learning through
cooperation [24]. The intertemporal social dilemma concept
is analyzed by illustrating the trade-off between global reward
and an intrinsically motivated individual agent’s reward.
Nonetheless, this approach successfully benefits the self-
interested agents but fails to have negative contributions
to the global actions as the training timestep increases.
[25] proposes to avoid some unwanted actions that can affect
the performance ofmulti-agent systems and thus reduce train-
ing time. However, it cannot overcome the overestimation
biases in multi-agent systems due to instability and high
variance.

[26], [27], [28], [29] propose sampling optimization tech-
niques to overcome the overestimation bias. Rather than
selecting experiences from the replay buffer randomly,

TABLE 1. List of acronyms used in the paper.

TABLE 2. Comparison between proposed technique and highly relevant
existing techniques.

sampling through prioritizing a small section of experi-
ences in the replay buffer is presented. In contrast to these
approaches, our approach proposes a more practical learning
framework with less uncertainty in MARL action selection
in partially observable decentralized Markov Decision Pro-
cesses. To encourage successful and fast learning, a novel
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FIGURE 2. Architecture of the proposed technique.

learning strategy is analyzed based on the self-curiosity and
others’ long-term visitation values, and to accelerate learning
of diverged and important samples from a large buffer size,
prioritization using the moving average with time window
technique is introduced in the replay buffer. The acronyms
used in the paper are shown in Table 1. Finally, as a sum-
mary of the related works, we presented a comparison report
in Table 2.

III. PROPOSED TECHNIQUE
Based on the discussions in the previous section, we propose
a novel learning mechanism with high sample efficiency. The
proposed method contains two main modules. One is the
curiosity-based learning with intrinsic reward via manipulat-
ing agents’ policies relying on others’ behaviors. The other
is the KL divergence-based prioritized experience replay to
attain a better learning curve. The architecture of the proposed
method is presented in Figure 2.

A. NAÏVE CURIOSITY-BASED LEARNING IN MARL
We consider a multi-agent environment with decen-
tralized partially observable Markov Decision Processes
(Dec-PoMDP) allowing centralized training and decentral-
ized execution framework, which is given by a tuple (G, S,
A, P, r , γ , O, P0), where G = (1, 2, .., n) represents the
set of n agents, S = (S1, S2, . . . ., Sn) represents the set
of state, A = (A1,A2, . . . .,An) represents the action space
of the agent, r is the global reward, and γ ε[0, 1] is the
discount factor, O = (O1,O2, . . . .,On) represents the set
of finite observations, and P0 is the initial state distribution.
We assume n independent parametrized policies πθi where
θ = (θ1, θ2, . . . ., θn). At each timesteps, each agent. Then,
the stochastic process at state An selects an action ai ∈ A at
state s, forming a joint a ∈ A ≡ St is defined as χ (ot |st ) and
its transition function P(s′|s, a) : S× A× S→ [0, 1]. In the
ccc coo MARL environment, each agent i aims to maximize
its own total expected return J ext (θi) = Es,a[Rext ] where
Rext =

∑T
t=0 γ

t .rext . Therefore, the policy gradient with

respect to the parametrized policy parameter θi is defined as

∇θiJ
ext (θi) = Eπ [∇θi logπ (s, a, θi)A

ext (s, a)] (1)

where Aext (s, a) is the advantage function. In the
Dec-PoMDP environment, the state information available
to the learning agents is restricted, and training of multiple
agents at a time is more difficult. In this scenario, a greedy
action selection algorithm helps agents to discover promising
behaviors quickly. However, in MARL, multiple agents not
only interact with the environment, but also among them-
selves. The greedy action selection algorithm fails to discover
promising action space for MARL and thereby results in
insufficient exploration. We believe that coordinating agents’
policies in a MARL setting can accelerate the learning of
good policies and improve performance across several real-
time strategy applications.
In this work, we focus on handling the policy coordina-

tion technique through agents’ curiosities to perform prede-
fined tasks. Intuitively, coordinating multiple agents’ control
policies requires knowledge of each agent’s state transition
behavior, and to promote efficient coordination, we need to
observe the behaviors of the agents. In order to foster coor-
dination, we analyze long-term visitation counts of agents as
probability distributions of actions and measure the degree
of interdependence between two random distributions using
CMI regularization. In our proposed algorithm, the value of
the CMI acts as a strategy to manipulate agents’ policies
and thereby update the decision-making. Thus, the agent can
make smart decisions at each timestep and explore the useful
environment that results in high reward without overlapping
with each other.
Considering the above-mentioned learning framework,

