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Abstract: Although various deep learning techniques have been proposed to diagnose industrial
faults, it is still challenging to obtain sufficient training samples to build the fault diagnosis model
in practice. This paper presents a framework that combines wavelet transformation and transfer
learning (TL) for fault diagnosis with limited target samples. The wavelet transform converts a
time-series sample to a time-frequency representative image based on the extracted hidden time
and frequency features of various faults. On the other hand, the TL technique leverages the existing
neural networks, called GoogLeNet, which were trained using a sufficient source data set for different
target tasks. Since the data distributions between the source and the target domains are considerably
different in industrial practice, we partially retrain the pre-trained model of the source domain using
intermediate samples that are conceptually related to the target domain. We use a reciprocating
pump model to generate various combinations of faults with different severity levels and evaluate the
effectiveness of the proposed method. The results show that the proposed method provides higher
diagnostic accuracy than the support vector machine and the convolutional neural network under
wide variations in the training data size and the fault severity. In particular, we show that the severity
level of the fault condition heavily affects the diagnostic performance.

Keywords: transfer learning; wavelet; limited data; fault detection; fault diagnosis; machinery fault

1. Introduction

Fault diagnosis is a crucial component of modern industrial systems since early and
accurate fault diagnosis not only ensures operational reliability and safety but also reduces
maintenance costs [1–3]. Recently, the research on data-driven fault diagnostics has grown
and developed considerably, thanks to the vast amount of data obtained from the Industrial
Internet of Things [4,5]. In particular, the deep learning-based diagnosis technique is one
of the most promising and powerful tools for detecting and diagnosing various industrial
faults since it automatically learns the hidden features from historical data [4,6].

However, training a deep learning-based fault diagnosis model from scratch is compu-
tationally expensive and requires substantial amounts of training data to have a sufficient
generalization capacity [7–9]. In most practical industrial scenarios, the training data are
strictly limited, and the generation of realistic training samples is not always feasible, since
some critical components of the machines are not allowed to operate even with minor
faults. Furthermore, collecting large labeled data is a time-consuming and labor-intensive
procedure [10].

On the other hand, transfer learning (TL) is a fundamental deep learning technique
that allows reuse of the trained model, learned from the source domain, with different
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target domains [7]. Specfically, TL can provide a good performance by overcoming the
limited training data of the fault diagnosis [11]. However, leveraging the existing model,
trained on large source data to the target domain, is still challenging since the source and
target domains are conceptually different tasks in most industrial scenarios. The data
distribution of the industrial target domain can be significantly different from one of the
well-known existing image classifications of the source domain, such as ImageNet.

This paper combines wavelet transform and TL to diagnose the industrial faults using
limited target samples. The main contributions of the paper are as follows:

• We adopt a pre-trained model, GoogLeNet, to classify industrial faults where the
wavelet transformation converts one-dimensional time-series data into two-dimensional
images of the time and frequency domains as the input. To deal with the constraints
of the limited target samples, we first partially retrain the pre-trained model using
the intermediate data that are conceptually related to the target domain, but less
expensive, to collect the samples. We then retrain this relatively small portion of the
pre-trained intermediate model using the target data.

• We extensively evaluate the effectiveness of the proposed method and compare it with
the state of the art. We use a Simulink model of a triplex reciprocating pump with
different fault combinations and severity levels. The proposed method improves the
generalization capability to classify the fault types while reducing the dependency on
the training data of the source domain. In particular, we show the critical impact of
the severity level on the fault classification accuracy.

The remainder of the paper is organized as follows. Section 2 discusses the related
works. Section 3 details the proposed method combining wavelet transform and TL.
Section 4 presents the experimental data set and the state-of-the-art methods for a compar-
ative analysis. Section 5 evaluates the performance of the proposed method through an
extensive set of experiments. Finally, Section 6 summarizes the overall contributions and
discusses the future direction of the research.

