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1. Introduction

Monolithic microwave integrated cir-
cuits (MMICs) have led to rapid advances 
in radio frequency (RF) applications, 
including 5G base stations, automo-
tive radar, and satellite communication 
systems.[1–4] In this regard, a packaging 
strategy considering temperature and 
thermal stresses is key to ensuring the 
reliability of the MMICs because the large 
amount of heat generated by the high 
power density and small form factor often 
causes thermomechanical failure.[5–9] An 
MMIC packaging structure involves many 
design parameters, such as material selec-
tion for each part, geometric character-
istics, and thermal boundary conditions 
(BCs). In this context, obtaining analyt-
ical or empirical solutions to analyze the 
MMIC packaging structure is a formidable 
task owing to the nonlinearly correlated 
and high-dimensional design parameters. 
Multiphysics finite element method (FEM) 

simulation can provide accurate prediction results for the 
MMIC packaging structure.[10–13] However, additional FEM sim-
ulations have to be conducted whenever the design parameters 
are changed, resulting in high computing costs and time-con-
suming processes. Therefore, a facile, fast, and accurate solu-
tion for thermomechanical analysis of the MMIC packaging 
problem is required.

A machine learning (ML) framework has recently been 
utilized to analyze various engineering problems, including 
cardiovascular organs,[14–16] cantilevered structures,[17,18] and 
composite materials.[19,20] In particular, the ML framework 
allows the prediction of critical reliability parameters in chip 
package structures, such as energy release rates,[21] warpage 
behaviors,[22] and drop responses.[23] Furthermore, several 
studies have presented analysis models for the accelerated reli-
ability of solder joints under thermal cycling conditions using 
artificial neural network (ANN) architectures.[24–26] These ML 
approaches driven by FEM simulation data have been regarded 
as a fast and accurate surrogate of the simulation. However, 
despite these successful efforts, an ML-based analysis for 
MMIC packaging concerns has not yet been developed.

In this study, we present an ML-based solution for thermo-
mechanical analysis of MMIC packaging. The ML solution is 
designed to analyze the maximum values of temperature and 
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thermal stresses of chip–adhesive–carrier–housing packaging 
structures considering 13 design parameters categorized into 
materials properties, geometric characteristics, and thermal 
BCs. FEM simulation with the Monte Carlo method was con-
ducted to prepare 40  000 data samples, and a laser-assisted 
thermal experiment was performed to verify the simulation 
results. The prepared datasets were utilized for the super-
vised learning and validation of various ML models, including 
regression tree ensemble and ANN models. Moreover, the min-
imum errors of each ML model were investigated by optimizing 
their hyperparameters. Finally, we deployed the developed ML 
solution as a web application format for facile approaches for 
general users.

2. Results and Discussion

2.1. Outline of the ML-Based Solution for the MMIC Packaging 
Problem

Figure 1 outlines the ML-based fast and accurate analysis solu-
tion for MMIC packaging structures. The ML solution was 
designed to provide thermomechanical analysis results when 
several design parameters were input into the ML model, which 
was constructed based on experimentally validated simulation 
data. In this regard, 13 design parameters related to material 
properties, layer thickness, and thermal BCs were defined con-
sidering the traditional gallium-nitride (GaN)-based MMIC 
packaging structure composed of chip–adhesive–carrier–
housing.[27] In the structure, 4H-silicon carbide (SiC) and Al6061 
alloy were used as the chip and housing materials, respectively, 
because GaN transistors are typically produced on high-quality 
4H-SiC chips, and the low density of Al6061 is advantageous 
for reducing weight.[28,29] In contrast, many suitable candidates 
for the adhesive and carrier materials were available.[7,27,30] 
Accordingly, the material properties of the adhesive and carrier 
(thermal conductivity, coefficient of thermal expansion (CTE), 
elastic modulus, and Poisson's ratio) were regarded as the 
input variables (x1–x8). Moreover, the thicknesses of the chip, 
adhesive, and carrier layers were adjustable input variables (x9, 
x10, and x11), which can influence heat transfer performance 
and thermal deformation behaviors.[31,32] Finally, a surface heat 
flux was applied to a local region on the top surface of the chip, 

and convection cooling was applied to the bottom surface of 
the housing. Here, the surface heat flux reflects thermally dis-
sipated power from the GaN-based electronic circuits placed on 
the top surface of the SiC chip.[27,33,34] The thermal BCs (surface 
heat flux and heat transfer coefficient) were regarded as impor-
tant variables in the MMIC packaging design (x12 and x13).