in this method we consider the long-term visitation counts
explicitly in exploration to increase the possibility of finding
good moves. Thus, each agent can look up the long-term
visitation counts of others and will try to anticipate other
agents’ hiddenmotivations (‘‘curiosity’’) to perform the given
tasks.Moreover, to understand the value iteration propagation
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details of the past visitations, we use the moving average with
time window technique.

Suppose that, at time t , a target agent i with a decision-
making policy πi,t (. | si,t ) tries to estimate and decide an
action-value of a state by inferring other agents’ js current
decision-making policy πj,t (. |sj,t ) and the long-term visi-
tation value πj,t−(. | sj,t− ). Each agent under this learning
framework has control over its actions and can change their
strategy to foster efficient exploration. In this work, we con-
sider a neural network that has three inputs, namely, the tar-
get agent’s decision-making policy (self-curiosity to perform
given tasks), other agents’ current policies and past decision-
making policies (long-term visitation values), and outputs an
action-value estimate of the target agent. Upon introducing
this concept, a new reward function can be defined as

rnewi,t = rextt + δ.
∑

i,j∈[1,2,...,n],i6=j

× I
(
πi,t

(
.| si,t

)
;πj,t

(
.| sj,t

)
|πj,t−

(
.| sj,t−

))
(2)

where I
(
πi,t

(
.| si,t

)
;πj,t

(
.| sj,t

)
|πj,t−

(
.| sj,t−

))
is the CMI

between policies of agents i and j at state st conditioned
to policy of agent j at state si,t− . πi,t

(
.| si,t

)
and πj,t

(
.| sj,t

)
are the policies of agents i and j at time t, respectively, and
πj,t−

(
.| sj,t−

)
is the policy of agent j at time t−, and δ is

the weighting term which is always positive. Corresponding
discounted surrogate reward for agent i is defined as

Jnew (θi) = E
[∑T

t=0
γt .rnewi,t

]
(3)

Jnew (θi) = E
[∑T

t=0
γt .
(
rextt + δ.

∑
i,j∈[1,2,...,n],i6=j

× I
(
πi,t

(
.| si,t

)
;πj,t

(
.| sj,t

)
|πj,t−

(
.| sj,t−

)) )]
(4)

The system dynamics at time t is defined as

Pt = P
(
st+ | sj, aj

)
(5)

Thus, we compute the CMI between two agents i and j from
the perspective of agent i as

I
(
πi,t

(
.| si,t

)
;πj,t

(
.| sj,t

)
|πj,t−

(
.| sj,t−

))
= P

(
ai,t , aj,t | aj,t−

)
+ P(ai,t ) (6)

where

P
(
ai,t , aj,t | aj,t−

)
= E

P
(
ai,t ,aj,t | aj,t−

) [logQ (ai,t , aj,t | aj,t−)
P
(
ai,t
) ]

(7)

P
(
ai,t
)

= EP(ai,t)
[
KL

(
P
(
ai,t , aj,t | aj,t−

)
‖Q

(
ai,t , aj,t | aj,t−

))]
(8)

Eq. (6) signifies that the CMI between the target agent i’s
decision making policy and the influenced agent j’s decision
making policy w.r.t the influenced agent j’s previous timestep

policy is derived as the sum of the joint probability function
of actions of agents i and j and marginal probability function
of the target agent i. The joint probability function, eq. (7),
is derived as the expected value of the logarithmic value
of the variational distribution of target agent i’s action and
the influenced agent j’s action w.r.t the influenced agent j’s
previous timestep action to the marginal probability function
of the agent i. The marginal probability distribution of a target
agent i is expressed as the expectation of the KL-divergence
between the joint probability distribution function and the
variational distribution function of actions of agents i and j
conditioned to the agent j’s previous timestep action.