2. Related Works

Due to the significant advantage of automatic feature extraction, various deep learning
models, such as auto-encoder [10], the Recurrent Neural Network (RNN) [12], and the
Convolutional Neural Network (CNN) [13,14], have been investigated for fault detection
and diagnosis problems. Janssens et al. [13] adopted a CNN model to automatically
extract features and enable classification of the bearing fault. However, various operating
conditions of industrial environments seriously degrade the effectiveness of the deep
learning-based fault detection and diagnosis method [1,3]. Zhang et al. [14] integrated a
CNN model with training interference and varying kernel dropout using the raw time-series
signal as the input. The data augmentation further improves the classification accuracy
of the extended CNN model under various operating conditions. Azamfar et al. [15]
developed a two-dimensional CNN model, which uses the frequency spectrum obtained
from multiple sensors as the input for the bearing fault diagnosis.

Most deep learning models need a large amount of training data in order to train [7,8].
However, faulty industrial data are costly to collect because crucial components or equip-
ment in manufacturing systems are not permitted to operate in faulty states. Further,
the distribution of sensor measurements, even for the same equipment, varies depend-
ing on the operating conditions. Moreover, conventional augmentation methods make
generating realistic training samples difficult due to the complex non-linear operations of
industrial machines [16].

As one of the most promising techniques, TL leverages the rich capability of the source
domain to facilitate the industrial target model using the fine-tuning or adaptation for
the fault detection and diagnosis problem [17]. Xie et al. [9] proposed a fusion method
for bearing fault classification without having a strong knowledge of feature engineering
or the large training samples of deep learning models. The XGBoost classifier is trained
with two types of features, namely, predetermined empirical features and adaptive features
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provided by LiftingNet. LiftingNet adaptively extracts the hidden features for the target
task that depend on noise and working conditions. To enhance the sparsity and the adaptive
feature’s learning of limited data, Li et al. [10] adopted the parameter TF to construct their
model of the multiple stacked non-negativity constraint sparse autoencoders for the rolling
bearing fault diagnosis. Zhang et al. [18] developed a few-shot learning method in which
the pre-trained Siamese neural network is extended with wide first-layer kernels to conduct
the rolling bearing fault diagnosis. Sauf et al. [19] proposed a sparse autoencoder-based
fault diagnosis method in which the particle swarm optimization method provides the
optimal hyperparameters of the architecture. Kurtogram images are used to train the
proposed model to implement fault diagnosis.

However, the TL model may only provide a low prediction accuracy of the target
domain due to the significant domain discrepancy between the source and target do-
mains in practical fault diagnosis scenarios. In our work, we introduce the intermediate
domain, which is conceptually similar to the target domain, to partially retrain the pre-
trained network model. Moreover, the wavelet transform provides the frequency spectrum
characteristics of the time-varying measurements. Further, we extensively evaluate the
effectiveness of the proposed method using various fault combinations and severity levels
of the complex reciprocating pump model, while most existing studies use relatively simple
bearing faults.

3. Wavelet-Based Deep Transfer Learning

This section presents the framework based on the wavelet transform and the TL model.

3.1. Overall Framework

This section proposes a wavelet-based deep TL method to address the fault diagnosis
problem using limited target samples. Figure 1 presents the proposed framework consisting
of the pre-trained GoogLeNet, which uses the source data, and the partial retraining
of the same pre-trained model, which uses the intermediate data and the target data.
The continuous wavelet transform (CWT) constructs the time and frequency characteristics
of the time-series signal and generates the image of the intermediate and target data.

Time-series data

Intermediate domain

Targe domain

Retraining some layers of the pre-trained GoogLeNet
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Class prediction of test data set
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Figure 1. Proposed framework of fault diagnosis using limited target samples.



Appl. Sci. 2022, 12, 7450 4 of 14

The major components of the proposed framework are as follows:

• Pre-trained model: We use the GoogLeNet trained on the ImageNet data set to
classify 1000 categories of the typical images [20]. GoogLeNet is a 22-layer CNN,
a variant of the inception network developed at Google for image classification and
object detection.

• Training on the intermediate domain: The CWT converts the time-series signals of
the intermediate domain to the wavelet images capturing the time and frequency
characteristics. The intermediate network has nearly the same architecture as the
pre-trained model of the source domain. Some subsequent parameters of the network
are updated using the intermediate samples, while we reduce the amount of learning
parameters to avoid overfitting by fixing most of the parameters of the preceding
layers. Once the network is trained, it is used as the general fault diagnosis model to
input the wavelet images.

