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ABSTRACT Moving Picture Experts Group (MPEG) is developing a standard for immersive video coding
called MPEG Immersive Video (MIV) and is releasing a reference software called Test Model for Immersive
Video (TMIV) in the standardization process. The TMIV efficiently compresses an immersive video
comprising a set of texture and depth views acquired using multiple cameras within a limited 3D viewing
space. Moreover, it affords a rendered view of an arbitrary view position and orientation with six degrees of
freedom. However, the existing depth quantization applied to depth atlas in TMIV is insufficient since the
reconstructed depth is crucial for achieving the required quality of a rendered viewport. To address this issue,
we propose a nonlinear depth quantization method that allocates more codewords to a depth subrange with a
higher occurrence of depth values located at edge regions, which are important in terms of the rendered view
quality.We implement the proposed nonlinear quantization based on piecewise linear scaling considering the
computational complexity and bitstream overhead. The experimental results show that the proposed method
yields PSNR-based Bjøntegaard delta rate gains of 5.2% and 4.9% in the end-to-end performance for High-
and Low-bitrate ranges, respectively. Moreover, subjective quality improvement is mainly observed at the
object boundaries of the rendered viewport. The proposed nonlinear quantization method has been adopted
into the TMIV as a candidate standard technology for the next MIV edition.

INDEX TERMS Depth quantization, immersive video coding, MPEG immersive video, piecewise linear
scaling, 6DoF video coding, versatile video coding.

I. INTRODUCTION
Recently, with increasing commercial interest in virtual real-
ity applications, 360-degree videos have become popular as
a new media type affording an immersive experience [1]–[4].
A 360-degree video, also called omnidirectional video,
affords three degrees of freedom (3DoF), allowing viewers
to view in all directions from a fixed viewing position.
Hence, 3DoF videos do not support motion parallax, where
the relative position of objects changes based on the user’s
location. Therefore, they do not provide complete immersion
as they do not respond to a viewer’s movements. Six
degrees of freedom (6DoF) videos are enhanced 3DoF
videos that introduce translational movements with rotations
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along three axes. They provide viewers with an enhanced
immersive visual experience with an interactive parallax
feature. In other words, 6DoF videos allow viewers to
look around in all directions in a viewing space based on
body and head movements. To support motion parallax, the
alterations of a view position in a viewing space require
the rendering of the virtual view at any intermediate point
selected by the viewer. Thus, depth-based rendering is
necessary for such immersive experiences. Therefore, a
6DoF video comprises dozens of videos and depths that are
simultaneously acquired frommultiple positions of a viewing
space [5]. Each source view is represented by a sequence of
depth and texture frames, as shown in Fig. 1, and with camera
parameters to enable three-dimensional reconstruction. These
multiple videos of a 6DoF video can be natural sequences
captured using a real camera array [6]–[9] or synthetic
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FIGURE 1. Examples of input texture and depth views with
correspond-ing viewpoints (Museum sequence). (a) View arrangement,
and (b) and (c) first frames of the input views 7 and 11, respectively.

sequences projected by a virtual camera array using computer
rendering [10]–[12].

Generally, a 6DoF video that comprises multiview plus
depth has a large volume to render high resolutions such as
4K or 8K. Furthermore, the depth information needs to be
highly accurate and consistent to achieve a synthesized virtual
view with sufficient fidelity. For example, an estimated noisy
depth map of natural sequences is significantly inferior to
a generated depth map of computer graphics, which makes
the synthesis of a virtual view with the required quality
difficult [7].

ISO/IEC Moving Picture Experts Group (MPEG) is
actively working on standardizing the ‘‘Coded Representa-
tion of Immersive Media,’’ called MPEG-I [13]. MPEG-I is
a project that was initiated at the 116th MPEG meeting in
October 2016 and comprises a set of standards including
the overall architecture, transmission format, audio/video
compression, and metadata for immersive media. The MPEG
Immersive Video (MIV), which is the 12th part of MPEG-I,
is designed with the capability to compress actual and virtual
views captured using multiple cameras with 6DoF within
a viewing space [14]. The MIV standardization reached
the Final Draft International Standard in July 2021 [15],
and further standardization to develop MIV edition 2 is
ongoing [16]. At eachMPEGmeeting, the reference software
codec called Test Model for Immersive Video (TMIV) has
been released integrating newly adopted tools [17].

