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Abstract

Background: Automatic diagnosis of depression based on speech can complement mental health treatment methods in the
future. Previous studies have reported that acoustic properties can be used to identify depression. However, few studies have
attempted a large-scale differential diagnosis of patients with depressive disorders using acoustic characteristics of non-English
speakers.

Objective: This study proposes a framework for automatic depression detection using large-scale acoustic characteristics based
on the Korean language.

Methods: We recruited 153 patients who met the criteria for major depressive disorder and 165 healthy controls without current
or past mental illness. Participants' voices were recorded on a smartphone while performing the task of reading predefined
text-based sentences. Three approaches were evaluated and compared to detect depression using data sets with text-dependent
read speech tasks: conventional machine learning models based on acoustic features, a proposed model that trains and classifies
log-Mel spectrograms by applying a deep convolutional neural network (CNN) with a relatively small number of parameters,
and models that train and classify log-Mel spectrograms by applying well-known pretrained networks.

Results: The acoustic characteristics of the predefined text-based sentence reading automatically detected depression using the
proposed CNN model. The highest accuracy achieved with the proposed CNN on the speech data was 78.14%. Our results show
that the deep-learned acoustic characteristics lead to better performance than those obtained using the conventional approach and
pretrained models.

Conclusions: Checking the mood of patients with major depressive disorder and detecting the consistency of objective descriptions
are very important research topics. This study suggests that the analysis of speech data recorded while reading text-dependent
sentences could help predict depression status automatically by capturing the characteristics of depression. Our method is
smartphone based, is easily accessible, and can contribute to the automatic identification of depressive states.
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Introduction

Depression is a serious psychiatric illness affecting >300 million
people worldwide. It leads to a variety of negative health
outcomes in individuals [1,2]. When left untreated, it can affect
the quality of life, lower work productivity, and lead to suicide
[3]. When diagnosed correctly, depression is a treatable disorder,
and its symptoms can be relieved [4]; however, an accurate
diagnosis of major depression is difficult because it is a
biologically and clinically heterogeneous entity [5]. In addition,
it can be difficult to access trained clinicians in a timely manner,
and the diagnosis process and quality are inconsistent for
patients in need of professional assistance [6]. There is an urgent
need to develop a method for reliable automatic diagnosis and
timely screening of depression to facilitate remote assessments
and more precise treatment with personalization [7].

A promising approach to address the abovementioned problems
is to identify depression markers and advanced machine learning
(ML) techniques using real-world accessible sensors (eg,
wearables, cameras, and phones). These approaches may make
it easier for nonspecialists to effectively identify symptoms in
patients with depression and accordingly direct them toward
appropriate treatment or management. Previous studies have
explored a spectrum of behavioral signal approaches, such as
speech [7,8], text [9-11], facial expressions [12-14], and body
movements [15-18], to develop depression assessment. Among
these, speech has proven to be a reliable biomarker for
depression assessment [19,20] and is popular because of its
accessibility and availability compared with other behavioral
signals, making it ideal data for depression screening. Moreover,
it requires significantly less bandwidth and lower processing
power, thus making it a simple and computationally inexpensive
implementation of depression detection.

Automatic depression detection (ADD) has gained popularity
with the advent of publicly available data sets [21] and the power
of ML techniques to learn complex patterns. Among
speech-based methods, previous studies have focused more on
using handcrafted acoustic features, such as prosody [13],
formant [22], and cepstral [23] features, and then classifying
patterns using ML algorithms, such as support vector machine
(SVM) [24], logistic regression [25], and random forest (RF)
[26]. These studies have suggested that acoustic features are
closely related to depression. However, handcrafted acoustic
features require considerable effort and time, and because the
extracted features depend on the researcher’s domain
knowledge, some useful information related to depression may
be lost. Demonstrating the reliable acoustic features of ADD
remains an open research challenge. More recently, deep
learning techniques have achieved high success in audio and
video recognition tasks, and many studies have reported that
deep learning approaches in depression detection have
significantly improved performance compared with conventional
approaches that use partial representation [27]. These approaches
have greatly improved performance because they can

automatically learn effective hierarchical representation of
speech without human intervention [28]. Therefore, in this study,
we explore how depression detection can benefit from deep
learning.