• Training on the target domain: Similarly, CWT converts the time-series signals of the
target domain to the wavelet images in terms of the time and frequency domains.
The limited wavelet images of the target domain are passed to the intermediate
network to fine-tune a few subsequent layers of the network for the fault diagnosis of
the target domain.

• Fault diagnosis stage: The target network is eventually utilized to classify various
fault types based on the extracted feature information of the wavelet images.

3.2. Wavelet Transformation

Various faults deteriorate the power spectrum characteristic of the signal in the tempo-
ral period rather than the stationary behavior [21]. Thus, it is necessary to jointly investigate
the signal characteristics of the time and frequency domains.

The CWT separates the signal into several frequency components, and each component
is then evaluated by the appropriate scale [22,23]. It efficiently analyzes the abrupt transient
behavior of industrial signals with rapidly changing frequencies over the slowly varying
behavior [24]. Similar to the Fourier transform, the CWT essentially measures the similarity
between a signal s(t) and a basis function called a wavelet, ψ(t) [23]. By integrating the
scaling parameter a and the translating parameter b, a continuous wavelet function ψa,b(t)
is obtained

ψa,b(t) =
1√
|a|

ψ

(
t− b

a

)
. (1)

The CWT is basically defined as the inner product between the signal s(t) and the
wavelet function ψa,b(t), namely,

C(a, b, s(t), ψ(t)) =
∫ +∞

−∞
s(t)ψ∗a,b(t)dt = 〈s(t), ψa,b(t)〉 (2)

where ψ∗a,b(t) is the complex conjugate of ψa,b(t), and 〈·, ·〉 is the inner product [23]. Each co-
efficient is multiplied by the correctly scaled and shifted wavelet to produce the constituent
wavelets of the signal.

By varying the values of the scales a and the positions b, we obtain the CWT coefficients
as a function of two variables from the time-series signals with a size of N × N, as shown
in Figure 1. The abrupt transitions are separable from smoother signal features since these
result in large absolute values of the wavelet coefficients.

Finding the optimal size of the image depends upon the capacity of the original
signal and the computational complexity. While the computational complexity is generally
proportional to N, decreasing the value of N incurs a significant loss of the features. In this
paper, we set N = 64 and scale it to 224 × 224 as the input image for the pre-trained
GoogLeNet [20].
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3.3. Deep Transfer Learning

In Figure 1, TL is used to classify the wavelet image obtained by CWT for which
only limited target samples are available for the fault diagnosis. We denote the large-scale
labeled fault data of the source domain as Ds = {(xs

k, ys
k)}

Ns
k=1 in which xs

k ∈ Xs and ys
k ∈ Ys

are the source sample within a specific feature space Xs and the corresponding label of
the label space Ys, respectively. On the other hand, the target domain contains a small,
labeled sample set Dt = {(xt

k, yt
k)}

Nt
k=1 in which xt

k ∈ Xt and yt
k ∈ Yt are the target sample

and the corresponding label, respectively. For instance, we consider the ImageNet data as
the source domain and the wavelet images of the faulty data as the target domain.
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Figure 2. GoogLeNet architecture. Conv and FC denote the convolutional layer and the fully-
connected layer while MaxPool and AveragePool are the max pooling layer and average pooling
layer, respectively; (a× b) means the filter size of the convolutional layer or the pooling size of the
pooling layer, respectively. We add the dropout layer after the last average pooling layer.

Due to the domain discrepancy, the probability distribution of the source domain
Ps(Xs) and that of the target domain Pt(Xt) are considerably different, Ps(Xs) 6= Pt(Xt).
Since the number of target data Nt is strictly limited, it does not capture the essential
features of various fault types. Moreover, the label spaces of the machine health conditions
are considerably different from the general image detection and recognition of the source
domain. Thus, the source network model requires sophisticated tuning procedures to apply
to the target domain.