The TMIV encoder primarily aims to generate one or
more texture and depth atlases by compositing the patches
extracted from the input views based on interview redundancy
removal. Then, texture and depth atlases are separately
encoded using a conventional video codec, such as High
Efficiency Video Coding [18] or Versatile Video Coding
(VVC) [19]. The TMIV encoder outputs the texture and
depth atlases with 10-bit representation and then encodes the
atlases using VVenC [20], which is an open-source VVC
encoder that inputs 10-bit videos, according to the common
test conditions (CTCs) of MIV [21].

In this depth atlas generation process, uniform quantization
is applied to convert the 16-bit representation of input source

depth values into 10-bit representation values for encoding
using VVC. However, the bit-depth scaling of a depth video
in TMIV is insufficient as depth is crucial for achieving the
required quality of a rendered viewport.

Numerous depth enhancement methods have been actively
studied [22]–[24]. However, these studies on pre-processing
in advance of video coding do not sufficiently consider
the compression efficiency, despite the considerable effect
of coding distortion on view synthesis [25]. Therefore,
increasing the coding efficiency of depth maps of 6DoF
videos is crucial for providing an immersive visual expe-
rience. Some studies proposed the reduction of the depth
information errors that may occur in the representation of
depth with a finite number of bits intended for better coding
efficiency [26], [27].

This paper presents a method of depth representation that
considers not only a precise expression of the depth value
but also the coding efficiency for the depth map. In other
words, we present a nonlinear quantization using piecewise
linear scaling (PLS) as a normative enhancement method of
depth representation in the depth atlas generation inside the
MIV standard, which considers the quality of the synthesis
and efficiency of the 6DoF video coding. The proposed
method aims to improve the end-to-end coding efficiency
for depth maps with the limited dynamic range by better
utilizing the range and is based on the methodology of Luma
Mapping with Chroma Scaling (LMCS) in VVC. LMCS
allocates more codewords to a luma range where subjective
distortion can easily occur in an input video [29]. The
proposed method affords a good trade-off between bit saving
and synthesized view quality depending on the depth map
reliability in the 6DoF video compression. That is, the depth
is accurately represented to increase the rendering quality for
computer-generated (CG) contents with high depth quality,
and for natural contents (NCs) with low depth quality, the
depth is sparsely represented for bitrate reduction. Based on
the significant compression efficiency, the proposed method
contributed to MPEG [31] has been adopted and integrated
into the TMIV [17].

The rest of the paper is organized as follows. Section II
presents the overall description of the MIV encoding and the
details of the existing depth quantization process in the TMIV
encoder. The proposed nonlinear depth quantization using the
PLS model is presented in Section III. After the experimental
results and the performance analysis of the proposed methods
in Section IV, this paper is concluded in Section V.

II. MIV ENCODING AND DEPTH QUANTIZATION
A. MIV ENCODING
Fig. 2 shows the overall architecture of the TMIV encoder.
First, source views with different positions and directions
are automatically grouped into multiple groups based on a
user-specified group number. Then, a view labeling module
categorizes each input view within a group into either a
basic view or an additional view. The basic views are
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FIGURE 2. Overall architecture of the TMIV group-based encoder.

FIGURE 3. Overall process of pruning and aggregating in the atlas
generation.

completely packed into an atlas as a single patch. In contrast,
the additional views are pruned by removing inter-view
redundancies, and the remaining pixels are clustered and
packed into an atlas as multiple patches. In other words, after
view categorization, a pruner determines whether individual
pixels in each view are removed or preserved based on the
inter-view redundancies.