Text-dependent read speech helps to reduce acoustic variability,
as reading language content can be designed to express behavior
in a controlled manner, such as the same length and content
[29]. Therefore, using it for depression detection can provide a
more precise performance even under limited conditions. Stasak
et al [30] observed that, unlike the spontaneous mode,
text-dependent affective read speech provides a more accurate
ground truth for speech analysis because of speech and affective
constraints. They argued that it has the advantage of being used
stably for automatic depressive detection in clinical settings.
Speech analysis requires the standardization of speech
acquisition to produce consistent results. Therefore, a focus on
text-dependent read speech that includes every sound and
represents normal speech can have uniformity in speech
derivation procedures that can trigger the characteristics of voice
[31]. However, previous studies on text-dependent read
speech–based depression detection have not investigated
pathological acoustic qualities in a more sizable depression data
set. In addition, cohort studies in English dominate this field,
and prospective data on improved access to psychiatric care
among non-English speakers are lacking [32].

To address these issues, we used audio samples based on
text-dependent reading modes to determine whether depressive
symptoms could be detected based on differences in acoustic
characteristics. We believe that an autosensing approach using
deep learning to describe text-dependent reading modes can
significantly contribute to this field of research. Therefore, in
this study, a Korean-based speech cohort was used to diagnose
depression using text-dependent read speech. We then applied
a convolutional neural network (CNN) layer and a dense layer
to model the depressive state. Finally, the trained model was
used to predict depression among unknown data samples. The
performance of the model was compared with that of other
approaches, ML, and pretrained models. The results show that
our approach is effective in easily and automatically assessing
depressive states in speech.

Methods

Recruitment
The participants were 153 patients with major depressive
disorder (MDD) and 165 healthy controls. All participants were
from South Korea. The inclusion criterion was that study
participants should be aged ≥19 years. All patients with MDD
were evaluated by board-certified psychiatrists according to the
Diagnostic and Statistical Manual of Mental Disorder criteria
to identify their current mood states. The severity of depressive
symptoms was assessed using the Hamilton Depression Rating
Scale (HAM-D) and Patient Health Questionnaire-9 (PHQ-9)
[33]. Patients with bipolar disorder, schizophrenia, other
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psychotic disorders, delirium, dementia, mental retardation,
alcohol use disorders, organic mental disorders, neurological
illnesses, brain damage, and serious medical illnesses were
excluded. Healthy participants without any medical history of
psychiatric disorders were recruited via advertisements to form
the control group. The study procedures were fully explained
to all participants, and they provided written consent for the use
of data for the study objects before study enrollment. In addition,
each participant was paid US $50.

Ethics Approval
This study was reviewed and approved by the Institutional
Review Boards of Inje University Ilsan Paik Hospital (number
2019-12-011-015) and Chungnam National University Hospital
(number 2019-10-101-018), which specializes in mental health
in South Korea.

Reading Task-Based Experimental Design and Speech
Data Sets Acquisition
The experimental protocol in this study was designed to assess
speech responses to identify depression using predefined
text-dependent speech tasks (Figure 1). The protocol consisted
of three automatic speech reading tasks: (1) vowel; (2) digits

from 1 to 10; and (3) a passage in Korean called “Autumn” [34],
a standard 118-word paragraph. The “Autumn” is a standard
text used to evaluate phonetic utterance in Korea, which has a
balanced proportion of consonants and vowels in Hangeul and
does not have an intended sentiment. The vowel and digit tasks
were repeated 2 times. For example, participants were instructed
to read a word or sentence from scripts. The experimental guide
presented the participants with standardized instructions and
examples before recording the speech samples. The primary
language of the participants was Korean.

The reading tasks of each participant were recorded using a
smartphone (built-in microphone of Samsung Galaxy S10).
Speech samples on the microphone were saved as mono-PCM
(Pulse-Code Modulation; 32 bits) .wav files, sampled at 44.1
kHz. The speech samples were recorded in a quiet room, and
the microphone was positioned at a distance of approximately
30 cm from the participants to ensure the quality of the
recordings. We created slides with scripts for each task and
placed them on a table where the participants could easily see
them. The participants were instructed to read the script through
the slides in a comfortable and self-selected pitch and volume.
The collected audio data set was used for the experiments in
this study.

Figure 1. Experimental procedure based on the read-dependent speech tasks.

