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ABSTRACT
In this paper, we propose the application of an optical property-enhancement film that comple-
ments the angular dependence and total reflection of top-emitting organic light-emitting diodes
(TEOLEDs). The optical property-enhancement film is composed of a porous pyramid arrangement
applied on a thin-film encapsulation layer of TEOLEDs and is applied to distribute the transmitted
light evenly. The results confirm that the change in the electroluminescence spectrum for each angle
was effectively reduced because the TEOLEDs demonstrated uniform light distribution. In addition,
reducing the total internal reflection in the film structure made it possible to improve the external
quantum efficiency by approximately 35% and current efficiency by 38%.
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1. Introduction

Organic light-emitting diodes (OLEDs) are rapidly occu-
pying the market with unique advantages not found in
other light sources. Appropriately fast response speeds,
low power consumption, and self-luminous character-
istics make these suitable for high-performance dis-
plays. The displays can also be configured in different
forms to increase immersion because they are flexi-
ble. Moreover, their usage possibilities remain sufficient
for application to new technologies such as Metaverse
[1–5]. However, there are several considerations that
must be respected to produce high-resolution OLED
displays. High-resolution displays consist of highly inte-
grated thin-film transistor (TFT) circuits. Therefore, it
is difficult to use bottom-emitting OLED (BEOLED)
structures with low aperture ratios [6–8]. Thus, top-
emitting OLEDs (TEOLEDs) are essential in preventing
the loss of aperture ratio. However, because the cathode
of TEOLEDs is fabricated with a thin metal layer, part of
the light is reflected. This has been identified as the main
light loss path of TEOLEDs so consequently, different
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methods have been proposed [9–12]. The microcav-
ity effect, a method using inter-electrode reflection, is
a method of inducing light resonance by optimizing
the distance between the semi-transparent cathode and
reflective anode to the emission wavelength. Light res-
onance through countless reflections can pass through
the cathode with strong intensity, contributing to the
improvement of the current efficiency (CE) of TEOLEDs.
Nevertheless, several problems have been associated with
efficiency improvement using the microcavity effect.
Owing to the luminance improvement centered on the
front, low luminance was typically measured from the
side, resulting in angular dependence where the emission
color was also distorted. Consequently, light extraction
technologies that suppress total reflection using a struc-
ture applied to BEOLEDs have also been introduced to
TEOLEDs [13–16]. These methods, including BEOLED
light extraction technology, can increase efficiency by
reducing total reflection and can add a light scattering
layer to suppress microcavity effects as well as reduce
angular dependence [17–19]. However, unlike BEOLEDs
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where a light extraction layer can be added directly to
the substrate, a layer must be applied over the cathode
of the TEOLEDs. This limits the device performance and
could introduce stability issues. As such, there is a need
for amethod that can increase efficiency, maintain device
stability, and reduce angular dependence.

In this study, we discuss an optical property-enhance-
ment film that can improve the efficiency of TEOLEDs
and suppress angular dependence. An optical film com-
posed of a porous pyramidal arrangement effectively
improves efficiency by extending the critical angle from
the pyramidal structure of the TEOLEDs. The light trans-
mitted through the porous surface is also evenly scat-
tered and demonstrates light distribution characteristics
close to Lambertian emission. These optical property-
enhancement films applied on top of the thin film
encapsulation (TFE) behave ideally without compromis-
ing device stability. The surface of the proposed optical
property-enhancement film is prepared by distributing
polystyrene (PS) beads on the Si mold of the intaglio
pyramid and curing polydimethylsiloxane (PDMS). The
film is then immersed in toluene to remove the PS beads.
The complete removal of PS can be observed using scan-
ning electron microscopy (SEM).

2. Experiment design

The precursor solution of PDMS was solution-sheared
and cured on a prefabricated Si mold to prepare a
pyramid-arranged film. The PDMS was sheared after
placing the PS beads in the mold to add a porous sur-
face to the pyramid structure. The PS was subsequently
removed by toluene immersion to form a porous sur-
face. Details of the film production methods have been
described previously [20]. PDMS film is a suitable mate-
rial with a refractive index less than that of the TFE layer
(Al2O3, with n = 1.65), which contributes effectively to
preventing total internal reflection.

