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ABSTRACT There are fundamental difficulties in obtaining material type of an arbitrary object using
traditional sensors. Existing material type recognition methods mostly focus on color based visual features
and object-prior. Surface reflectance is another critical clue in the characterization of certainmaterial type and
can be observed by traditional sensors such as color camera and time-of-flight depth sensor. A material type
is characterized well by relevant surface reflectance together with traditional visual appearance providing
better description for material type recognition. In this work, we propose a material type recognition method
based on both color and reflectance features using deep neural network. Proposed method is evaluated on
both public and our own data sets showing promising material type recognition results.

INDEX TERMS Material type, surface reflectance.

I. INTRODUCTION
Objects are composed of multiple distinguishing materials.
Material type is an essential characteristic in determining the
class of object. Furthermore, materials composing an object
reveal detailed sub-classes such as wooden vs iron table,
fabric vs leather couch. Recognized material types enable
realistic rendering of reconstructed three-dimensional model.
Therefore, material type recognition has been importance
research optic in computer vision and graphics. Earlier stud-
ies on material type recognition largely depend on visual
features such as color patterns and texture shapes of each
material type. Sharan et al. [1] investigate various combina-
tion of contemporary visual descriptors to suggest optimal
color feature set for material recognition evaluated on FMD
(Flickr Material Database). Bell et al. [2] prove that context
information encoded from general convolutional neural net-
work helps material recognition in indoor scenes. Materials
IN Context(MINC) database proposed in this work has been
widely used for the comparison of material recognition meth-
ods in the field. FVCNN [3] proposes a learning based texture
descriptor using CNN filter banks and Fisher Vector pooling.
Degol et al. [4] prove that using 3D geometry based features
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improves material recognition performance of a large-scale
scene.

There have been many approaches for material type
recognize using ToF camera [5]–[11]. Su et al. [7] have
captured subsurface scattering that specifies the character-
istics of material surface. However, it covers only small
number of material-classes requiring additional light source.
Tanaka et al. [8] propose an exemplar-based material clas-
sification method that uses the distortion of the obser-
vations of ToF camera. They claim that depth distortion
caused by varying modulation frequencies and camera-object
distance provide rich information on material class types.
However, it relies on particular device-dependent character-
istic observed during data acquisition process. Both prior
work [7], [8] provide classification result only with controlled
experimental environment. Kim et al. [9] propose a surface
roughness estimationmethodwith ToF camera. Off the shelve
depth camera such as Microsoft Kinect is used to estimate
surface roughness together with color features.

There are several attempts to use physically-motivated fea-
tures like 3d geometry and surface reflectance for material
recognition [12]–[14]. Due to the limited data acquisition
environments and experimental costs, the performance of ear-
lier methods is limited compared to color based approaches.
Recent material recognition methods have addressed such
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issues by properly designing deep neural networks for mate-
rial type recognition. Zhang et al. [15] propose Deep TEN,
a material recognition framework which uses generalized
encoders like VLAD [16] and Fisher Vector [17] in a form
of encoding layer. DEP(Deep Encoding Pooling) network
[18] shows performance improvement over Deep TEN [15]
by adding local spatial feature encoder. Zhai et al. [19] sug-
gest MAP(Multiple Attribute Perceived)-Net which learns
a bag of texture attributes representing texture-specific
characteristics. Their improved work, called DSR(Deep
Structure-Revealed)-Net [20], extracts an inherent spatial
dependency of a texture which helps the textures to be rec-
ognized and deformed properly. However, both of the pro-
posed methods work with only closed-up surface texture
images. Various attempts to estimate or reconstruct surface
reflectance have been conducted [12], [21]. Recent studies
[22]–[26] have used multi-view images of material object
to implicitly obtain physically-motivated features instead of
using highly-restricted experimental setups [13], [27]–[30].

There has been large body of studies on capturing
reflectance from a set of color images under varying exper-
imental conditions [30]–[37]. Sengupta et al. [38] have
suggested neural inverse rendering method which enables
scene-attribute estimation from single indoor image. Despite
several practical advantages of the method, it handles real
image in a self-supervised manner showing dependency
on training data. Li et al. [39] suggest indoor scene-wise
SVBRDF(Spatially-Varying Bidirectional Reflectance Dis-
tribution Function) estimation framework from single syn-
thetic image. But the method has limitation in that it cannot
be trained on real data since it requires synthetic ground
truth data for training. Murmann et al. [40] propose Multi-
illumination Images in the Wild(MIW) dataset with per-image
illumination condition and per-pixel material type label. Our
color image based reflectance estimation network is trained
on the data set.