In the pruner, an additional view is projected to the
viewpoint of a basic view and the predictable pixels from
the basic view are removed as duplicate pixels. After one
additional view is pruned, another additional view can be
pruned using the basic views and already pruned views.
As shown in Fig. 3, the pruning process is applied at
the frame level, and the remaining regions are temporally
accumulated over all frames belonging to one intra period
in the aggregation step. Then, the aggregated regions are
clustered into multiple separated regions to be bound by a
rectangular box called a patch. Fig. 4 illustrates an example
of the clusters obtained by the aggregator [27].

Then, all patches are sequentially packed into single or
multiple frames called atlases in the descending order of
the patch size. In this process, each patch is packed into
an atlas in a raster scan order to occupy an as small as
possible packing area while the valid regions are not invaded.
Therefore, information for each patch that comprises its

FIGURE 4. Example of an aggregated pruned view and patch
information [18].

top-left corner position, its size with width and height values,
and its rotation is included in the metadata to be delivered.
Hence, such metadata indicates the view and position from
which each patch stemmed when reconstructing additional
views in the MIV decoder. Finally, as shown in Fig. 2, video
bitstreams of depth and texture atlases are multiplexed with
metadata into an MIV output bitstream.

After the generation of the texture and depth atlases,
downscaling and quantization are additionally performed on
only the depth atlases. The MIV encoder enables resolution
reduction by allowing the downscaling of the depth atlas;
this is based on the observation that the combination
of the resolution reduction and the compression with a
low quantization parameter (QP) is efficient for the MIV
end-to-end coding performance [32]. Furthermore, depth
quantization is performed to efficiently represent the depth
values.

B. DEPTH QUANTIZATION
In the MIV standard, a uniform quantization method is
adopted for the 10-bit representation of a depth atlas, which
may be regarded as an appropriate trade-off between coding
efficiency and depth accuracy in terms of the view synthesis
quality while accommodating the 10-bit video coding.
Accordingly, in the early stage of MIV standardization,
a depth atlas is generated based on the normalized disparity
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with zmin and zmax values for efficiently representing the
depth information [5]. Hence, the quantized disparity dq can
be obtained as follows:

dq = 2bit ·
(
d −

1
zmax

)
/

(
1
zmin
−

1
zmax

)
, (1)

where d is a disparity value that is an inverse of the real
distance. Additionally, zmin and zmax parameters, which are
the minimum and maximum depth range values, respectively,
are needed to convert the depth information to the actual
distance. They are provided in the view parameter that is
input into the MIV encoder with the texture and depth video
data.Moreover, zmin and zmax are theminimum andmaximum
depth values, respectively, that the camera can capture and
not the nearest and farthest distances of a captured object in
each view. Therefore, to generate an accurate depth atlas, the
quantized disparity can be computed as

dq = 2bit ·
d − dfar

dnear − dfar
, (2)

where dnear and dfar are the disparity values for the
nearest and farthest depths found in the input depth views,
respectively. They are derived for all frames within each intra
period for each view and are included in the metadata and
transmitted to the MIV decoder to yield an exact depth value
on the decoder side. The normalized disparity, dq given by
(2), for dnear and dfar is quantized depending on the bit value.
The bit value is determined according to the depth quality,
which is assessed based on the first frame of the input depth
video in the TMIV [33]. If the depth quality is low, the bit
value is set to 9 to focus on compression efficiency rather
than depth representation accuracy. Otherwise, the value is set
to 10 to achieve better view synthesis quality with accurate
depth values. Generally, the depth quality is low when the
depth is estimated from NCs, whereas it is high when the
depth is synthesized in CG sequences.

Moreover, by reserving the range [0, T ] of the normalized
disparity, the depth atlas contains pixel-wise occupancy
information that indicates to the decoder the valid pixels
inside the rectangular patches that form the atlas. In other
words, if the normalized disparity is less than the guard band
value T , the position is an invalid pixel. Thus, occupancy
information is embedded in the depth and signaled without
a dedicated bitstream. Additionally, the guard band ensures
the contour quality of a synthesized view by avoiding noise
in zero-valued samples due to coding distortion.