Preprocessing for Audio Signals Enhancement
The recorded audio signal included the speaker’s speech and
nonspeech parts, such as silence and background noise caused
by environmental factors. These nonspeech parts can be an
obstacle to training acoustic features for depression recognition
[35,36]. Therefore, the noise and silent parts were removed from
the audio signals before extracting the acoustic features. In this

study, the audio signal was removed using a Python package
called Noisereduce [37], which implements stationary noise
reduction based on the first 0.5 seconds of each utterance. The
silent parts of the audio signal were removed using a voice
activity detector [38] to obtain a record of the continuous speech
parts. Low-quality recordings were excluded. After these
processes, 318 audio samples were available, and the duration
of the recordings for each task is described in Table 1.

Table 1. Time information of audio samples in the major depressive disorder (MDD) and healthy controls (HC) groups during the vowel, digit, and
passage tasks.

PassageDigitVowel

MDD

153 (48.1)153 (48.1)153 (48.1)Number of samples, n (%)

91.80 (17.46)16.02 (5.39)14.67 (4.07)Speech time (seconds), mean (SD)

14,15023732307Total speech time (seconds)

HC

165 (51.9)165 (51.9)165 (51.9)Number of samples, n (%)

72.71 (7.91)14.39 (4.44)13.59 (4.06)Speech time (seconds), mean (SD)

13,11023612325Total speech time (seconds)
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Deep Learning Implementation for Speech-Based
Depression Detection
The goal of the proposed approach is to capture a series of
acoustic features from audio samples using text-dependent
speech tasks and map them into a similar representation space
to determine the presence of depression. As CNN is a powerful
framework for learning a feature hierarchy, it can provide a
representation space capable of detecting depression. Thus, we
chose the CNN architecture to learn spatially invariant features
of audio samples. We trained a deep CNN from scratch and
evaluated its classification performance. Figures 2A and 2B

demonstrate the pipeline of the proposed method for depression
detection. This method consists of 3 main processes: image
representation using a log-Mel (LM) spectrogram, deep feature
extraction using a deep CNN architecture, and a classifier. Next,
we compared the discriminating ability of the CNN architecture
with that generated by transfer learning using a well-known
pretrained deep network. In addition, we confirmed whether
the feature extraction approach using a deep CNN has
advantages over the conventional ML model method in
text-dependent speech tasks. Pretrained CNN model
architectures and components are described in the Pretrained
CNN Models section.

Figure 2. The pipeline of the proposed method for depression detection. (A) Image representation using spectrograms of audio samples, (B) Log-Mel
spectrogram-based convolutional neural network (CNN) and depression detection, and (C) architectures on the proposed CNN model in this study.
CONV: convolution; ReLu: rectified linear unit; FC: fully connected.

The audio signal must be properly converted to enable deep
CNN input, and deep CNN training requires a large amount of
labeled data to use deep feature extraction using a CNN for
audio samples. To address this issue, we segmented the audio
signal into an optimal length to enable depression recognition
in each segment, as shown in Figure 2A. We adopted
fixed-length frames with a duration of 25 ms and 50% overlap
as the augmented samples [39,40]. In this study, each frame
was transformed into 64 channels LM spectrogram with a size
of 64×200 pixels as image-like patches. The parameters were
as follows: n_ffs=1024 and hop_length=512. We then converted
the spectrogram (mel_db) using a mel-scale. The LM
spectrogram is a widely used method in audio applications using
deep learning, which requires a 2D image representation of an
audio signal with complex features [20,41,42]. After feature
extraction, the audio samples were generated as a set of
frame-level–based 2D LM spectrograms to conduct feature
learning with a 2D CNN. Technically, these methods were
implemented using the Librosa library.

We adapted augmentation techniques to increase the size of the
training set to improve generalization. An augmentation method

that generates new additional training data is a successful
method for reducing model overfitting on sparse data and
improving generalization performance. SpecAugment is the
latest augmentation method developed by Google for
spectrograms of input audio [43]. SpecAugment has shown a
remarkable improvement in automatic speech recognition
performance. This study focuses on 2 strategies of SpecAugment
to modify the spectrogram by masking blocks of consecutive
frequency channels and time channels. Frequency masking is
applied over the f consecutive frequency channels in the range
(f0, f0+f), where f is chosen from a uniform distribution (0, F)
and f0 is chosen from (0, v-f), where F and v represent the
maximum width of the frequency masks and the number of LM
frequency channels, respectively. Similarly, time masking is
applied over the t consecutive time steps in the range (t0, t0+t),
where t is chosen from a uniform distribution (0, W) and t0 is
sampled from (0, T-t), where W and T represent the maximum
width of the time masks and the number of time steps,
respectively. On the basis of the approach adopted by Park et
al [43], spectrogram augmentation was applied through temporal
masking, frequency masking, and mixed time and frequency
masking. Including the raw training sample, this data
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augmentation procedure achieved a 4-times increase in the
training data set.