Wang et al. [23] suggest light-field camera based approach
for joint reconstruction of 3D shape and surface reflectance of
an object. Xue et al. [25] suggest DAIN (Differential Angular
Imaging Network), which uses small angular variance
between closely captured image pairs as a reflectane-related
material feature. However, these methods lack practicalities
for its needs for customized devices or for conditioned envi-
ronment. On the other hand, thanks to recent advance of
deep learning, several attempts have been made for few-shot
surface reflectance estimation [31]–[34], [37], [41], [42].
But these methods show limitation in that it can be applied
in closed-up texture-like images or object-centered photos.
Some of the recent works [38], [39] have achieved scene-wise
reflectance estimation, but they show limitations in the appli-
cation with real world data due to the dependency on inverse
rendering based methods.

In this work, we propose surface reflectance estima-
tion methods using either ToF (time-of-flight) depth cam-
era (IR reflectance) or multiple color images (visible

light reflectance) taken under varying practical conditions.
Proposed methods are able to collect pixel-wise surface
reflectance that enables dense material type classification of
entire scene. Based on extensive experimental evaluation,
we suggest an optimal network structure for a multi-modal
material type recognition.

II. MATERIAL RECOGNITION WITH COLOR FEATURES
Materials in Context Database (MINC) is one of large mate-
rial data set consists of 23 material classes with context
information. Total 3 million sample patches are extracted
from 435,749 images of the data set. Each material sample
patch includes following attributes: material label, id of orig-
inal photo, 2d coordinate information of center pixel used
to extract the patch. There exists a subset of MINC with
patch-wise material classification label called MINC-2500.
The subset has balanced class distribution (2500 samples
per class) while its original data set has biased distribu-
tion of material classes. MINC has been widely used for
the color-based material classification evaluation due to
its diversity and large number of samples. Zhao et al. [10]
have pointed out the problem of MINC samples: non-values
occurred by pixels out of image border and re-generated
new material patches based on the extraction rules of MINC.
They propose real-time 3D material segmentation frame-
work trained with their newly sampled 917,839 patches.
Jurado et al. [43] propose a semantic segmentation method
of natural materials on a point cloud using multi-spectral
features. Xue et al. [18] show improved performance on
MINC-2500 (about 82.00% of classification) using deep
encoding and pooling network called DEP-Net.
In order to perform cross-data set verification, we have

generated two novel variants of MINC-2500 called
MINC-NEW and OUR-NEW data set. In case of
MINC-NEW, samples are extracted by the same extraction
strategy with MINC-2500. Each patch is extracted from
corresponding original image while none of the patches are
extracted from identical image. Following the work, the size
of patch is 32.9% of smaller one and resized to 362 × 362
resolution. The size of patch is decided to be 32.9% of smaller
original image and then resized to 362× 362. 500 patches per
each material class (total 11,500 patches) are extracted. For
OUR-NEW data set, original images are collected from two

TABLE 1. Performance comparison between the previous works and
DenseNet-121 trained with MINC-2500.
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FIGURE 1. 3 different material data set used in our experiment and its corresponding reference images. Each sample shares same patch
extraction strategy, containing single material label at the center of the image.

different image sources. First group consists of web-based
images collected from internet. In order to keep the context of
MINC data set, keywords ‘interior,’ ‘office,’ ‘cafe,’ ‘school’
are used for searching. A keyword ‘Asia’ is also used to check
if MINC has any bias on western environment context instead
of material-specific context features. Second group includes
images of material objects located in natural environment of
furniture showroom, captured using mobile-phone camera.
Each group consists of 300 to 400 original images and
patches are obtained avoiding overlapping. Five commonly
observed material classes including (fabric, glass, leather,
metal, wood) are collected with 1,334 patches using iden-
tical patch extraction process with the first group. Figure 1
shows examples of 3 different material data set used in our
experiment. Proposed two data sets have similar contextual
characteristic compared to the original MINC-2500.