In summary, the normalized disparity of a depth atlas has a
value range of [T , 1023] when the depth quality is evaluated
as high quality in the depth quality assessment. Otherwise,
it has a value range of [T , 511]. The depth quantization
method described herein is adopted in the first version of
the MIV standard [31]. However, the MIV specification
allows other methods of depth quantization for the possible
enhancement in a switchable manner, and depth quantization
methods have been actively studied in the development of the
standard [29]–[31].

FIGURE 5. Overall flowchart of the proposed nonlinear depth
quantization (N = 16, s = 0.25).

III. PROPOSED NONLINEAR DEPTH QUANTIZATION
The proposed depth quantization is designed to reduce
the synthesis view quality degradation due to the coding
distortion of the depth atlas while maintaining its bit
depth. The proposed nonlinear quantization is performed
by adaptively scaling depth subranges according to the
importance of each subrange in terms of the rendering quality
in a piecewise manner. The degree of the depth importance is
computed based on a histogram of the depth values located
in the edge regions in the depth view since visual artifacts
are likely to appear around an object’s edges in the rendered
view. The nonlinear quantization employs a PLS because the
computational complexity of its nonlinear mapping is low
and it does not require a large-sized metadata that should
be signaled. Furthermore, the number of nonoverlapping
intervals N dividing the entire depth range can be restricted
to adjust the encoder/decoder complexity and the metadata
signaling overhead. Thus, herein, N is set to 16 as default.
Fig. 5 shows the overall flow of the proposed nonlinear depth
quantization with a probability limitation parameter s of 0.25,
which is detailed in Section III-B. As shown in Fig. 5, the
proposed method comprises two parts: the derivation of the
PLS model and the optimization of the derived PLS model
for integration into the TMIV.

A. DERIVATION OF PIECEWISE LINEAR SCALING MODEL
A PLS model is derived at the encoder side of the TMIV
for each view captured from the different camera positions.
As mentioned earlier, the proposed method primarily aims to
represent foreground object boundaries in the depth atlas with
more codewords and background areas with fewer codewords
since the quality of the rendered view is likely degraded at
foreground object boundaries. Consequently, the proposed
method basically allocates more codewords to depth intervals
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where important depth pixels occur more frequently using the
PLS model.

To derive the PLS model, a depth histogram, which is
the occurrence distribution of important depth pixels for
each interval bin, is calculated. Depth pixels, which are
determined to be in the edge regions via edge detection after
the view pruning, are regarded as important; they are used
in depth histogram calculations instead of all depth pixels
since visual artifacts in the synthesized view are mostly
observed in the objects’ edges transitioning foreground-to-
background [34]–[36].

In more detail, the selection of important depth pixels that
are used for calculating a depth histogram comprises two
steps. First, depth pixels overlapped by cross-view warping,
which projects depth pixels from other views into a current
view, are excluded because they are not used for view
reconstruction in the MIV decoder. That is, the pruned depth
pixels are excluded from the histogram calculation. Then,
among the remaining depth pixels after pruning, pixels that
are determined to not be in the edges are excluded. Here,
edge determination is performed based on the simple gradient
calculation. Gradients of the horizontal, vertical, and two
diagonal directions are calculated using a one-directional
Laplacian operator. The gradient values of gv, gh, gd1, and
gd2 are calculated as follows:

gv = |2 · d (i, j)− d (i, j− 1)− d(i, j+ 1)| , (3)

gh = |2 · d (i, j)− d (i− 1, j)− d(i+ 1, j)| , (4)

gd1 =

∣∣∣∣ 2 · d (i, j)− d (i− 1, j− 1)
−d(i+ 1, j+ 1)

∣∣∣∣ , (5)

gd2 =

∣∣∣∣ 2 · d (i, j)− d (i− 1, j+ 1)
−d(i+ 1, j− 1)

∣∣∣∣ , (6)

where d (i, j) indicates the depth value at coordinate (i, j).
The maximum and minimum values of the gradients in the
horizontal and vertical directions are set as

gminv,h = min (gv, gh) ,

gmaxv,h = max (gv, gh). (7)