We designed a CNN architecture to extract features from an
LM spectrogram. The detailed model structure of the proposed
CNN is shown in Figure 2C. Our CNN architecture consists of
4 blocks with a convolutional layer followed by a rectified linear
unit as the activation function and 2×2 max-pooling with a 1×2
stride over the last 2 dimensions (time and frequency) for
dimensionality reduction of the feature maps. A kernel of size
3×3 with 16, 32, 64, and 32 channels in 4 convolution blocks
was used for the convolution operation. The feature set obtained
from the last layers is required by the fully connected layers for
classification.

Pretrained CNN Models
In addition to the proposed CNN architecture, pretrained CNN
models were used as feature extractors to evaluate depression
detection in this study. We tested the following additional
pretrained CNNs designed to extract audio representations: 4
state-of-the-art image CNN models, namely, VGG16, VGG19
[44], ResNet50 [45], Inception-v3 [46], and MobileNet-v2 [47],
and 2 state-of-the-art sound event detection CNN models,
namely, VGGish [48] and YAMNet [49].

The image CNN models Inception-v3, VGG16, VGG19,
ResNet50, and MobileNet-v2 were also used with LM
spectrogram images as the 2D input. The LM spectrograms
were resized to 224×224 images with 3 channels (R, G, and B)
because of their suitability for deep feature extraction. For the
classification of the image CNN models, we applied global
average pooling instead of using a flattening layer after the
feature extractor. For all these models, the final fully connected
layers were eliminated and redesigned in the new classifier.

VGGish is a deep audio embedding method for training a
modified visual geometry group architecture to predict video
tags from the Youtube-8M data set [50]. It extracts
128-dimensional embedding from 0.96 seconds of audio.
YAMNet uses the MobileNet _v1 depth-wise separable
convolution architecture and is trained on the AudioSet corpus
[51]. It extracts 1024-dimensional embedding from 0.96 seconds
of audio. The input sizes of VGGish and YAMNet are 94×64
for the LM spectrogram, and they transform audio input into a
high-level dimensional embedding vector of 128 and 1024,
respectively, as a classification input.

For the proposed CNN and pretraining models, the classifier
uses 128 and 64 fully connected dense layers, respectively, and
rectified linear unit activation. We use a 0.5 dropout probability
between dense layers to prevent overfitting of the training data.
The output layer consisted of 1 hidden unit to classify an image
into 2 classes: MDD and control. For the output layer, we used
a sigmoid activation function for binary classification.

The training process was set up to run 20 epochs for all the
CNN models. For model training, the Adam optimizer was
selected with a fixed learning rate of 1e-3. In this study, the
learning rate was based on the validation accuracy of the model,
and early stopping was performed. All the parameters of the
testing stage were applied similar to the training stage. The deep
CNN was implemented using Python (version 3.7.11) and

TensorFlow (version 2.5.0) on a Quadro RTX 8000 48GB GPU
(NVIDIA).

Depression Detection Based on the Conventional ML
Model
The baseline audio signals extracted 3 widely used acoustic
feature representations—Mel-frequency cepstral coefficients
(MFCCs), extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS) [52], and Interspeech Computational
Paralinguistics Challenge (COMPARE) [53] features—to
compare the effectiveness of the deep spectral representations
model. The suitability of these acoustic representations for
speech-based emotion recognition tasks has been demonstrated
in previous studies [54,55]. MFCCs, which are widely used in
the field of speech recognition, exhibit short-term power spectral
features extracted from acoustic speech signals and reflect
changes in the human vocal tract [56]. In a previous study
[57,58], MFCC was demonstrated to be highly effective in
detecting depression compared with other speech features in
conventional approaches. We explored whether MFCCs as
diagnostic biomarkers of depression could allow discrimination
between patients with depression and control participants in
this study. MFCCs were calculated from the window interval
of the audio signal. We used MFCCs calculated by using a frame
length of 25 ms with 50% overlap and a Hamming window.
The frame of the audio data was transformed using a Fourier
transform and a 26 channel mel-scale filter bank. MFCCs from
1 to 12 were calculated logarithmically and obtained using a
discrete cosine transform. The mean and SD of the MFCCs
within the utterance segments were calculated. We also extracted
the eGeMAPS and COMPARE low-level feature sets using the
openSMILE toolkit [59]. The 38 eGeMAPS feature sets and 65
COMPARE feature sets were adapted, consisting of low-level
descriptors capturing spectral, cepstral, prosodic, and
voicing-related dynamic information from the audio signal. All
feature sets were fed into multiple ML models of SVM, linear
discriminate analysis (LDA), k-nearest neighbor (kNN), and
RF implemented using the scikit-learn toolbox [60]. For the
SVM classifier, we used a linear kernel function with a
regularization parameter C=1. For the kNN classifier, the
Euclidean distance was used as the distance metric, and the
kNN was set to 5 as a parametric search from 1 to 5. RF
consisted of 100 trees, and the Gini diversity index was used.