In this evaluation, we choose DenseNet-121 [44] trained
on MINC-2500 aiming to verify whether typical material
properties sufficiently appear in MINC. Proposed patch-wise
material classification model is trained on the training set
of MINC-2500 (48,875 instances). Table 2 shows material
recognition performance of DenseNet-121 on our three dif-
ferent(but with similar context) material data sets. The model
gives 81.13% of recognition accuracy on MINC-2500, which
is compatible to Xue et al. [18] (82.00%). However, the
model shows limited performance on our proposed data set:
69.27% on MINC-NEW and 49.78% on OUR-NEW. Con-
sidering the contextual similarities shown in Figure 1, the
performance decrease indicates that trained model favors
MINC-2500 images. Color-based features of an object can
easily be contaminated by various real conditions such as
lighting and viewing direction. Therefore, material recogni-
tion depending on only color feature has clear limitation in
real-world applications.

III. SURFACE IR REFLECTANCE ESTIMATION
A. SURFACE IR REFLECTANCE FEATURE
Surface reflectance of visible light has been obtained
by exhaustive scanning from entire lighting or viewing

directions. Anisotropic surface assumption based meth-
ods show limitations in real-world applications [28].
Kim et al. [9] propose surface roughness features for mate-
rial recognition using single Kinect depth camera. Infrared
reflectance obtained from time-of-flight depth camera is used
for material feature extraction. However it still has limited
application due to large angular condition (360◦). By employ-
ing several practical assumptions, Lee et al. [11] propose
a simple and practical acquisition setup. Isotropic surface
assumption is reasonable since imaging setup with Kinect is
limited to a single imaging device with light source. Based
on Helmholtz reciprocity, they vary camera and light source
positions and as a result vary incidence angle and reflectance
angle. Our aim is not a precise reconstruction of BRDF of
visible light. Infrared reflectance shows enough separation
ability of diverse material types as verified in prior work [9],
[11]. Furthermore, emitting visible light on to target objects
or person for the acquision of reflectance is not practical.
On the other hand, emitting invisible infrared light is free
from such problem. Therefore, our proposedmethod employs
IR Reflectance for material type classification.

B. ACQUISITION SETUPS
In order to enhance the practicality of surface IR reflectance
feature acquisition process compared to the previous
work [11], we use same assumptions explained above while
collecting reflected IR of real-world samples. Note that some
of our device setups are based on [11]. Figure 2 shows 3 dif-
ferent acquisition setups. Figure 2-(a) is object-rotation setup
proposed by [11]. Reflected IR from the center of rotating

TABLE 2. DenseNet-121 accuracy on MINC-2500 test set and ours after
trained with MINC-2500.
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FIGURE 2. A 3 different acquisition setups of our experiments and corresponding experimental conditions.

target is acquired by camera fixed in front of the object.
In order to obtain complete IR distribution, target surface
has to be rotated for varying incidence angle. Figure 2-(b)
shows one-shot acquisition with uniform surface material
type assumption.

Consequently, it collects reflected IR frommultiple surface
points assuming that they share same reflectance character-
istic. Especially, reflected IR intensities of a surface with
sufficient surface normal variation(curved surface) can be
acquired for one shot. Figure 2-(c) shows camera-rotation
setup which requires point cloud registration. A newly
acquired data from ToF camera are accumulated in dynamic
voxel space. A camera-rotation acquisition setup is able to get
pixel-wise reflectance while others get single reflectance per
target object.

C. COLOR-IR MATERIAL DATA SET
We employ Color-IR Material Data Set [11]. Figure 3
shows examples of the data set of 7 common material
types. Total 116 numbers of flat-surfaced samples are
collected. Both color and proposed reflectance features

are acquired using the object-rotation method described
in Figure 2-(a).

IV. MATERIAL RECOGNITION WITH ToF CAMERA
A. INDOOR SCENE-WISE SURFACE
REFLECTANCE ESTIMATION
Proposed method shows reliable result both with/without
color features in real-world environment. However, it has sev-
eral problems. First, collected reflectance feature of one-shot
acquisition method [Figure 2-(b)] has narrow incidence angle
variation. Camera-rotation [Figure 2-(c)] has wider incidence
angle but still it suffers from registration noises. To allevi-
ate the problem, seven individual voxel spaces from seven
different viewing directions are collected. Figure 4 shows
comparison between this discrete observations and camera-
rotation. In camera-rotation, a well-registered, normal-based
segmented point clouds are first obtained to get object bound-
aries. Since the point-wise IR distribution is noisy, we set
neighbor point clusters to get robust point-wise reflectance
features. As the result of neighbor point clustering, points
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FIGURE 3. Sample of 7 material classes obtained using fixed Kinect v2 camera while rotating material object in front of it.