Similarly, the maximum and minimum values of the diagonal
gradients are set as

gmind1,d2 = min (gd1, gd2) ,

gmaxd1,d2 = max (gd1, gd2). (8)

To determine if a depth pixel corresponds to an edge, the
gradient values are compared with each other with the edge
strength parameter es as

gmaxv,h < es · gminv,h ,

gmaxd1,d2 < es · gmind1,d2. (9)

The parameter es represents the degree of object boundary
strength for determining the depth corresponding to the
edge, i.e., more depth samples are detected as object edges
with smaller es values. The edge strength value es is set
to 40 according to the experimental results for varying es

FIGURE 6. Example of the piecewise linear scaling (the number of
intervals is 7).

values. The experimental results are described in detail in
Section IV-B. If both conditions in (9) are not satisfied, then
the depth pixel is excluded from the histogram calculation.
The pixels remaining after the above elimination processes
are considered as important depth pixels. Subsequently,
a normalized histogram is calculated by dividing the range
[d far , dnear ] into N equal intervals and accumulating the
important pixels for each interval.

An interval with a high histogram value can be regarded
as a more critical range in terms of rendering quality.
Hence, each range is scaled up or down by multiplying
the corresponding probability of each interval given by the
histogram. The proposed depth quantization with the PLS
model is

dq =

(
b2i − b

1
i

a2i − a
1
i

)
·

(
d − a1i

)
+ b1i . (10)

Here, d is an original disparity value that is to be scaled, and
i is the interval index for the d value. The i-th interval in the
original disparity range (a1i , a

2
i ] is mapped to the i-th interval

on the quantized disparity range (b1i , b
2
i ]. As described

in Section II-B, the scaled depth atlas is generated as a
9- or 10-bit depth representation based on the depth quality
assessment results. As shown in Fig. 6, the original disparity
value in each interval is mapped to the corresponding scaled
disparity range in a piecewise linear manner.

B. PLS OPTIMIZATION FOR TMIV INTEGRATION
If the proposed depth quantization is applied to the TMIV by
directly reflecting the histogram calculated in Section III-A,
the contrast of the depth atlas can be significantly highlighted
since it allows the areas with lower local contrast to gain
a higher contrast. Consequently, the coding performance of
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FIGURE 7. Example of the probability range limitation (the number of intervals is 7). The normalized depth histogram (Left) and the results of the
probability range limitation with the clipping method (Middle) and scaling method (Right).

the over-scaled depth atlas would be low and the quality
of rendered view would be degraded. Therefore, as shown
in the model optimization stage in Fig. 5, the derived
PLS model is refined herein by adjusting the calculated
histogram so that the nonlinear quantization using the PLS
model enhances the coding performance while avoiding
over-scaling.

First, the interval ranges of the scaled depth are limited
to within the predefined allowed range to avoid over-
scaling. That is, the depth occurrence probability of each
histogram interval is limited to be within the range [plower ,
pupper ] before the generation of the PLS model. To limit
the probability values of all bins to the predefined range,
the probability clipping or scaling methods can be used.
In the probability clipping method, the probability values
that are out of range are mapped to plower or pupper and
those within the range are retained. However, the adjusted
probabilities with the clipping method may not maintain
the distribution behavior of the histogram. In contrast,
in the probability scaling method, the probabilities of all
the bins are linearly scaled to the range [plower , pupper ].
Therefore, the probability distribution is maintained while
limiting the histogram values, unlike in the clipping method.
Fig. 7 illustrates examples of the probability adjustment
using the probability clipping and scaling methods when the
number of depth intervals is 7.

To enable more suitable effects to be mainly obtained by
depth quantization based on a given depth view quality, the
clipping or scaling probability limitation method is applied
with different limits by adjusting the plower and pupper values.
For high depth quality, the probability limitation is applied
to retain the range of mapped depth within ±(s × 100)% of
the original range, where s is the limitation parameter of the
probability value and can be empirically set. Table 1 presents
the experimental results for varying s values of {0.15, 0.2,
0.25, 0.3, 0.35} for the optional sequences of ChessPieces,
Hijack, and Cadillac in MIV CTCs [21] and for the case
without the probability limitation. If the probability limitation
is not applied, a significant loss of 22.43% is observed.