On the other hand, some data sets, such as bearing faults, are publicly available even
though they may not be directly related to the target domain [25]. Moreover, we could
simulate various fault scenarios of industrial machines to collect the measurements [1].
We define this data, relevant to the target domain, as the intermediate domain. We de-
note the intermediate data as Di = {(xi

k, yi
k)}

Ni
k=1 where xi

k ∈ Xi and yi
k ∈ Yi are the

intermediate sample and the corresponding label, respectively. Considering the domain
discrepancy, the probability distribution of the intermediate domain Pi(Xi) is assumed to
be closer to that of the target distribution Pt(Xt) than that of the source distribution Ps(Xs),
M(Ps(Xs), Pt(Xt)) ≤ M(Pi(Xi), Pt(Xt)) where M denotes the similarity between probabil-
ity distributions, such as the Bhattacharyya distance [26]. The number of the intermediate
data is assumed to be greater than that of the target data, Nt ≤ Ni.

In Figure 1, the pre-trained GoogLeNet is partially retrained using the new set of
wavelet images of the intermediate domain to obtain the intermediate network model.
The earlier layers extract the common features of images, such as blobs, edges, and colors,
while the later layers concentrate on more explicit features to classify data sets. Thus, the pa-
rameters of the few later layers of the network are only updated using the intermediate
samples as the training data set. Moreover, we set the learning rates of several initial layers
of the pre-trained network model to zero. By doing this, the learning speed improves, since
the gradients of the fixed layers do not need to be computed. In GoogLeNet in Figure 2, we
freeze the first 14 layers, including the inception (4c), while we retrain the rest of the layers
from the inception (4d) module. To prevent overfitting, we add the dropout layer after the
last average pooling layer of the network. The dropout layer randomly assigns the input
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component to zero with a certain probability. The last fully connected layer is customized
to the intermediate domain.

The network parameters of the intermediate model are then transferred to the target
domain. The wavelet images of the target domain are used to train the network layers.
We use almost the same architecture as that of the intermediate network, except for the
last classification layer and the number of fixed layers. The number of filters of the last
fully connected layer equals the size of the classes of the target domain. Furthermore,
fixing earlier layers prevents overfitting due to the strictly limited target samples. Thus,
we increase the number of fixed layers to the first 17 layers, including the inception (4e)
module. In the training process, we set the size of the batch sample to 1280 and the
number of epochs to 3000. We use the Adam optimizer [27], the first-order gradient-based
optimization algorithm of the stochastic objective functions, based on adaptive estimates of
the lower-order moments, with a learning rate of 0.001. The model training and testing are
performed on the computer with the Intel Xeon Platinum 8270 processor and the Nvidia
RTX A6000 GPU.

4. Evaluation Setup

This section details the experimental data sets and the state-of-the-art methods of fault
diagnosis for the comparative analysis.

4.1. Fault Data

We consider the sufficient samples of the bearing fault data as the intermediate domain,
and the limited samples of the pump model are used as the target domain. We use the
triplex reciprocating pump model of the Simulink since it allows us to run different fault
combinations and severity levels with detailed working conditions [28]. We refer to the
detailed description of the bearing fault data of the intermediate domain in [25].

This section describes the experimental data generated using the reciprocating pump
model to evaluate the effectiveness and feasibility of the proposed method under limited
target data [28]. The triplex reciprocating pump consists of the pump housing, crank,
and plungers. The pump model is configured to generate three common types of faults,
namely, cylinder leaks, blocked inlet, and increased bearing friction. Thus, the number of
possible fault types is eight, including one healthy state without any faults, three of a single
fault, three combinations of two faults, and one with three simultaneous faults. Table 1
describes the details of these eight classes, labeled as f0, . . . , f7 of the target domain used in
this study. Due to the noise of the model, we obtain different simulation outputs even with
the same fault parameters. Each sample of the pump model comprises 1201 output flow
data values at the sampling rate of 1000 Hz.

Table 1. Description of 8 different classes of the triplex reciprocating pump model.

Label Classes Number of Samples Number of Samples
per Severity Level

f0 healthy state 3600 −
f1 cylinder leak 3600 400
f2 blocked inlet 3600 400
f3 cylinder leak and blocked inlet 3600 400
f4 bearing friction 3600 400
f5 cylinder leak and bearing friction 3600 400
f6 blocked inlet and bearing friction 3600 400
f7 cylinder leak and blocked inlet and bearing friction 3600 400

We consider different severity ranges of cylinder leaks 10−6 < sc ≤ 3.6× 10−6, blocked
inlet 0.53 ≤ sb < 0.8, and bearing friction 0 < s f ≤ 6× 10−4 based on the specifications of
the pump model. Each range of the fault types f1, . . . , f7 is divided into nine severity levels.
We set sc = 10−6, sb = 0.8, s f = 0 as the healthy state f0. We obtain 400 samples for the
given fault type and the severity level. Thus, the total number of samples per fault types
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f1, . . . , f7 is equal to 9× 400 where 9 corresponds to the number of severity levels of each
fault type. We also generate the equal number of samples as the healthy state f0.