FIGURE 4. Comparison between camera-rotation acquisition process and multi-viewed, unregistered scene acquisition process.
(a) Camera-rotation acquisition process. (b) Multi-viewed, unregistered acquisition process with enhanced practicality.

inside same clusters get identical reflectance of single mate-
rial type. For further enhancement, each cluster finds and
allocates dominant material type prediction result out of all
pixels inside each segment.

B. MULTI-MODAL MATERIAL RECOGNITION NETWORK
Two-stream nets is widely used for the purpose of fus-
ing multi-modal features. Xue et al. [25] have suggested
a two-streamed convolutional neural network called DAIN
which entangles spatial/angular gradients of material clues.
Lee et al. [11] use matrix concatenation at the end of the net-
work to fuse reflectance stream and color stream for material
recognition. Similar to the previous work, we apply feature
fusion at the final layer considering different level of the
features. We adopt a SkipRNN [45] network. Lee et al. [11]
define partial gate(pt ) which skips updates whenever
noisy data is fed as input, modifying the structure to be
noise-robust.

st = pt · S(st−1, xt )+ (1− pt ) · st−1 (1)

pt =

{
ut if xt ≥ 0.05

0 if xt < 0.05
(2)

Equations show activation conditions of partial gate used in
partial skipRNN. The proposed network is trained on our pro-
posed reflectance data set. We use gradients among adjacent
sequence points (xt − xt−1, xt+1 − xt ) to find noisy, missing
value based on IR distribution continuity. If the obtained
gradient is greater than defined threshold (0.5), the intensity
value at the point is considered as noise and set to zero.
Also, if a point located in small incidence angle has larger
intensity value than the threshold, it will also be considered as
noise.

Huang et al. [44] have suggested several modified ver-
sions of DenseNet, which share same dense connectivity
strategy. Lee et al. [11] introduce fine-tuned model using
MINC-2500 [2], enabling the network to be suitable for mate-
rial recognition task. Along with their proposed two-stream
network structure and concatenation based feature fusion,
the model is used as a feature extractor of color feature
stream. Since the feature of each stream is subject to be
biased by the concatenation, it cannot fully be described by
both reflectance and color characteristics in balance. Sec-
ondly, concatenation cannot guarantee sufficiently encoded
correlation between the two features. To get better correlated
feature fusion of multi-modal features, recent work [46], [47]
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uses outer product fusion for two-stream network instead.
By multiplying color and reflectance feature matrix, corre-
lated multi-modal features are obtained.

V. MATERIAL RECOGNITION WITH
MULTIPLE COLOR IMAGES
A. MULTI-ILLUMINATION IMAGES
Multi-illumination images in the Wild (MIW) [40] data set
consists of more than 1000 scenes with 25 illumination vari-
ations and per-pixel material labels. Using a customized cam-
era setup with attached auto-controlled light source, MIW
provides 25 images per scene with varying lighting condi-
tions and shared (fixed) scene geometry. Per-pixel material
labels consist of 41 material classes including wide range of
materials such as fabric, glass, metal, paper, plastic, marble,
linoleum, wicker. For better representation of real-world envi-
ronment, photos are captured in 95 different rooms located
in 12 different residential and office areas. Since all of the
provided photos are taken as HDR images with varying and
corresponding light probes, the data set is suitable for the
applications like lighting prediction or relighting as they have
tried. In our work, we focus on per-pixel material labels pro-
vided by the data set. Since MIW provides illumination vary-
ing scenes with static scenes, it reveals per-pixel reflectance
characteristics of target objects.

B. TWO-STREAM NETS WITH ATTENTION MODULE
Our network consists of two neural networks encoding both
color and brightness variation features as shown in Figure 5.
In the color feature network (Figure 5 (b)), each patch is fed
to Densenet121 fine-tuned with MIW data set. Since each
patch has n different illumination conditions, the network
encodes color features from all n patches. In the brightness
variation network (Figure 5 (c)), we build a new patch set
P̂ by obtaining difference patch of two consecutive original
patches in the patch set P as follows.

p̂i =

{
pi − pn, i = 1
pi − pi−1, otherwise

(3)

The patch set consists of n patches with different bright-
ness at the same viewpoint. So the new patch set P̂ extracts
brightness of original patch that is good for the extraction of
brightness variation features. Extracted brightness variation
reveals unique characteristic of surface reflectance of each
material type. P̂ is fed to Resnet34 fine-tuned with MIW
data set extracting brightness variation features. We concate-
nate the color and brightness variation features along the
sorted sequence. Each concatenated feature vector fi has 192
channels.