Evaluation Criteria
The 318 audio data sets were randomly split into 254 training
sets, 32 validation sets, and 32 testing sets in a balanced ratio
between patients with MDD and healthy controls during the
experiments. Participant-independent splits were used for
training, validation, and testing.

A 10-fold cross-validation method was used to split the data
and evaluate the performance of each classifier. We compared
the predicted results with test data to evaluate their performance.
In our study, we adopted the accuracy, precision, recall, receiver
operating characteristic curve, and F1-score, by using the
confusion matrix, as the evaluation criteria. The area under
receiver operating characteristic curve (AUC) was also
calculated.
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Results

Demographic and Clinical Characteristics of
Participants
The demographic and clinical characteristics of the age,
education, HAM-D, and PHQ-9 factors were not normally
distributed; these factors were compared between the control
and MDD groups using the Mann-Whitney U test. Sex, alcohol

history, and smoking history were compared using the chi-square
test.

The descriptive demographic and clinical characteristics of the
participants in this are summarized in Table 2. We recruited
153 patients (102 females) diagnosed with MDD and 165
healthy controls (123 females). There were no significant
differences in the sex ratio and age between these groups.
Significant differences were observed in years of education
(P<.001). In addition, the MDD group had a significantly higher
HAM-D (P<.001) and PHQ-9 than the control group.

Table 2. Demographic characteristics of major depressive disorder (MDD) and health controls (HC) groups.

P valueHCMDDFactors

.16aGender, n (%)

42 (25.5)51 (33.3)Male

123 (74.5)102 (66.7)Female

.0637.15 (12.18)38.64 (13.26)Age (years), mean (SD)

<.001 b14.71 (2.19)13.10 (2.57)Education (years), mean (SD)

.008 a,c83 (50.30)55 (35.95)Nonalcoholic, n (%)

.006 a,c21 (12.73)45 (29.41)Nonsmoker, n (%)

<.001 b2.07 (4.61)22.18 (6.34)HAM-Dd, mean (SD)

<.001 b2.14 (3.44)16.92 (6.99)PHQ-9e, mean (SD)

aChi-square test.
bP values in italics are significant (P<.001).
cP values in italics are significant (P<.01).
dHAM-D: Hamilton Depression Rating Scale.
ePHQ-9: Patient Health Questionnaire-9.

Testing Results
In this section, we analyze the classification capability of the
proposed approach, including the conventional ML models and
the CNN method, to recognize depression in unknown audio
samples (test set) obtained from each text-based speech task.

First, we investigated the ability of the conventional ML
methods to classify the samples as MDD or non-MDD for each
data set of the vowel, digit, and passage tasks. Tables 3-5 show
that the classification performance of MFCC, eGeMAPS, and
COMPARE feature sets extracted from each data set were
compared with the accuracy, precision, recall, and F1-score
from the SVM, LDA, kNN, and RF classifiers. The results in
Table 3 show that the RF classifier achieved a high accuracy
of 72.80%, 73.70%, 72.14%, and 72.04% accuracy, precision,
recall, and F1-score, respectively, compared with other
classifiers when applying the COMPARE feature set on the
vowel data set. As shown in Table 4, the accuracy for
classification performance of the digit task was as high as
73.44% for the RF with the COMPARE feature set. On the data
set of the passage task, we achieved accuracies of 70.73%,
69.95%, 68.54%, and 68.75% for SVM, LDA, RF classifier
with the MFCC features, and RF classifier with the COMPARE
feature set, respectively (Table 5).