The data sets are split into the ratio of r : 0.1 : 0.1 as training, validation, and testing
sets. We randomly shuffle and select the samples of each class to build each data set. We
vary the ratio of the training data set r = 0.1, . . . , 0.8 in order to evaluate the impact of the
size of the training data.

4.2. Comparison

As a comparison with the TL-based fault diagnosis method, we apply two common
classification models, SVM and CNN, for our fault diagnosis problems. We refer to our
approach as CNN–TL to distinguish the CNN model trained from scratch.

• SVM: A machine learning technique known as SVM relies on the structural risk
minimization problem [29]. It can perform well in a high-dimensional non-linear
problem with limited samples. Various signal processing techniques for the time and
frequency domains are adopted to manually extract the features of the signals. We
use various statistical metrics of the time domain analysis, including mean, standard
deviation, root mean square, kurtosis, maximum-to-minimum difference, and signal
median absolute deviation. Furthermore, the spectral analysis extracts useful features
for predicting faults, such as bearings, gears, and engines [21]. We consider the
cumulative powers in the low-frequency range of 10–20 Hz, mid-frequency range of
40–60 Hz, and high-frequency range above 100 Hz, as well as the frequency of the
peak magnitude and spectral kurtosis peak. Note that spectrum condition indicators of
various frequency ranges are based on the expected harmonics due to the specifications
of the triplex reciprocating pump model, as we will discuss in Section 5.

• CNN: Figure 3 depicts the structure and the configuration of the CNN, consisting
of 18 layers. The hidden layer mainly consists of the convolutional layer, the batch
normalization layer, the activation layer, the sub-sampling layer, and the dropout
layer. We adopt the rectified linear units (ReLUs) as an activation function to improve
the training time. The output of the convolutional layer is fed to the max pooling
of the sub-sampling layer. The softmax function is applied to the output of the last
fully connected layer and returns the distribution of eight class labels corresponding
to the fault types. The classification accuracy of the CNN considerably depends on
the configuration parameters, including input image size, activation function, filter
size, sampling method, and iteration number. The network parameter optimization
method is adopted to optimize the configuration parameters for the classification
accuracy [30].
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Figure 3. Designed CNN architecture trained from scratch: (c, a × b) means c filters with the size of a× b.

5. Performance Evaluation

In this section, we first analyze the characteristics of the signals of the triplex recip-
rocating pump model in the time and frequency domains. We then evaluate the fault
diagnosis performance of our proposed method.

5.1. Fault Data Analysis

Figure 4 depicts the output flow rate and the power spectrum of the healthy state f0
and three different types of a single fault, f1, f2, and f4, as shown in Table 1. The faults f1, f2,
and f4 correspond to the single fault type due to cylinder leak, blocked inlet, and increased
bearing friction, respectively. Note that the unit of the volumetric flow rate is the liters per
minute (lpm). We set the severity level l = 4 for all faults.
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Figure 4. Output flow rate and power spectrum of f0, f1, f2, f4.

In Figure 4a, the overall shapes of the output flow rates are similar between f0, f1, and
f2, while the bearing friction fault f4 heavily decreases the output flow rate. Thus, the time
domain analysis of the industrial signals is not enough to characterize each fault type.

Some of the effects of different fault types are more noticeable in the spectrum analysis
of the frequency domain, as shown in Figure 4b. The power spectrum includes several
resonant peaks. In particular, since the triplex pump model has three cylinders, it inherently
has peaks at 3× 15.8 Hz, or 47.4 Hz, as well as harmonics at multiples of 47.4 Hz where
15.8 Hz corresponds to the inverse of the pump motor speed, 950 rpm. The faults of f0, f1,
and f2 have three peaks at 15.8 Hz, 47.4 Hz, and 2× 47.4 Hz while f4 has three slightly
shifted peaks. The power spectrum value of f1 at 15.8 Hz is higher than those of f0 and f2.
Thus, it shows that the characteristics of both time and frequency domains are critical for
classifying the fault types. However, it is still not trivial to distinguish f0 and f2 even in the
power spectrum.