The concatenated feature vectors f1 ∼ fn are fed to
attention module (Figure 5 (d)) to emphasize features that
contribute to class separation in the following Long Short-
TermMemory (LSTM) network. Note that the LSTMextracts
sequentially varying features from the illumination-varying

inputs such as surface reflectance. Our attention mod-
ule learns channel-wise significance assigning same atten-
tion to corresponding feature set (f1(j) ∼ fn(j)) of j-th
channel. And then, each feature vector f ′i obtained from
corresponding input patches pi, p̂i is fed to each unit of the
LSTM. Consequently, LSTM classifies material types from
color and brightness variation features observed from the
illumination-varying input patches.

C. PATCH EXTRACTION AND SORTING
Our network gets multiple images taken at a same location
under illumination-varying condition. We hypothesize that
the reflectance of material obtained from the observation
helps to characterize material type thanks to unique meso-
surface and BRDF (Bidirectional Reflectance Distribution
Function) characteristics. We randomly extractm patches per
scene for patch-wise classification. Multiple material classes
exist inside a patch. We set the label of the center pixel of
a patch as class label. Figure 5 (a) shows that a patch set P
consists of n illumination conditioned patches as follows.

P = {pi|1 ≤ i ≤ n} (4)

After the patches p1 ∼ pn are obtained, they are sorted
along the average pixel-brightness. As a result, we extract
m(number of patches) × n(illumination conditions) patches
in a scene.

VI. EXPERIMENTAL RESULTS
A. MATERIAL RECOGNITION FROM COLOR AND DEPTH
Data set used for experimental evaluation includes reflected
IR, RGB, vertex normal and 3D points. Incidence angle is
calculated from vertex normal [9], [11]. Frame acquisition
and calibration functions are implemented based on Kinect
v2 SDKs. However, our proposed method can be applied to
any other type of imaging device. Based on the acquisition
setup in figure 4-(a), we construct multi-object scenes. With
test objects, we minimize errors of poor registration and seg-
mentation. Figure 6-(a) shows sample material segmentation
results. Proposed feature successfully smooths out the noises
of poor registration.

For evaluation comparison, combinations of different net-
work structures are evaluated. One-dimensional Gradual
CNN consists of 4 convolution filters which is gradually
increasing within layers (1 × 3, 1 × 5, 1 × 7, 1 × 11).
For fair comparison with [11] which uses 2-layered RNN
based structure, total number of convolution layers of our
network is fixed to 4. DenseNet-121 is first trained with
MINC-2500 [11]. Table 3 shows comparison results among
the combinations of different network structures. In the test
with reflectance feature alone, Gradual CNN shows best
performance (72.66%) compared to previous work (64.67%).
Results indicate that the trained LSTM cells are affected
by the noisy inputs coming from previous state. Proposed
CNN structure isolates noisy inputs better within each ker-
nel. Applying dilation to the network decreases performance
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FIGURE 5. Proposed two-stream material type recognition framework. In the multi-illumination views, a patch set of n illumination conditions is
extracted and is fed to our networks.

FIGURE 6. Example results of camera-rotation acquisition (figure 4-(a))
and multi-viewed acquisition without point cloud registration
(figure 4-(b)).

from 72.66% to 68.67%, even though it is greater than pre-
vious work. Performance gain of outer product is 7.34%
in two-stream network with partial skipRNN compared to
concatenation based method. Outer product fusion encodes
features of different modality better. Gradual CNNwith outer
product shows best performance of 86.00%.

B. 3D MATERIAL-AWARE SEGMENTATION
In this test, we perform 3D point cloud segmentation bymate-
rial types. A neural network trained with 4 common material
classes including (fabric, leather, paper, wood) are used. This
test is performed in noisy, unconstrained real world con-
ditions compared to the previous experiments. Seven point
clouds from seven different viewing directions are acquired
without registration. For each segment inside each angle-wise

TABLE 3. Material recognition from color and depth results.

point clouds(from θ1 to θ7), total seven reflectance features
are obtained and merged following the refinement process
described in figure 4. As illustrated in figure 6, our frame-
work shows meaningful classification performance despite
the challenging environmental condition.