The substrates used for the OLED production were
rinsed with acetone, methanol, and deionized water for
15min each and then dried in a vacuum oven for 15min.
Organic and metal layers were then deposited using
a thermal vacuum evaporator. The detailed structures
(DevicesA to F) of the fabricatedTEOLEDs are described
in the Results and discussion section. The fabricated
TEOLEDs were subjected to TFE passivation, and Al2O3
was applied to protect them from oxygen and water.
Al2O3 was deposited by plasma-enhanced atomic layer
deposition, where trimethylaluminum was used as the
aluminum precursor. Argon was used as the carrier and
purge gas during the TFE deposition. The base pressure
of the deposition chamber was approximately 10−3 Torr
and all layers were deposited at 95°C. TheWVTRvalue of

the Al2O3 TFE layer is below 5× 10−5 gm−2 d−1, which
is the limiting value in the measurement using MOCON
equipment.

The transmittance and haze of the prepared films
were measured using UV-Vis spectroscopy (Lambda
950, Perkin Elmer). The porous pyramid film’s surface
was analyzed by SEM (Hitachi S-4800). Source mea-
surement (Keithley 238) was used to measure the cur-
rent density–voltage-luminance (J-V-L), CE, and external
quantum efficiency (EQE) of the OLEDs. The angle-
dependent EL intensity and Commission Internationale
de l’eclairage (CIE) 1931 coordinates of the TEOLEDs
were measured using a spectroradiometer (CS-2000,
Minolta) and goniometer system.

3. Results and discussion

The prepared films were designed to reduce the total
internal reflection of the TEOLEDs and suppress angu-
lar dependence by inducing the diffusion of light from
the porous surface [19]. A pyramid-structured film was
adopted to effectively reduce total internal reflection. In
the case of the porous pyramid film, innumerable 2 μm-
sized pores were arranged such that the transmitted light
could be evenly diffused. As indicated in the SEM image
in Figure 1, themanufactured filmhad a pyramidal struc-
ture resulting from the Si mold with countless pores
formed after removal of the PS beads on the surface using
toluene. Consequently, the efficiency and angular depen-
dence of the TEOLEDs improvement could be expected.
To measure the light diffusion between the pyramid film
and porous pyramid film, the total transmittance (Tt)
and parallel transmittance (Tp) were measured using a
UV-Vis spectrometer (Figure 2). The diffuse transmit-
tance (Td) and haze were calculated using the following
equations:

Td + Tp = Tt(Total transmittance)

Td/Tt ∗ 100 = Haze

The porous pyramid film exhibited an average of approx-
imately 10% greater transmittance at all wavelengths.
However, the ratio of the diffuse transmittance was
greater in all sections (approximately 15) because it was
greater in the porous film. The high haze characteristic
of the porous pyramid structure could also be expected
to improve the light distribution characteristics of the
TEOLEDs.

To understand the change in luminance and effi-
ciency of TEOLEDs with the attached optical property-
enhancement films, devices were fabricated based on the
three architectures displayed in Figure 3.
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Figure 1. (a) Cross-sectional view and (b) top view of SEM images of porous pyramid film.

Figure 2. (a) Transmittance and haze of pyramid and porous pyramid film.

Figure 3. Device structure of (a) TEOLEDs, (b) reference OLED, (c) TEOLEDswith pyramid film, and (d) TEOLEDswith porous pyramid film.

Device A (Reference): ITO (5 nm)/Ag (100 nm)/ITO
(5 nm) – Anode/Hexaazatriphenylenehexacarbonitrile
(HAT-CN) (10 nm) – hole injection layer(HIL)/1,1-
Bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) (40
nm) – hole transport layer/Tris(4-carbazoyl-9-ylphenyl)

amine (TCTA):Tris(2-phenylpyridine)iridium(III) (Ir
(ppy)3) (5 nm) bis[3-(9H-Carbazol-9-yl)phenyl]pyridine
(DCzPPy):(Ir(ppy)3) (5 nm) – emitting layer (EML)/1,3-
bis[3,5-di(pyridin-3-yl)phenyl]benzene (BmPyPB) (40
nm) – electron transporting layer (ETL)/Lithiumfluoride
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(LiF) (1 nm)– electron injection layer(EIL)/Al (1.5 nm)/Ag
(12 nm) – Cathode/TAPC (60 nm) – capping layer
(CPL)/LiF (50 nm)/Al2O3 (60 nm) – TFE.