Next, we analyze how the severity level of the fault condition affects the signal in
both the time and frequency domains. Figure 5 presents the output flow rate and the
power spectrum of the healthy state f0 and the blocked inlet fault f2 with different severity
levels l = 2, 4, 6. We also report two output flow rates of the healthy state due to different
noise realizations.
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Figure 5. Output flow rate and power spectrum of f0 and f1 with different severity levels, l = 2, 4, 6.

In Figure 5a, two outputs of f0 and three outputs of f2 with different severity levels
are very similar in the time domain. On the other hand, Figure 5b shows that the high
severity level affects the characteristics of the power spectrum. The blocked inlet fault f2
with the severe condition l = 6 results in several peaks at a high frequency of greater than
70 Hz. Furthermore, it also increases the power by around 30 Hz. However, the minor
fault conditions with l = 2, 4 still have a power spectrum similar to that of the healthy state
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f0, making the fault diagnosis difficult. Note that the simulation parameter related to the
blocked inlet f2 with l = 2 is 0.74, closer to the threshold of the healthy state, which is 0.8.
Thus, we observe that the severity level could affect the fault classification performance
even with the same fault type.

To further illustrate the time and frequency characteristics of different faults, we show
the wavelet images of various fault types f0, . . . , f7 with a fixed severity level of l = 6 in
Figure 6. Remember that the CWT technique converts the time-series signals into time-
frequency images. We note that the wavelet of the same fault type could be different due to
the different realization of the noise.

Three horizontal narrow stripes of f0, f1, and f2 correspond to three peaks of the power
spectrum around 15.8 Hz, 47.4 Hz, and 2 × 47.4 Hz, which are comparable to Figure 4. We
also observe that the lower stripe of f1 around 15.8 Hz is relatively stronger than those of f0
and f2. Moreover, two horizontal stripes of f4 are slightly lower than those of f0, f1, and f2,
which are consistent with Figure 4. Thus, the wavelet efficiently captures the characteristics
of both the time and frequency domains.

Let us consider the wavelet images of f5, f6, and f7 where these faults are related to the
bearing friction fault f4, as described in Table 1. The combined fault between the blocked
inlet and bearing friction, f6, is hard to differentiate from the single bearing friction fault f4
due to its minor effect on the blocked inlet. However, the cylinder leak heavily affects the
overall wavelet images of f6 and f7. Thus, the effect of the fault combination is not always
obvious due to complex interactions between the different faults.

f0

f1

f2 f4 f6

f3 f5 f7

Figure 6. Wavelet images of different fault types, f0, . . . , f7.

5.2. Diagnosis Performance Analysis

Figure 7 shows the confusion matrices of three classification models, namely, SVM,
the CNN, and CNN–TL with r = 0.3. It summarizes the fault diagnosis results of each fault
type, including the healthy state f0 and faulty states { f1, . . . , f7}. We set the severity level
l ≥ 1 as the fault condition of each fault type. The longitudinal and transverse axes present
the true and predicted labels, respectively. The diagonal entries indicate the number of
correctly predicted fault types, while the off-diagonal entries are the number of incorrectly
predicted fault types. A normalized row value (resp. normalized column value) shows
the percentages of correctly and incorrectly classified observations for each true class (resp.
each predicted label). Overall, the classification accuracy of the CNN–TL is 0.96, which is
higher than 0.65 and 0.82 of SVM and the CNN, respectively.
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Figure 7. Confusion matrix of SVM (a), the CNN (b), and CNN–TL with various fault types,
f0, . . . , f7 (c).

One interesting observation is that the confusion matrix has the form of the tridiagonal
matrix, and the off-diagonal entries are not fully spread. It means most classification errors
tend to be more pairwise than independent random errors. Let us first consider the healthy
state f0 and the blocked inlet fault f2. In the confusion matrix, some faults between f0 and
f2 using SVM are incorrectly classified, while the corresponding errors are very low for the
CNN and CNN–TL. In Figure 4, we have shown that the healthy state f0 and the blocked
inlet fault f2 have similar characteristics in both the time and frequency domains. However,
both the CNN and CNN–TL models efficiently handle the classification between f0 and f2.