C. MATERIAL RECOGNITION FROM MULTIPLE COLORS
Implementation details and results of our experiments using
multiple color images are as follows. Our model is imple-
mented with Pytorch framework. ADAM optimizer is used
for training and batch size is 32. Learning rate is initialized
to 0.001 with learning rate scheduler ReduceLROnPlateau
(patience = 10, factor = 0.95). Backbone network is

TABLE 4. Material recognition from multiple colors results.
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initialized with pre-trained models and training is finished
after 300 epochs. We use MIW dataset for the evaluation.
MIW dataset is randomly divided into 5 splits with 985 train-
ing scenes and 30 test scenes. We randomly extract 40(=m)
patches per scene. There are 41 classes in the MIW dataset.
We group the classes of similar material types into 8 super-
classes(Fabric, Glass, Leather, Metal, Paper, Plastic, Stone,
and Wood). We perform 5 different experiments (table 4) to
verify the effect of multi-illumination conditions, two-stream
network, adding new patch set P̂, and attention module,
respectively. Compared to single-illumination case, the accu-
racy of multi-illumination is around 9% higher. This shows
that the difference in the surface appearance of materials
along the illumination conditions improves material type
classification. The result of two-stream nets using only patch
set P is 1.87% higher than single-stream net. The result of
using P for the color feature network and P̂ for the bright-
ness feature network is 75.64%, which is 2.73% higher than
using only patch set P. This implies that brightness features
from the new patch set P̂ helps the networks to classify
material types better encoding surface reflectance. Finally,
attention map shows 0.86% higher accuracy than two-stream
networks.

Contextual relation in our material recognition task indi-
cates how often one material type is observed with other
material types within a patch. We hypothesize that material
types of neighbor regions reveal critical information of the
material type of target region. There is trade-off in the extrac-
tion of material type features between surface reflectance and
color information along the variation of patch size. Each pixel
of a patch has its own reflectance characteristic, within a
patch, however, integrated reflectance of multiple pixels is
obtained. Therefore, what we have obtained is a reflectance
of all the pixels within the patch that is called a smoothed
reflectance. If the patch size is large, the reflectance of a larger
area is smoothed, so it is relatively difficult to define common
reflectance. On the other hand, with bigger patch, color and
contextual information are extracted better. On the contrary,
if the patch size is small, relatively common reflectance label
works better, but the extraction of other visual featuresmay be
limited. Based on the relationship, we tested increasing patch
size. Patch is extracted onlywhen the portion of pixel material
label is higher than 65% within the patch. The ‘Normal’
column of Table 5 shows the test accuracy along the variation
of patch size. Compared to the patch sizes 11 × 11 and 21 ×
21, larger patch sizes get better performance. However the
performance with patch size of 31 × 31 and bigger show
saturated performance indicating that no better color and
contextual information could be extractedwith bigger patches
lager than 31 × 31.

1) TRAINING DATA AUGMENTATION
We conduct training data augmentation. The key point is
to keep contextual relation in a patch, when more than
one class type exist in the patch. Since the class label of
major region in a patch is material label of the patch, our

TABLE 5. Experimental results along the variation of patch size and
augmentation.

FIGURE 7. Example of patch with minor part replacement applied.

augmentation keeps the region and replace remaining minor
region by other patch of same minor class labels. To preserve
contextual information, we create a new minor part of the
same material class by randomly finding it from another
training image. Figure 7 shows an example of applying the
proposed augmentation. Figure 7-(a) is a patch whose class
label is paper, and the minor part on the left top is bright-
colored wood. Figure 7-(b) shows a patch that the minor part,
wood, is replaced by a dark-colored wood from other training
image. Table 5 shows that the best accuracy is obtained with
31 × 31 patch augmentation. When the patch size is small,
there is little effect of augmentation because the contextual
information contained within the patch is limited. When the
patch size is increased, patch is extracted only when the pixel
corresponding to the class label is 65% or more in the patch,
so the surface diversity of the extracted patch is reduced.
This condition, however, reduces the diversity of the data
set.

VII. CONCLUSION
In this work, we propose a material type recognition
method of indoor scenes via surface reflectance estima-
tion. Novel two-stream network extracting both reflectance
and color features obtain pixel wise material type from
objects of indoor real-world environment. Diverse experi-
mental evaluations on public data set prove that conventional
color features with reflectance feature outperforms prior
approaches.
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