The output analysis results were defined as the maximum 
values of temperature in the MMIC package structure (y1), prin-
cipal stress in the chip (y2), and von Mises stress in the adhesive 
(y3). These output variables are critical indicators for predicting 
failure behaviors of the MMICs. The MMIC devices require 
qualified operating and storage temperatures due to thermal 
degradation.[35] Moreover, thermal stresses in the MMIC struc-
ture are caused by CTE mismatch and warpage behavior, often 
resulting in failures of the chip and adhesive parts. Despite 
the high fracture strength of 4H-SiC,[36] the thermal stress in 
the chip causes chip cracking due to the presence of material 
defects such as microcracks, scratches on the surface, and chip-
ping on the edges.[37–39] In addition, cracking or delamination 
behaviors in the adhesive are frequently caused by the stress 
concentration effect.[40,41]

2.2. FEM Simulation for Data Preparation and Its Experimental 
Validation

After defining the input and output variables, FEM simula-
tion was performed to prepare a large dataset for supervised 
learning. Figure 2a shows a 3D model of the chip–adhesive–
carrier–housing MMIC packaging structure. In this model, 
4H-SiC and Al6061 were assigned for the chip and housing, 
respectively, and the material properties of the adhesive and 
carrier were changed based on the selection of materials. The 
assigned material properties are represented in Table S1 (Sup-
porting Information). The in-plane dimensions of the chip, 
adhesive, and carrier were fixed at 5 × 5, 5 × 5, and 11 × 14 mm2, 
respectively, and the housing had a constant dimension of 
50 × 50 × 10 mm3. The layer thicknesses varied in the ranges 
of 30–200 µm, 10–100 µm, and 0.3–2.5 mm for the chip (x9), 
adhesive (x10), and carrier (x11), respectively. Furthermore, the 
surface heat flux (x12) was changed in the range of 1–30 W, and 
the heat transfer coefficient (x13) in that of 0–300 W m−2 K−1. 
Detailed information on the FEM simulation is described in 

Figure 1. ML-based solution for fast and accurate analysis of MMIC packaging.
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the Experimental Section. Consequently, 40  000 samples of a 
dataset were prepared by randomly assigning input values 
within the defined ranges for each variable and obtaining the 
corresponding output values with the FEM simulation. The 
whole dataset was generated in ≈28 days because the average 
computing time for each simulation was 60 s when running 
in parallel on 16 CPUs. The prepared dataset is presented in 
Table S2 (Supporting Information).

Figure  2b shows a 3D quarter simulation model of the 
MMIC packaging structure and its temperature distribution. 
The quarter model in the simulation was suitable owing to the 
x- and y-axis symmetry conditions, which significantly reduced 
the calculation time. The enlarged view in Figure 2b indicates 
that the maximum temperature was located at the center of the 
heat source region, and the temperature decreased gradually 

as the distance from the center point increased (Figure S1, 
Supporting Information). Figure  2c,d depicts the distribu-
tion of thermal stresses in the chip and adhesive. The max-
imum principal stress, a representative failure criterion of 
brittle materials, was located inside the chip. The maximum 
von Mises stress was located at the edge of the adhesive, indi-
cating the potential for interfacial delamination due to peeling 
moments.[42]

To verify the accuracy of the simulation data, we conceived a 
laser-assisted thermal testing method (Figure 3a). In the exper-
iment, the center point of the top surface of the MMIC chip 
was irradiated for 15 min with a 532 nm continuous-wave laser 
beam with 2.5 W input power, and a thermal imaging camera 
measured the maximum temperature. MMIC packaging 
specimens which were composed of 4H-SiC chip-sintered Ag 

Figure 2. Simulation modeling and representative results. a) 3D full model of MMIC packaging structure. b) 3D quarter model in the simulation and 
its temperature profile. c) Principal stress distribution in the chip. d) Von Mises stress distribution in the adhesive.