Now, we consider the pair of ( f1, f3) for which most errors of both f1 and f3 are isolated
from other fault types. SVM erroneously classifies the cylinder leak fault f1 to the combined
cylinder leak and blocked inlet fault f3 when the effect of the blocked inlet is not severe. We
also observe similar classification errors of f3 to f1 for the SVM model. Remember that we
observe similar wavelet images between f1 and f3 in terms of the positions and the number
of horizontal stripes in Figure 6. Both the CNN and CNN–TL reduce the classification
errors of f1 to f3, while the CNN model still has the low classification accuracy of f3 due to
the large number of classification errors of f1, similar to that of SVM. Thus, the classification
errors are asymmetric even in the same pair of ( f1, f3) for the CNN and CNN–TL.

One of the major classification errors is related to the bearing friction fault f4, namely,
f5, f6, and f7. These pairwise errors are separated from f0, . . . , f3 since the corresponding
part of the confusion matrix has the form of a block matrix. The two dominant pairs of
classification errors are ( f4, f6) and ( f5, f7). The cylinder leak fault makes a noticeable
difference between these two pairs, as shown in Figure 6. The classification errors in each
pair of ( f4, f6) and ( f5, f7) considerably depend on the severity level of the blocked inlet.
The CNN–TL still performs better than other models for these pairs. The average accuracy
related to f4 of SVM, the CNN, and CNN–TL are 0.54, 0.81, and 0.97, respectively.

Next, we investigate the performances of the three classification models when limited
samples with different severity levels are adopted to train the network. Thus, the ratio of
training target samples varies from 0.1 to 0.8. Note that we fix the ratio of the validation
and testing data set as 0.1. Figure 8 shows the classification accuracy of SVM, the CNN,
and CNN–TL with different severity levels l ≥ 1, l = 1, 6 as a function of various ratios
of training data. The fault condition of l ≥ 1 is the general scenario in which each fault
type contains various samples with different severity levels, while l = 1, 6 shows how the
different severity levels affect the overall classification accuracy.
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Figure 8. Classification accuracy of SVM, the CNN, and CNN–TL with different ratios of the training
data, r = 0.1, . . . , 0.8.

Let us first consider the general fault condition of l ≥ 1 with the mixed severity levels
in each fault type. Overall, the classification accuracy of all models improves as the number
of training samples increases. While both the CNN and CNN–TL improve the classification
accuracy by adding more training data, the classification accuracy of SVM is low, around
0.68, even with the large training data. SVM’s performance is fundamentally limited due to
the manual feature extraction.

Both the CNN and CNN–TL have a good classification accuracy of greater than 0.9
when they have sufficient training samples: r ≥ 0.4 and r ≥ 0.2, respectively. However,
under the strictly limited training samples of r = 0.1, the corresponding classification
accuracy of the CNN is significantly degraded to 0.75, while that of the CNN–TL is still
around 0.87. The gap between the CNN and CNN–TL increases as the number of training
data decreases. The classification accuracy of CNN–TL gradually tends to increase with the
addition of more training data, while that of the CNN certainly improves for r ≥ 0.4. When
the training sample is insufficient to train the CNN model, it leads to poor performance
due to overfitting. The classification accuracy of the CNN–TL is 0.98 at r = 0.4, which is
close to that of the one using the maximum training data r = 0.8. We note that the average
training time of CNN–TL (resp. CNN) increases from 93.5 s to 512.2 s (resp. from 178.5 s to
1202.8 s) with the addition of more training data r = 0.1, . . . , 0.8.

Different severity levels, l = 1, 6, significantly affect the classification accuracy. For the
severe fault condition of l = 6, the classification accuracy of the three classification models
is greater than 0.93, even with the small training samples r = 0.1. However, when the
fault becomes minor, l = 1, the performances of the different models varies considerably
depending on the training data. CNN–TL still provides a classification accuracy of 0.71,
while the CNN has a low accuracy of 0.61 for the small training samples r = 0.1. The fault
diagnosis with a low severity level is crucial to achieving early fault detection since the
impact of the fault is naturally worse due to the fault’s propagation over time. This shows
the effectiveness of CNN–TL when the training data of the CNN is not enough to learn the
hidden features of the minor fault condition.