Substituting eqs. (7) and (8) to (6), we get,

I
(
πi,t

(
.| si,t

)
;πj,t

(
.| sj,t

)
|πj,t−

(
.| sj,t−

))
= H

(
πi,t

(
.| si,t

))
+ logQ

(
ai,t , aj,t | aj,t−

)
(9)

where H
(
πi,t

(
.| si,t

))
is the policy entropy term of agent i,

and Q
(
ai,t , aj,t | aj,t−

)
is the variational distribution to

approximate the conditional distribution P
(
ai,t , aj,t | aj,t−

)
.

Eq. (9) signifies that CMI between the between the target
agent i’s decision making policy and influenced agent j’s
decision making policy conditioned to influenced agent j’s
previous timestep policy is derived as the sum of marginal
entropy of target agent i’s decision making policy and loga-
rithmic of variational distribution of target agent i’s action and
influenced agent j’s action conditioned to influenced agent j’s
previous timestep action. We finally have the resulting policy
gradient update of agent i is calculated as

Jnew (θi) = E
[
Rnewi

]
(10)

Jnew (θi) = E
[∑T

t=0
γt .
(
rextt + δ.

∑
i,j∈[1,2,...,n],i6=j

× I
(
πi,t

(
.| si,t

)
;πj,t

(
.| sj,t

)
|πj,t−

(
.| sj,t−

)) )]
(11)

Jnew (θi) = E
[∑T

t=0
γt .
(
rextt + δ.

∑
i,j∈[1,2,...,n],i6=j

×H
(
πi,t

(
.| si,t

))
+ logQ

(
ai,t , aj,t | aj,t−

) )]
(12)

For optimization, a Bi-level optimization technique is con-
sidered, which is one of the promising techniques that allows
for efficient search of a large number of policy parameters.
A Bi-level optimization problem consists of two levels:
upper-level and lower-level optimization problems. Each
optimization level has its own target functions and con-
straints. The goal of our strategy is to find the extrinsic
policy parameters that maximize the surrogate reward func-
tion, whereas the upper-level optimization problem’s goal is
to find the curiosity-based intrinsic reward parameters that
maximize the predicted extrinsic reward function. The upper-
level optimization has full access to the lower-level optimiza-
tion. Then, we formulate a bi-level optimization problem as
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illustrated below.

max
θ,ζ

J ext (ζ ) (13)

such that θi = argmax Jnewi (θ, ζ ), ∀i ∈ [1, 2, . . . ,n]

(14)

where ζ is the curiosity-based intrinsic reward parameter and
θ is the policy parameter. It should be noted that the benefit of
introducing bi-level optimization problem in our approach is
that, by learning an individual distinct curiosity-based intrin-
sic reward and also anticipating the curiosity-based intrinsic
rewards of others per timestep, we can diversely stimulate the
decision-making and improve overall system performance.
The pseudo code of module one is shown in Algorithm 1.

B. KL DIVERGENCE-BASED PRIORITIZED
EXPERIENCE REPLAY
In general, a system is said to be sample efficient if it can
select the most significant experience from many samples
of experiences in the replay buffer and improve its control
policy. Prioritized experience replays (PER) is a technique
that boosts the training efficiency by giving weight to the
samples so that significant ones are selected more frequently
for training. In this paper, we consider a KL-divergence based
prioritization technique to characterize which transitions are
more beneficial to the learning system and their effectiveness
on MARL applications. The KL- divergence is a technique
to define the divergence of one probability distribution from
another and, thereby, measures how similar the samples that
the target policy may have been. The reason for combining
the curiosity-based algorithm with the prioritization is that
we want to combine information theory and sample distri-
bution algorithms in Multi-Agent Reinforcement Learning to
address the learning speed problem in a large-action space
scenario.

Specifically, at each time step, experience, in the form of a
tuple consisting of state input, action taken, received reward,
and next state, is stored in the replay. Then, assume a replay
buffer memory, B = (E1,E2,E3, . . . ,EN ) having the most
recent sample transitions accumulated by the control policy.
To compute the priority, we consider a time-window and
calculate the KL-divergence between transitions. Then, the
moving average is applied to make it tractable for time series
analysis.We observe a diverse range of transitions after calcu-
lating the divergence values in the replay buffer. It should be
noted that in the traditional TD-error-based prioritization, the
authors choose the samples with the highest TD-error. On the
contrary, we select a range of samples through the moving
average with the time window.