Figure 3. Experimental validation of the simulation results. a) Experimental setup for measuring the maximum temperature of the MMIC packaging 
structure. b) Maximum temperature of the MMIC packaging structures for two different carrier materials, Ag diamond and CuW.
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adhesive–carrier–Al 6061 housing structures, were tested with 
respect to two types of carrier materials, Ag diamond and 
CuW. The specimens were placed on an x–y–θ controllable 
alumina stage that acted as a heat spreader by dissipating 
accumulated thermal energy from the packaging structure. 
Accordingly, the experiment and simulation were compared by 
reflecting the effect of the alumina stage in the FEM simula-
tion model (Figure S2, Supporting Information). The results 
show that the maximum temperature values obtained in the 
simulation agreed well with the experiment, thereby verifying 
the accuracy of the simulation data (Figure 3b). Furthermore, 
it was observed that the Ag diamond carrier, which has a high 
thermal conductivity of 700 W m−1 K−1, enabled a reduction in 
the maximum temperature compared to that of the CuW car-
rier owing to the enhanced heat transfer performance.[30]

2.3. Development of the ML Solution

The prepared simulation dataset of 40 000 samples was divided 
into an 80% training dataset for supervised learning of the ML 

model and a 20% validation dataset for evaluating the accuracy 
of the ML model. Furthermore, regression tree ensemble and 
ANN models were utilized to find the best prediction model for 
the MMIC packaging analysis. The regression tree ensemble 
model is composed of a cluster of regression trees that pro-
vides more accurate results by synthesizing the responses 
from each tree (Figure 4a). In particular, we focused on the 
two gradient boosting models, eXtreme Gradient Boosting 
(XGBoost) and Light Gradient Boosting Machine (LightGBM), 
which are regarded as scalable, flexible, and versatile tools 
owing to their regularization technique.[43] The main difference 
between XGBoost and LightGBM is the growth strategies of 
each tree (Figure 4b). The trees in XGBoost are grown by split-
ting all nodes on the same layer simultaneously. In contrast, 
the trees in LightGBM are grown by expanding nodes in best-
first order instead of a fixed order, allowing high computational 
efficiency.[44,45]

To investigate the optimum prediction performance of the 
regression tree ensemble models, two hyperparameters, the 
number of trees and maximum tree depth, were controlled. 
The number of combining trees in the ensemble models was 

Figure 4. Results of regression tree ensemble models. a) Schematic of a regression tree ensemble structure composed of a set of weak regression 
trees. The ensemble structure predicts the results by aggregating responses from each regression tree. b) Two different tree growth strategies denoted 
as level-wise tree growth for XGBoost and leaf-wise tree growth for LightGBM. c,d) Prediction results of the XGBoost and LightGBM models with 
respect to the number of trees and tree depth.
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set at 128, 256, and 512, and the tree depth (i.e., the maximum 
number of edges from the root node to the leaf node as shown 
in Figure 4b) was controlled in the range of 6–12. Detailed infor-
mation on the regression tree ensemble models is described in 
the Experimental Section. The evaluation index for the accu-
racy of the solution was determined as the mean absolute per-
centage error (MAPE) as follows

y y

yi

i i

i

MAPE
100%

3

ˆ

1

3

∑=
−

=

 (1)

where yi is an actual value of the simulation and yiˆ  is a pre-
dicted value obtained from the ML solution. The MAPE values 
were obtained by training each ML model five times with dif-
ferent dataset split conditions and averaging the results.

Figure  4c,d shows the results evaluated based on the vali-
dation dataset of the XGBoost and LightGBM models, respec-
tively. The results for the training dataset are represented in 
Figure S3 (Supporting Information). It was found that the 
ensemble models with 512 trees predicted the results more 
accurately than those with the 128 and 256 ensemble trees, and 
there were optimum values of the tree depth in a moderate 
range. In contrast, the errors of the training dataset decreased 
gradually as the tree depth increased, indicating the presence 
of overfitting in the deep tree models. The minimum validation 
errors of the two models were similar: 5.34% for XGBoost and 
5.21% for LightGBM. Meanwhile, owing to the efficient growth 
strategies, the training time of the LightGBM model was 
approximately six times faster than that of the XGBoost model. 
These results indicate that the LightGBM model is advanta-
geous compared to the XGBoost model for the MMIC pack-
aging analysis. However, despite their very fast training time, 
the prediction accuracies of regression tree ensemble models 
were deemed insufficient to utilize as an accurate surrogate of 
the simulation for the MMIC packaging problem.