To investigate the impact of the severity level, Figure 9 presents the classification accu-
racy of the three classification models with different ratios of the training data r = 0.2, 0.6
as a function of the various severity levels l = 1, . . . , 9. Generally, the classification accuracy
of the three classification models improves as the fault condition becomes severe due to its
significant impacts on the time and frequency domains.
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Figure 9. Classification accuracy of SVM, the CNN, and CNN–TL with different severity labels,
l = 1, . . . , 9.

The three classification models perform well for the severe fault condition l ≥ 8, while
the accuracy trends are considerably different as the fault condition becomes minor. CNN–
TL provides better classification accuracy than the other two models for all of the considered
ranges of severity levels. Specifically, the worst fifth percentiles of the classification accuracy
of SVM, the CNN, and CNN–TL with r = 0.2 (resp. r = 0.6) are 0.55, 0.64, and 0.73 (rep.
0.58, 0.75, 0.91), respectively. Thus, CNN–TL shows a significant benefit when predicting
the fault type, even if the fault condition is minor.

Another interesting observation is that adding more training samples r = 0.6 does
not considerably improve the classification accuracy of SVM, while it still improves the
performance of the CNN. The classification accuracy of the CNN is closer to that of SVM
for l = 1 when the training data is small r = 0.2. On the other hand, CNN–TL achieves a
high accuracy of greater than 0.97 for l ≥ 3, even with the strictly limited samples r = 0.2.
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Figure 10. Required number of training samples of SVM, the CNN, and CNN–TL with different
severity labels, l = 1, . . . , 9.

One of the fundamental issues of the deep learning-based fault diagnosis is the heavy
demand of the training data to meet certain classification accuracy, since the amount of
training data substantially impact the classification performance. Figure 10 presents the
required number of training data with the different accuracy demands θ = 0.8, . . . , 0.95 of
the three classification models as a function of various severity levels l = 1, . . . , 9. Given
the severity level, we compute the required number of training data based on all of the
considered ratios of the training data. We set low accuracy demands for SVM since the
high classification accuracy θ ≤ 0.9 is not achievable even with sufficient training data.

Overall, the required training samples decrease as the fault condition becomes severe
for the three classification models. As a key insight, the proposed CNN–TL requires fewer
training samples, and therefore less training time, to meet a certain accuracy demand
compared to other models. In particular, the required number of training samples of the
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CNN is considerably large as the accuracy demand becomes more strict. CNN–TL requires
numerous training samples for the minor fault condition l = 1, while the CNN does not
even meet the accuracy demands of θ = 0.85, 0.95, even when using all available training
samples r = 0.8. SVM fails to meet the demands of θ = 0.8, 0.85 for l ≤ 2. CNN–TL
provides early fault detection at the cost of more training data. However, the number of
training samples is still less than that of the CNN model.

6. Conclusions

This paper combines the wavelet transform and TL to diagnose industrial faults
using limited target samples. The wavelet transform converts a one-dimensional time-
series sample into a two-dimensional time-frequency image by extracting the hidden time
and frequency domain characteristics of various faults as the input data to enhance the
feature learning ability. To deal with limited target samples and the domain discrepancy
between the source and target domains, we adopt the TL framework where we partially
retrain the pre-trained model of the source domain using the intermediate samples that
are conceptually similar to the target domain but less expensive to collect. We use a
Simulink model of a triplex reciprocating pump with various fault combinations and
severity levels to evaluate the performance of the proposed method. The proposed fault
diagnosis method precisely classifies different single fault types and achieves the highest
classification accuracy among SVM and the CNN. In particular, the classification accuracy
improves as the fault condition becomes severe due to its significant impacts on the time
and frequency domains. On the other hand, the results show that the combined faults
are challenging to detect due to the complex interactions between the different faults and
severity levels. Furthermore, the required number of training samples required to meet
the accuracy demands of the proposed CNN–TL is lower than those required for SVM and
the CNN.

We plan to develop the optimization technique to decide the retraining portion of
the TL model based on the similarity between the intermediate and target domains and
the number of available intermediate samples to improve the classification accuracy and
computational efficiency.
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