TABLE 1. Experimental results of the end-to-end coding performance of
the proposed probability limitation method (scaling) with varying s
(over TMIV10.0, 17 frames).

Furthermore, the largest average gain of 0.8% is obtained
when a probability limitation is applied with an s value of
0.25. If s is 0.25, the scaled depth interval is limited to±25%
of that of the uniform distribution case, which exhibits a
histogram value of 1/16 when N is set to 16, by setting the
values of plower and pupper to 3/64 and 5/64, respectively. That
is, the scaling slope is determined within 0.75–1.25 according
to the corresponding histogram value. In the case of low
depth quality, to generate a highly compressible depth atlas,
the dynamic range of mapped depth is reduced by setting
the range as [2/64, 4/64], which corresponds to the slope
of 0.5–1.0.

Finally, in case of high depth quality, the scaled prob-
abilities are renormalized (i.e., ptotal is set to

∑
pi in

(11)) to improve the depth accuracy by retaining the entire
dynamic range of the input depth view. Otherwise, the scaled
probabilities are retained (ptotal is set to 1) to reduce the
entire dynamic range of the input depth view. Additionally,
the representation accuracy of the quantized depth is adjusted
according to the depth quality. For sequences with accurate
depths, such as a CG video, the rendering quality can be
improved through more accurate 10-bit depth representation,
while more bit saving in the compression is possible for low-
quality depths, such as NCs, with 9-bit representation. The
final scaled disparity range (b1i , b

2
i ] with interval index i can
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FIGURE 8. Comparison of basic depth views (Left: input depth view, Right: quantized depth view) (Top: Painter, Bottom: Kitchen).

be calculated as

b1i = b2i−1,

b2i = 2bit ·
(
dnear − dfar

)
·

pi
ptotal

+ b1i , (11)

where b10 is set to 0 and pi is the scaled probability of the i-th
interval.

Furthermore, the generated depth atlas includes an occu-
pancy guard band with the T value described in Section II-B.
Fig. 8 compares the input depth view and the corresponding
part in the generated depth atlas to which the proposed
quantization is applied for NC and CG sequences. For NC
sequences (top of Fig. 8), the generated depth atlas looks
darker than the original depth view as the entire dynamic
range is reduced, which causes bitrate reduction in the
compression. For CG sequences, the edges of the depth atlas
can be made clearer by heightening the contrast, as shown in
the bottom of Fig. 8. Accordingly, depth is more accurately
represented as the rendering quality is more effective than bit
saving for affording better end-to-end coding performances.

To perform inverse depth quantization in the decoder-
side, the number of intervals and the mapped interval
boundaries should be signaled in the metadata. To enable
the signaling of such metadata for the proposed quantization
in a normative way, we propose that syntax structures [31]
should be embedded in the bitstream specified in the
visual volumetric video-based coding (V3C) standard as an
extension for MIV [37]. The V3C standard specifies the

bitstream format for transmitting coded volumetric videos,
such as an immersive video and point clouds based on video
(V-PCC). MIV and V-PCC bitstream syntaxes are aligned in
a singled V3C bitstream format because they exhibit high
similarity.

Consequently, the probability scaling method affords
better coding performance than the probability clipping
method; the coding performances are described in detail
in Section IV-B. The proposed nonlinear depth quantization
with probability scaling has been validated by experts in
the MPEG-I Visual group over several meetings with core
experiments (CEs) [29]. Finally, the proposed method has
been adopted and integrated into the TMIV [17].

IV. EXPERIMENTAL RESULTS
In this section, several experiments are performed to evaluate
the performance of the proposed depth quantization in
comparison with the current depth quantization of TMIV,
which is described in Section II-B. The proposed method was
implemented on top of TMIV and evaluated under the MIV
CTCs [21]. The test conditions and experimental results of
the proposed method are described herein.