Meanwhile, the ANN models, inspired by biological neural 
systems, have great potential for accurate prediction of outcomes 
considering complex nonlinearities in a dataset.[46,47] The typical 
structure of fully connected ANN models comprises the input 
layer, hidden layers, and output layer (Figure 5a). In this context, 
the number of nodes in the input and output layers was fixed at 
13 and three, corresponding to the number of input and output 
variables, respectively. In contrast, the number of hidden layers 

and the number of nodes in each hidden layer are controllable 
and can significantly influence the prediction results. Therefore, 
we investigated the prediction accuracies of the ANN models by 
changing the number of hidden layers in the range of 1–7 and 
the number of nodes in that of 16–512. Detailed information on 
the ANN models is described in the Experimental Section.

The 3D graph in Figure 5b shows the validation errors of each 
ANN structure. The shallow and narrow structure of 13/16/3 
showed a high error of 14.93% due to the small number of per-
ceptrons; however, the error gradually decreased as the number 
of hidden layers and nodes increased. The minimum validation 
error of 1.69% was observed in the 13/128/128/128/128/128/3 
structured ANN model, and the error slightly increased in 
more complex structures. Moreover, there was no remarkable 
difference between training and validation errors of the ANN 
structures (Figure S4, Supporting Information). Accordingly, 
we carefully anticipate that the error of the ANN models con-
verges without overfitting issues. Based on these investigations, 
it can be concluded that the ANN models exhibited superior 
prediction performance compared with those of the regression 
tree ensemble models, showing a 1.69% minimum error. Fur-
ther improvement of the accuracy of the ML solution can be 
achieved by increasing the number of training data samples 
(Figure S5, Supporting Information).

The best prediction results of each ML model, XGBoost, 
LightGBM, and ANN, were compared with the FEM simula-
tion results (actual values), and their coefficient of determina-
tion was investigated. Figure 6; and Figure S6 (Supporting 
Information) represents the comparison results for the vali-
dation and training datasets, respectively. The optimized ML 
models show high conformity with the simulation results for 
the training dataset (Figure S6, Supporting Information), but 
they show a different trend in the validation dataset. In the vali-
dation dataset, even though the predicted temperature values 
of the three ML models were well matched with the actual 
values (Figure  6a), the prediction accuracy of regression tree 
ensemble models for the thermal stresses was insufficient com-
pared to that of the ANN model (Figure  6b,c). In this regard, 
the maximum temperature is strongly influenced by the surface 
heat flux and heat transfer coefficient. In contrast, the thermal 
stresses in the chip and adhesive are determined by many input 
parameters including material properties, thicknesses, and 

Figure 5. Results of ANN models. a) Schematic of fully connected ANN structure composed of the input layer, hidden layers, and output layer. b) The 
prediction results of ANN structures with respect to the number of hidden layers and nodes. The ANN structures were denoted as ni/n1/n2/…/nk/no, 
where ni, n1, n2, nk, and no are the number of nodes in the input layer, hidden layers, and output layer, respectively.
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thermal boundary conditions, showing that the thermal stresses 
have a high-dimensional correlation with the design parameters 
(Figure S7, Supporting Information). It indicates that the high 
accuracy of the ANN model can be attributed to the prediction 
capability of the high-dimensional and nonlinear dataset.

2.4. Deployment of the ML Solution

Finally, we deployed the developed ANN model as a web appli-
cation format, which facilitates the use of the solution by a 
graphical user interface (Figure S8, (Supporting Information) 
https://suminkang1-mmic-packaging-web-application-wgiith.
streamlitapp.com/). The distributed ML solution enables fast 
and accurate analysis of MMIC packaging by simply inputting 
several design parameters into the application, and it eliminates 
the need to rerun an additional FEM simulation when different 
conditions are applied. Especially, in terms of the computing 
cost of the ML solution, it produced prediction results within 
0.05 s, which is significantly faster than traditional simulation 
analysis that consumes 30–120 s depending on the mesh ele-
ments (Figure S9, Supporting Information). The source code of 
the web application was shared in a public cloud to encourage 
users to participate in the further development of improved or 
new solutions for various engineering problems.

3. Conclusion

We developed an ML solution for the thermomechanical anal-
ysis of MMIC packaging using experimentally validated FEM 
simulation data. The ML solution was designed to output the 
maximum values of temperature and thermal stresses con-
sidering key input parameters related to material properties, 
geometric characteristics, and thermal BCs. The FEM simula-
tion dataset was used in the training and validation of the ML 
model, and a laser-assisted thermal experiment was performed 
to verify the accuracy of the simulation data. The prediction 
accuracies of the regression tree ensemble and ANN models 
were evaluated by adjusting hyperparameters. The results indi-
cate that the ANN model predicts the temperature and thermal 
stresses with a 1.69% minimum error owing to its prediction 

capability considering a high-dimensional and nonlinear 
dataset. Finally, the ML solution based on the ANN model was 
shared as an open-source web application to facilitate the use of 
the solution for many researchers.