Finally, we sample the transitions according to the val-
ues of the KL-divergence such that the high-value transition
acquires higher priority than others and we sample more
frequently from the replay buffer at a fixed interval of time for
use in learning. For example, we define a window size of 10.
With this window size, wemoved the series of transitionswith

Algorithm 1 Curiosity-Based Learning in MARL
Step 1: Initialize θ , ζ , α and γ
Step 2: for t = 0 to T do
Step 3: Observe long-term visitation count of other agents
Step 4: Compute conditional mutual information (I )

between distributions i and j as follows:

I
(
π i,t

(
.| si,t

)
;π j,t

(
.| sj,t

)
|π j,t−

(
.| sj,t−

))
Step 5: Compute proposed reward, such that

rnewi,t = rextt + δ.
∑

i,j∈[1,2,...,n],i6=j

× I
(
π i,t

(
.| si,t

)
;π j,t

(
.| sj,t

)
|π j,t−

(
.| sj,t−

))
where δ is the scaling factor used to weight the
influence, such that 0 ≤ δ ≤ 1.

Step 6: Compute policy gradient as:

Jnew (θ i) = E
[∑T

t=0
γ t .r

new
i,t

]
Step 7: Initialize replay buffer B with the most recent

transitions
Step 8: Considering the system dynamic, compute the new

policy gradient function as:

Jnew (θ i)

= E
[∑T

t=0
γ t .

(
rextt + δ

·

∑
i,j∈[1,2,...,n],i6=j

H
(
π i,t

(
.| si,t

))
+ logQ

(
ai,t , aj,t | aj,t−

)) ]
where H

(
π i,t

(
.| si,t

))
is the policy entropy and

Q
(
ai,t , aj,t | aj.t−

)
is the variational distribution

to approximate the conditional distribution
P
(
ai,t , aj,t | aj,t−

)
.

Step 9: Update policy parameter (θ) and curiosity param-
eter (ζ) with learning rate (α).

Step 10: Update the target networks
Step 11: end for

some values of probability backward by one timestep. This is
because we desire to calculate the divergence between our
observations as well as the others in a moving average to pre-
dict the next transition probability. Thus, the KL-divergence
between probability distributions of agents i and j is
defined as

KL
(
Pπi,t |Pπj,t

)
=

∑
s0,a0,...,sT ,aT

Pπi,t (s0, a0, . . . , sT , aT )

· log

(
Pπi,t (s0, a0, . . . , sT , aT )

Pπj,t (s0, a0, . . . , sT , aT )

)
(15)
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Therefore, the state-action distributions for the agents i
and j are

Pπi,t (st , at) = Pπi,0 (st) .πi,t (at | st) (16)

and

Pπj,t (st , at) = Pπj,0 (st) .πj,t (at | st) (17)

respectively, where Pπi,0 (st) and Pπj,0 (st) are the initial state
distribution of agents i and j, respectively. Therefore, the final
expression of the KL-divergence is expressed as:

KL
(
Pπi,t |Pπj,t

)
=

∑J

j=0
EPπi,0

[
KL

(
πi,t |πj,t

)]
(18)

Now, we can estimate the value of the KL-divergence
to determine the priorities. That means our experiences
in the replay buffer are updated to

(
si,t , ai,t , rnewi,t , si,t+ ,

KL(Pπi,t |Pπj,t ) + µ
)
. Thus, we sample the experiences with

high value of the KL-divergence more frequently than others.
However, the KL-divergence based prioritization still have
the bias issue. To overcome this issue, we consider impor-
tance samplingweights of each transition as illustrated below:

ψu =

(
1
N
.
1
Pu

)β
(19)

such that

Pu =
KLu + µ∑
v KLv + µ

, µ > 0, (u, v) ∈ Z · u 6= v (20)

where Z is the number of sample transitions, µ denotes prob-
ability of selection, and β is the parameter that controls how
much prioritization to apply during sampling. The pseudo-
code for the proposed prioritization technique is presented
in Algorithm 2. The reason for combining our curiosity-
based algorithmwith prioritization is that wewant to combine
information theory and the sample distribution algorithm in
Multi-Agent Reinforcement Learning to address the learning
speed problem in a large-action space scenario.

IV. PERFORMANCE RESULTS AND DIISCUSSION
In this section, we present the simulation environment and
experimental results to analyze the performance of the pro-
posed technique in the SC2 micromanagement simulation
environment.