Device B: Anode/HIL/HTL/EML/ETL (40 nm)/EIL/
Cathode/CPL/TFE/Pyramid film.

Device C: Anode/HIL/HTL/EML/ETL (40 nm)/EIL/
Cathode/CPL/TFE/Porous pyramid film.

Figure 4(a) displays the current density–voltage-
luminance (J-V-L) characteristics of Devices A, B, and C,
respectively. As expected, the luminance of the devices
equipped with the optical property-enhancement films
(Devices B, andC) increased under the same current den-
sity. The EQE and CE were also improved, as indicated
in Figure 4(b,c), respectively. For example, at approxi-
mately 800 cd/m2, the CE of Devices A, B, and C were
53.6, 62.1, and 63.8 cd/A, respectively. At approximately
the same luminance, the EQE of Device A was 14.9%,

Figure 4. (a) Current density-voltage-luminance, (b) Current
efficiency-luminance, and (c) External quantum efficiency
characteristics of Device A, B, and C.

Table 1. Summarized light-emitting performances of Devices A,
B, and C.

cd/m2 EQE (%)

EQE
enhancement

(%) C.E (cd/A)

C.E
enhancement

(%)

Device A 804.1 14.9 53.6
Device B 891.9 17.5 17.9 62.1 15.9
Device C 857.2 18.2 22.3 63.8 19.0

Note: At a driving voltage of 4.1 V.

whereas Devices B and C demonstrated enhanced EQEs
of 17.5% and 18.2%, respectively. Details of the device
performance are summarized in Table 1. This efficiency
improvement can be attributed to the critical angle reduc-
tion from the pyramid and porous surface, which are the
main components of the optical property-enhancement
film. The trapped light caused by total internal reflec-
tion could be extracted into the air, leading to improved
efficiency.

From the performance metrics, it was demonstrated
that the improvement in EQE was greater than the
improvement in CE. This can be attributed to the
normalized angular intensity distribution displayed in
Figure 5(a). Device A demonstrated the greatest intensity
in the range of 0°–30°, which represents the luminance in
the forward direction of the device. Device C was close
to the Lambertian distribution, indicating that the light
transmitted through the porous surface was evenly dis-
tributed. It can be inferred that this contributed to the
improvement in the EQE of the TEOLEDs by controlling
the light distribution characteristics of the porous film.
Suppression of the angular dependence of the film is also
demonstrated by the angle-dependent normalized EL
spectra and CIE coordinates, as indicated in Figure 5(b).
In Device A, a peak shift of 36 nm was observed in the
EL spectrum from 550 nm to 514 nm as the measure-
ment angle increased from 0° to 60°. For Device B, the
peak shifted by 9 nm, from 524 nm to 515 nm. Device
C indicated a peak shift of only 5 nm from 520 nm to
515 nm, demonstrating the ability of the porous pyra-
mid film to effectively suppress the angular-dependent
electroluminescence intensity (EL intensity). Figure 5(c)
displays the angular-dependent characteristics of the CIE
coordinates of the devices. For Device A, the difference
between the maximum and minimum CIE (x,y) val-
ues was (0.1053, 0.059). For Devices B and C, however,
the difference decreased to (0.055, 0.026) and (0.038,
0.016), respectively. This further highlights the advantage
of optical property-enhancement films in suppressing
angular-dependent changes in CIE coordinates.

An additional experiment was conducted to investi-
gate the improvement in the luminance and suppression
of the angular dependence in the TEOLEDs equipped
with the fabricated enhancement films. The TEOLEDs
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Figure 5. (a) Normalized angular distribution of luminance for Devices A, B, and C. Measured EL spectra of (b) Devices A, B, and C at 0°,
20°, 40°, and 60°. (c) CIE coordinates of Devices A, B, and C depending on viewing angles at a driving voltage of 4.1 V.

used were devices with an ETL thickness of 50 nm and
were designed to have a strong luminance intensity near
50°. The device structures used in this experiment are
described below.