This ML solution provided accurate thermomechanical 
analysis results with extremely low computing time and a 
simplified process, allowing fast and facile surrogate of FEM 
simulation. More specifically, the solution provided outcomes 
within 0.05 s, and the computing time of the ML solution was 
independent of how complex the FEM simulation models 
are. Furthermore, the ML solution allowed users to obtain the 
analysis results by simply inputting design parameters. In con-
trast, the conventional FEM simulation requires several steps, 
including modeling, defining material properties and boundary 
conditions, meshing, and computing. Therefore, by combining 
well-defined frameworks such as Bayesian optimization, the 
ML solution can be utilized for an efficient optimization pro-
cess of the design parameters. We believe that the presented 
method can potentially contribute to advances in design tech-
nology by expanding to many engineering problems, not only 
the electronic packaging.

4. Experimental Section
FEM Simulation: Commercial software (Abaqus 6.14-3) was used 

for the FEM simulation. The 3D-quarter model of the chip–adhesive–
carrier–housing structure was created as a deformable solid using the 
x- and y-axis symmetric conditions. A tie constraint of the interfaces 
between adjacent layers was assigned. The dissipated heat and 
convection cooling were assigned as the surface heat flux and heat 
transfer coefficient, respectively, and the initial temperature was set 
at 25  °C. In addition, natural convection cooling with a coefficient of 
5 W m−2 K−1 was assigned to the other exposed surfaces. Regarding 
the boundary conditions, the z-axis (out-of-plane) displacement of the 
bottom surface of the housing was constrained, and a center point at 
the surface was additionally constrained with an encastre to prevent 
rotation and translation of the model. After modeling, a rectangular-
shaped mesh with a temperature–displacement coupled type (C3D8T, an 
8-node thermally coupled brick, trilinear displacement and temperature) 
was applied.

Regression Tree Ensemble Models: DMLC XGBoost[48] and Microsoft 
LightGBM[49] open-source packages were utilized for the XGBoost and 
LightGBM models, respectively. The learning rate and boosting type were 
set at 0.05 and gradient boosting tree, respectively. The upper bound 

Figure 6. Comparison between ML predictions and FEM simulation results for validation dataset. The graphs comparing predicted versus actual values 
for three outputs: a) maximum temperature, b) maximum principal stress in chip, and c) maximum von Mises stress in adhesive. The coefficient of 
determination (R2) was calculated based on the following equation: 1 ( ˆ ) / ( )2 2 2R y y y yi i i= − ∑ − ∑ − , where yi, ŷ i , and y  are the actual value, predicted 
value of the ML models, and mean of the actual values, respectively.

Adv. Mater. Technol. 2022, 2201479

 2365709x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

t.202201479 by E
lectronics A

nd T
elecom

m
unications R

esearch Institute (E
tri), W

iley O
nline L

ibrary on [11/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://suminkang1-mmic-packaging-web-application-wgiith.streamlitapp.com/
https://suminkang1-mmic-packaging-web-application-wgiith.streamlitapp.com/


www.advancedsciencenews.com www.advmattechnol.de

2201479 (7 of 8) © 2022 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH

of the tree depth was controlled in the range of 6–12, and the number  
of weak learners with 128, 256, and 512 trees. In particular, the number of  
leaves in the LightGBM model was defined as 2(depth-1), considering 
the characteristics of the growth strategy. The MultiOutputRegressor 
package was utilized to simultaneously calculate three outputs in the 
XGBoost and LightGBM models.

ANN Models: The ANN models were trained using the open-source 
platform TensorFlow.[50] Fully connected ANN models with the ReLU 
activation function were generated, and the Adam optimizer, mean 
absolute error loss function, and 5000 epochs were adopted for training 
the ANN models. The accuracy of the ANN models with respect to the 
epochs is represented in Figure S10 (Supporting Information), indicating 
that the models converged without overfitting. The number of hidden 
layers and nodes in each layer were controlled as the hyperparameters, 
in the ranges of 1–7 layers and 16–512 nodes.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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