A. SIMULATION ENVIRONMENT
For the following experiments, we implemented the proposed
scheme by considering a fully connected layer with 2-hidden
layers, each of 128 hidden units. We used the ADAM opti-
mizer with a learning rate of 0.0005 and the ReLU nonlinear-
ity activation function for hidden layers.

The training method starts with the gathering of episodic
data, followed by training the critic for each timestep and
training the actor. We employed a target network that updates
parameters every 100 training steps for the feed-forward
centralized critics. All maps are considered for batch mode
training with a batch size of 32 and a gamma of 0.9.

Algorithm 2 KL-Divergence Based PER
Step 1: Initialize replay buffer B with the most recent tran-

sitions
Step 2: Inside the replay buffer, consider a time-window

and compute the KL-divergence value between
transition tuples. The, apply moving average tech-
nique to tune the batch size

Step 3: Observe Si,t+ , ai,t+
Step 4: Store transition

(
Si,t , ai,t , rnewi,t ,Si,t+

)
in the replay

buffer
Step 5: Calculate the priority of transition u

pmax = max
u∈Z

(
KL

(
Pπ i,t |Pπ j,t

)
+ µ

)
, µ > 0

where u ∈ Z, Z is the number of transition tuples,
µ is the small positive constant guaranteeing that
the transition has some non-zero probability of
being selected.

Step 6: Calculate the probability of selecting transition u
from the replay buffer as

Pu =
KLu + µ∑
v KLv + µ

, µ > 0, (u, v) ∈ Z · u 6= v

Step 7: Calculate the weights function using importance
sampling technique such that,

ψu =

(
1
N
.
1
Pu

)β
where β is the parameter that controls how much
prioritization to apply and 0 < β < 1

Step 8: Update the replay buffer with priority-based transi-
tion as presented below:(
si,t , ai,t , rnewi,t ,Si,t+ ,KL

(
Pπ i,t |Pπ j,t

)
+ µ

)
Step 9: Sample a trajectory that has highest value of the

KL-divergence value with the parametrized poli-
cies

{
πθ1 ,πθ2 , ..,πθn

}
Step 10: Update weight factor ψu
Step 11: Update policy parameter (θ) and curiosity param-

eter (ζ) with learning rate (α).
Step 12: Update the target networks

TABLE 3. SMAC Scenarios [16].

We monitored 2 million timesteps for the simple scenarios,
5 million timesteps for the hard scenarios, and 10 million
timesteps for the super-hard scenarios during training and
testing.
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TABLE 4. Parameters and Values used in the experiment.

TABLE 5. Agents properties in StarCraft II.

For performance analysis, we consider PyMARL learning
framework build on PyTorch and compare the results with
LIIR, OW_QMIX, and CuPG_TD_PCr (Curiosity-based pol-
icy gradient with a temporal difference (TD)-error based
prioritization). The consideredMARL benchmark algorithms
are listed as:

1. CuPG, Naïve curiosity-based Learning in Multi-Agent
Reinforcement Learning: In this algorithm, each agent
can predict the action space of others by observing
previous behaviors.

2. LIIR, Learning Individual Intrinsic Reward in Multi-
Agent Reinforcement Learning [3]: In this algorithm,
each agent has its own observation and allows sharing
of the same policy among the agents.

3. OW_QMIX, Optimistically Weighted Monotonic Value
Function Factorization for Deep Multi-Agent Rein-
forcement Learning [17]: This algorithm used exact
weighting of the joint actions of the behavior policy
without any approximations.

Our proposed algorithms are summarized as:

I. CuPG_KL_PCr, Curiosity-based Learning in Multi-
Agent Reinforcement Learning with the KL Diver-
gence based Prioritization: This algorithm samples the
prioritized experiences from the replay buffer.

II. CuPG_TD_PCr, Curiosity-based Learning in Multi-
Agent Reinforcement Learning with TD-error based
Prioritization.

The simulation scenarios, hyperparameters with their val-
ues, and the agents’ properties used in the experiments are
listed in Table 3, 4, and 5 respectively.