A. TEST CONDITIONS
MIV CTCs are established to ensure that all the proposed
technologies in the development of the MIV standard employ
the same evaluation conditions for fair comparisons. They
define the test sequences, specify how anchors are generated,
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TABLE 2. Sequence configurations for Texture (T) and Depth (D) video in
CTCs.

and provide procedures and templates for reporting the exper-
imental results of the contributed technologies. The technical
approach to conduct coding experiments is following these
steps [21].

1) Compress test sequences based on the TMIV in
combination with the VVenC,

2) Synthesize intermediate views from decoded views and
metadata,

3) Render viewports of pose traces with a limited
movement,

4) Evaluate coding efficiency considering both decoded
views and synthesized views.

As shown in Table 2, the test sequence set contains
both CG sequences with near-perfect depth views and NC
sequences with estimated depth views. The test sequences
are captured by various camera arrangements with varying
resolutions from Full-HD to 4K. The atlases generated via
theMIV encoder are compressed using the VVC open-source
software VVenC v0.3.1.0 [20] and VVdeC v1.0.1 [38] with
the random-access slow configuration.

Five rate points are specified, corresponding to a group
of QPs of {22, 27, 32, 37, 42} for the texture atlas and
a group of QPs of {4, 7, 11, 15, 20} for the depth atlas.
The QPs for depth are empirically set to low values to
maintain the trade-off between rendering quality and coding
efficiency. Additionally, two bitrate (BR) modes of High-BR
and Low-BR are evaluated to consider diverse bandwidth
conditions corresponding to the four lowest QPs and four
highest QPs, respectively.

Objective quality is evaluated based on the video qual-
ity of all the synthesized views. Two types of met-
rics are provided to measure the objective quality: peak

TABLE 3. Experimental results showing the performance enhancement
by the refinement with probability scaling over the probability clipping in
terms of the BD rate (s = 0.25, over TMIV8.0.1, 97 frames).

signal-to-noise ratio (PSNR) for the luminance component
(Y-PSNR) and the immersive video PSNR (IV-PSNR) [39].
Y-PSNR is generally used in video coding applications,
while IV-PSNR is specifically designed to handle com-
mon rendering artifacts that are unnoticeable to human
perception. The coding performance is calculated in terms
of the Bjøntegaard delta (BD) rate [40] for each metric.
The averaged BD rates of each group of four high QPs
(High-BR BD rate) and four low QPs (Low-BR BD rate) are
reported for each sequence and whole sequences. Moreover,
the subjective quality is assessed using a viewport video
synthesized along a virtual trajectory predefined by a user as
a pose trace [41], [42].

B. EXPERIMENTAL RESULTS
First, the performance of the proposed nonlinear depth
quantization with two histogram limitation methods of
probability clipping and probability scaling is evaluated in
TMIV8.0.1. Table 3 illustrates that the coding performance
of the proposed nonlinear quantization with probability
scaling is better than that with probability clipping with s
of 0.25. Overall, bit savings of 2.1% and 3.6% are observed
on average in High- and Low-BR BD rates of Y-PSNR,
respectively. Notably, the probability scaling method affords
better coding performance by preserving the distribution of
the depth histogram. Thus, probability scaling is finally used
in the proposed nonlinear depth quantization.

Second, to determine an appropriate value for the object
edge detection purpose, the proposed linear scaling method
with varying edge strength parameter es of {20, 40, 60}
in (9) is evaluated, as shown in Fig. 9. For these experiments,
the proposed method with the probability scaling was
implemented with TMIV10.0 and evaluated according to
the MIV CTCs. Table 4 shows the end-to-end coding
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FIGURE 9. Object edge detection results according to edge strength parameter es (Group sequence, white pixel indicate object edge).

TABLE 4. Experimental results of the end-to-end coding performance of
TMIV using the proposed method with different threshold es in terms of
High-BR BD rate of Y-PSNR (s = 0.25, over TMIV10.0, 17 frames).

performance for varying es values of 20, 40, and 60 are
1.1%, 4.8%, and 4.8, respectively, in terms of on average
High-BR BD rate of Y-PSNR. When es is set to 40 or 60,
an additional coding gain of 3.7% is observed on average
compared with that for the es value of 20. Based on the
experimental results, robust and accurate edge determination
affords improved coding performance, and es values of 40 and
60 are appropriate for good end-to-end coding performance.