We further analyzed the variability of MFCCs between the 2
groups in each task to explore the differences in MFCCs
between the MDD and control groups. As a result of analyzing
the difference between the 2 groups among the 12 MFCCs,
MFCC3 showed the greatest difference. Figure 3 shows the
MFCC3 variability between the 153 MDD and 165 control
groups and the sum of the variability of all participants. Here,
variability was implemented by subtracting the average MFCC3
from MFCC3 during each participant’s utterance. The vowel
and digit tasks showed utterance patterns for 3 seconds and the
passage task showed utterance patterns for 30 seconds due to
the difference in utterance time of each task. As a result, the
control group had significantly greater variability in MFCC3
during utterance in all tasks than the MDD group. Conversely,
the MDD group showed a monotonous pattern of MFCC3 during
utterance in all tasks.

Second, we compared the performance of depression detection
for each CNN-based representation model using our data sets.
The best performances were obtained with a batch size of 32 in
our experiment; thus, all results provided below refer to the
models trained with this batch size. Table 6 summarizes the
mean and SD of the 10-fold classification performance for each
data set and model. The data sets of all tasks showed that the
highest performance was observed in the proposed CNN model.
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In particular, the classification performance of the proposed
CNN approach in the passage task showed the best results, with
mean accuracy, precision, recall, and F1-score of 78.14%,
76.83%, 77.90%, and 77.27%, respectively. These results
achieved a performance improvement of approximately 8%
accuracy compared with the best performance for the
conventional ML approach, as reported in Table 5. It also
outperformed the other pretrained models.

The receiver operating characteristic curves and AUCs based
on the CNN models in the passage task are shown in Figure 4.
The mean AUC for the test set of the proposed CNN model was
0.86. These results suggest that the proposed CNN model can
capture more information about the depression-specific features
contained in text-based speech than the conventional ML
approach and the pretrained models. The proposed CNN model
achieved a good performance in the passage task; consequently,
a more detailed analysis was performed. Figure 5 shows the
accuracy based on the model parameter size. In general, it was
observed that the accuracy was lower, except for the sound CNN
model, when the parameters of the model were larger (YAMNet
and VGGish).

In addition, benchmark experiments were performed to compare
the performance of depression detection and PHQ-9 score
prediction in the benchmark model and the proposed CNN
model on audio data sets in a text-dependent setting
(read-dependent speech mode) and a text-independent setting
(spontaneous mode). A previously reported model [61] that
performed well in an independent setting was adopted as the
benchmark model. This study provided only the Concordance
Correlation Coefficient (CCC) and Root Mean Square Error as

an evaluation of the model for predicting the PHQ-9 score. The
audio data set from the audio or visual emotion challenge and
workshop 2019 detecting depression with artificial intelligence
subchallenge, the Extended Distress Analysis Interview Corpus
[62], was used as the text-independent setting. The Extended
Distress Analysis Interview Corpus contains a multimodal data
set of semistructured clinical interviews to evaluate the diagnosis
of psychiatric stressors, such as depression, anxiety, and
posttraumatic stress disorder.

We first trained both the benchmark and proposed models in a
text-dependent setting and then compared the mean performance
of 10-folds for depression detection and PHQ-9 score prediction.
Here, the performance of depression detection and PHQ-9 score
prediction were adopted as the accuracy or F1-score and the
CCC or Root Mean Square Error, respectively [61]. As shown
in Table 7, in the case of a text-dependent setting, the
classification accuracy of the proposed CNN model was 27%
higher than that of the benchmark model. In contrast, the CCC
of the benchmark model was higher by 0.25 in the prediction
performance of the PHQ-9 score. For the text-independent
setting, we conducted an experiment with 163, 56, and 56
training, development, and test participants, respectively, as in
the benchmark experiment. The results confirmed that the
performance of depression classification and PHQ-9 score
prediction in the benchmark model was better than that of the
proposed model in a text-independent setting.

These results prove that the model proposed in this study can
classify depression better than other models in the dependent
setting.
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Table 3. Comparisons of the performance of machine learning classifiers for Mel-frequency cepstral coefficients (MFCCs), extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS), and Interspeech Computational Paralinguistics Challenge (COMPARE) feature sets of vowel task (N=318).