Device D: Anode/HIL/HTL/EML/ETL (50 nm)/EIL/
Cathode/CPL/TFE

Device E: Anode/HIL/HTL/EML/ETL (50 nm)/EIL/
Cathode/CPL/TFE/Pyramid film

Device F: Anode/HIL/HTL/EML/ETL (50 nm)/EIL/
Cathode/CPL/TFE/Porous pyramid film

The normalized angular intensity distributions of
Devices D, E, and F are displayed in Figure 6(a). This

indicates that Device D has a strong resonance at 50°,
the devices with the attached films (Devices E and F)
exhibit similar angular emission to the Lambertian distri-
bution owing to the optical property-enhancement film
that evenly distributes the light. The angle-dependent
normalized EL intensity indicated in Figure 6(b) exhibits
excellent color stability for Device F, which has a porous
pyramid film. The peak shift from 0° to 60° was 30 nm
for both Devices D and E, whereas Device F exhibited a
peak shift of only 5 nm. The angular-dependent charac-
teristics of the CIE coordinates of Devices D, E, and F are
indicated in Figure 6(c). It was demonstrated that device
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Figure 6. (a) Normalized angular distribution of luminance for Devices D, E, and F. Measured EL spectra of (b) Devices D, E, and F at 0°,
20°, 40°, and 60°. (c) CIE coordinates of Devices D, E, and F depending on viewing angles at a driving voltage of 5 V.

F recorded the least CIE coordinate variation. The CIE
coordinate variation ranges �(x,y) for Devices D, E, and
F were (0.1424,0.097), (0.079, 0.049), and (0.0611, and
0.035), respectively. This investigation clearly demon-
strates the ability of the porous pyramid film to suppress
the angular dependence of TEOLEDs, even with a strong
microcavity.

Figure 7(a) displays the J-V-L characteristics of
Devices D, E, and F. Compared with the previously mea-
sured TEOLEDs with an ETL of 40 nm, the significantly
reduced critical angle at the porous pyramid interface
allows for the greatest luminance exhibited by Device F.
This clearly demonstrates the advantages of the porous
pyramid film as an optical property-enhancement film.
The EQE and CE of Devices D, E, and F are indicated

in Figure 7(b,c), respectively. At 5V, the EQE of Devices
D, E, and F were 12.23%, 15.49%, and 16.51%, respec-
tively. Compared to the reference device (Device D),
Devices E and F demonstrated EQE improvements of
26% and 35%, respectively. Devices D, E, and F exhib-
ited CE of 44.30, 55.88, and 61.19 cd/A, respectively.
This corresponds to 26.14% and 38.12% CE improve-
ments in Devices E and F, respectively. The perfor-
mance of Devices D, E, and F is summarized in Table 2.
This investigation proves the ability of performance
films to distribute light uniformly over a large viewing
angle. It was demonstrated that the optical property-
enhancement films effectively improved luminance even
in TEOLEDs with weak luminance in the forward
direction.
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Figure 7. (a) Current density-voltage-luminance, (b) Current
efficiency-luminance, and (c) External quantum efficiency charac-
teristics of Devices D, E, and F.

Table 2. Summarized light-emitting performances of Devices D,
E, and F.

cd/m2 EQE (%)

EQE
enhancement

(%) C.E (cd/A)

C.E
enhancement

(%)

Device D 808 12.23 44.30
Device E 1127 15.49 26.66 55.88 26.14
Device F 1145 16.51 34.99 61.19 38.12

Note: At a driving voltage of 5 V.

4. Conclusion

We proposed the application of a porous pyramid
array optical property-enhancement film as an effec-
tive method of improving the efficiency and suppress-
ing angular-dependent emission in advanced TEOLEDs.
The TEOLEDs equipped with the optical property-
enhancement films exhibited an improved EQE of 35%

and a CE of 38% without changing the electrical char-
acteristics of the pristine TEOLEDs. The films extract
light trapped owing to total internal reflection at the
TFE-air interface. It was further demonstrated that even
when porous pyramid films were applied to TEOLEDs
with biased emission, the angular-dependent EL inten-
sity was significantly minimized by effectively control-
ling the emission angle, resulting in a light distribution
close to Lambertian. The proposed optical property-
enhancement film for TEOLEDs is versatile, process-
friendly, and can be adopted in advanced OLED displays
and lighting.
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