Table 5 shows the final coding performance of immersive
videos with the proposed nonlinear quantization using PLS
for depth atlases in comparison to an anchor TMIV, which
includes the latest depth quantization method, as described
in Section II-B, as a state-of-the-art technology [31]. The
proposed method in the experiments is implemented into
the TMIV10.0 using the scaling method with an s value
of 0.25 when constraining the probability range of the
histogram. Additionally, the es value for determining the
edge depth samples to be accumulated in the histogram is
set to 40. Overall, a significant BD rate bit saving of 5.2%
and 4.2% are observed on average for the High-BR BD
rate of Y-PSNR and IV-PSNR, respectively, compared to the
existing quantization method. For NC sequences, the coding
gain mainly stems from the dynamic range reduction while
the subjective quality is retained. For CG sequences, the

TABLE 5. Experimental results of the end-to-end coding performance of
immersive videos with the proposed method in terms of the BD rate
(s = 0.25, es = 40, over TMIV10.0, 97 frames).

TABLE 6. Encoding and decoding time for TMIV with the proposed
method (s = 0.25, es = 40, over TMIV10.0, 97 frames).

subjective quality improves without the bitrate increasing.
Furthermore, remarkable performance improvements are
noticed in NC sequences, such as Painter [43], Frog [44], and
Carpark [45]. Particularly, Painter exhibits the biggest gain
of 17.5%. Notably, the proposed method generally performs
better at High-BR ranges than at Low-BR ranges.
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FIGURE 10. Examples of the rendered anchor viewports (Left) and proposed viewports (Right) in the part of Kitchen (Upper) and Group (Middle and
Lower) sequences.

Table 6 shows that the proposed quantization slightly
changes the complexity of the TMIV with 0.4% and 0.1%
increment in the encoding and decoding times, respectively.
The TMIV comprises pre-/post-processing for the immersive
video and legacy codec for compressing the generated atlases
from pre-processing. Although the complexity slightly
increases if the proposed method is implemented in the pre-/
post-processing of TMIV, it is negligible. Therefore, the
proposed depth quantization can be integrated into the TMIV
without complexity burden.

Fig. 10 shows the subjective quality comparisons between
the viewports rendered by the anchor (TMIV with the
existing quantization method) and the proposed method
with Kitchen and Group sequences. In Fig. 10, severe
artifacts that are shown in anchor viewports are considerably
reduced in the viewport rendered with the proposed method
(red-colored circles). As shown in the viewport examples,
the proposedmethod significantly improves the visual quality
in some sequences and affords considerable BD-rate coding
gain.
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V. CONCLUSION
This paper presents nonlinear depth quantization method
using a PLS model to enhance the immersive video coding
performance by efficiently representing the depth informa-
tion. In the proposed method, the PLS model is derived
based on the importance of depth value in terms of rendering
quality. The edge depth pixels among the depth pixels
remaining after pruning are assumed to be the important
ones. Therefore, the mapped range of each depth interval is
adaptively determined according to the histogram probability
of the important depth values in the corresponding depth
interval. In other words, more codewords are allocated to a
depth interval with a higher occurrence of edge depth values,
which is regarded as an essential range in terms of rendering
quality. Furthermore, the PLS model is refined to avoid over-
scaling and afford a good trade-off between bit saving and
rendering quality according to the depth quality of the given
sequence by adjusting the entire mapped depth range.

The experimental results show that the proposed method
affords considerable end-to-end coding gain for immersive
videos with respect to BD-rate bit saving while maintaining
the subjective rendering quality. Consequently, a coding
gain of 5.2% average BD rate is observed with noticeable
subjective quality enhancement. Furthermore, the proposed
method does not change the computational complexities of
the TMIV encoder and decoder. After being thoroughly
reviewed in several standardization meetings, the proposed
method has been integrated into the TMIV and is considered
a candidate technology for version 2 of the MIV standard.
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