B. SIMULATION RESULTS
In the experiments, the techniques described in the previous
sub-section and the proposed scheme are evaluated five times

under each scenario. To clearly capture the advantages of the
proposed algorithm and the usefulness of the probability dis-
tribution calculation using the moving average time-window
concept, we compared two different methods of prioritization
of experiences in the reply buffer. We then conducted exten-
sive simulations under scenarios with three difficulty levels
to demonstrate the effectiveness of the proposed scheme. The
results are presented in the following section.

1) EASY SCENARIO
In TABLE 2, 3m, 2s3z, and 3s5z are considered as the easy
level category, where the number and the type of ally units
and enemy units are the same. This feature provides an eas-
ier challenge for learning agents. For training and testing,
we restricted episode lengths for 3m, 2s3z and 3s5z maps
to 60, 120 and 150 timesteps, respectively. The results of all
algorithms on the three easy maps are shown in Figure 3 and
their corresponding summarized results of win rates at differ-
ent timesteps are provided in Table 6.

2) HARD SCENARIO
In hard scenarios, the types and number of units involved in
the experiment can be asymmetric. Under these scenarios,
learning focus fire strategy is essential in winning the game.
Focus fire is a strategy often used by programmers where
the ally units crossfire one selected enemy by one to quickly
eliminate enemy units sequentially. These scenarios require
a promising level of coordination between learning agents.
Initially, due to hard game scenario, the proposed approaches
show a little delay in convergence to optimal solution. As the
timestep increases, test win rates increased. Overall, the test
win rate results show that our proposed approaches are supe-
rior to that of LIIR and OW_QMIX. Specifically, at 2e6
timestep, our proposed algorithm attains 48%- and 100%-win
rates as compare with 30% and 88% for OWQMIX and 12%
and 33% for LIIR, respectively.

The test win performance for MMM is presented in
Figure 4 and corresponding summarized results of win rates
at different timesteps are provided in Table 7.

3) SUPER-HARD SCENARIO
In Figures 5, we present the individual test win rates for
27m_vs_30m, MMM2 and 3s5z_vs_3s6z scenarios. In 27m
vs 30m, the number of the enemy units are more than that of
the ally units. Thus, the ally units need a considerable policy
coordination to win the game against the outnumbered enemy
units. For MMM2, at less timestep, it fails to learn the good
policy and results in insufficient exploration. As the timestep
increases, MMM2 catch up the learning and converges to
optimal solution. Overall, these scenarios are very hard to
solve and longer training periods are required.

In above experiments, we observed that the proposed
approaches solved the SMAC scenarios much faster than
benchmark through efficient learning in MARL. Different
values of win rate for all algorithms are listed in Table 8.
Overall, the proposed algorithm achieves highest test-win
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FIGURE 3. Test win rates for easy scenarios.

TABLE 6. Test Win rates for easy scenarios at different timesteps.

TABLE 7. Test win rates for hard scenarios at different timesteps.

rates for all the game scenarios as compared with the
existing method and faster training converges on the desirable
decision-making policy.

Note that the proposed exploration reward does not require
extra time through the experiments except a small time at
the start of the experiments. After each individual agent
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FIGURE 4. Test win rates for hard scenarios.

FIGURE 5. Test win rates for super-hard scenarios.

computes the conditional mutual information between the
target agent’s decision-making policy and influenced agents’
decision-making policy conditioning the influenced agents’

previous timestep decision making policy, the agent will
make faster action selection and training converges faster
as shown in simulation results (Figs. 4 and 5). We analyzed
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TABLE 8. Test win rates for super-hard scenarios at different timesteps.

the time consumption of each of the existing methods and
verified that our proposed algorithm requires reasonable
time consumption compared with the existing state-of-the-
art methods. From the simulation results, it is concluded that
the proposed algorithm effectively improves the test-win rates
and converges faster.

V. CONCLUSION
In this paper, we proposed a novel learning technique called
‘‘curiosity-based learning’’ which manipulates the agent’s
policies by observing others’ past behaviors. We formu-
late the prioritization model to maximize the sample effi-
ciency through frequent sampling of transitions that have
a high value of the KL-divergence and compare the per-
formance with several multi-agent benchmark algorithms.
Overall, experimental results show that our proposed tech-
nique achieved a viable optimal solution with high test win
rates for all SMAC game scenarios. The limitation of the
proposed work is that it assists execution of only a particular
task domain at a time.

Motivated by these criteria, a promising future direction
might be to execute multiple task domains simultaneously.
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