Test setFeature and classifier

F1-scored (%), mean (SD)RECc (%), mean (SD)PRECb (%), mean (SD)ACCa (%), mean (SD)

MFCCs

55.43 (3.91)55.82 (3.84)56.22 (4.01)56.56 (3.81)SVMe

53.65 (2.75)53.98 (2.80)54.25 (2.99)54.69 (2.88)LDAf

56.47 (5.80)56.65 (5.58)56.84 (5.85)57.19 (5.60)kNNg

58.40 (1.31)59.41 (1.44)61.24 (2.07)60.63 (1.53)RFh

eGeMAPS

57.90 (6.58)58.59 (6.16)59.27 (6.37)59.38 (5.93)SVM

59.05 (2.71)59.16 (2.66)59.44 (2.66)59.69 (2.60)LDA

59.23 (3.18)59.29 (3.18)59.30 (3.17)59.37 (3.13)kNN

59.32 (3.39)60.16 (2.99)61.67 (3.20)61.25 (2.86)RF

COMPARE

48.26 (3.70)48.67 (3.44)48.57 (3.62)48.75 (3.48)SVM

51.07 (3.38)51.37 (3.40)51.37 (3.46)51.25 (3.19)LDA

58.61 (5.40)58.78 (5.32)59.12 (5.42)59.38 (5.23)kNN

72.04 (2.77)72.14 (2.64)73.70 (2.19)72.80 (2.44)RF

aACC: accuracy.
bPREC: precision.
cREC: recall.
dF1-score: the weighted average of precision and recall.
eSVM: support vector machine.
fLDA: linear discriminate analysis.
gkNN: k-nearest neighbor.
hRF: random forest.
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Table 4. Comparisons of the performance of machine learning classifiers for Mel-frequency cepstral coefficients (MFCCs), extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS), and Interspeech Computational Paralinguistics Challenge (COMPARE) feature sets of digit task (N=318).

Test setFeature and classifier

F1-scored (%), mean (SD)RECc (%), mean (SD)PRECb (%), mean (SD)ACCa (%), mean (SD)

MFCCs

53.62 (4.74)53.76 (4.87)53.82 (4.96)53.75 (4.80)SVMe

55.87 (5.64)55.92 (5.66)56.07 (5.84)56.25 (5.76)LDAf

50.61 (4.44)50.82 (4.36)50.80 (4.41)51.25 (5.80)kNNg

50.24 (4.24)51.63 (3.48)51.66 (4.09)52.81 (3.26)RFh

eGeMAPS

51.17 (4.60)51.30 (4.56)51.32 (4.58)51.84 (4.62)SVM

47.92 (2.69)48.04 (2.64)47.95 (2.69)48.01 (2.50)LDA

45.13 (3.30)45.52 (3.39)45.60 (3.48)45.36 (3.42)kNN

52.96 (4.25)55.10 (3.68)56.15 (4.89)56.21 (3.56)RF

COMPARE

55.73 (6.77)57.08 (5.78)57.64 (5.69)57.81 (5.09)SVM

62.09 (4.31)62.25 (4.41)62.32 (4.49)62.19 (4.30)LDA

45.10 (4.03)45.16 (4.03)45.14 (4.03)45.31 (4.01)kNN

72.99 (1.53)72.96 (1.49)73.84 (1.79)73.44 (1.56)RF

aACC: accuracy.
bPREC: precision.
cREC: recall.
dF1-score: the weighted average of precision and recall.
eSVM: support vector machine.
fLDA: linear discriminate analysis.
gkNN: k-nearest neighbor.
hRF: random forest.
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Table 5. Comparisons of the performance of machine learning classifiers for Mel-frequency cepstral coefficients (MFCCs), extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS), and Interspeech Computational Paralinguistics Challenge (COMPARE) feature sets of passage task (N=318).

Test setFeature and classifier

F1-scored (%), mean (SD)RECc (%), mean (SD)PRECb (%), mean (SD)ACCa (%), mean (SD)

MFCCs

68.63 (6.63)68.18 (6.19)70.00 (6.29)70.73 (5.93)SVMe

69.49 (8.60)69.79 (8.34)70.57 (8.23)69.95 (8.38)LDAf

63.13 (7.87)63.25 (7.91)63.55 (8.05)63.45 (7.76)kNNg

67.27 (8.74)67.98 (8.09)66.45 (7.40)68.54 (7.75)RFh

eGeMAPS

58.58 (2.34)58.89 (2.15)59.35 (2.15)59.38 (2.08)SVM

56.62 (2.99)57.21 (2.96)57.96 (3.34)58.14 (2.99)LDA

60.66 (4.37)64.05 (4.71)62.11 (4.85)61.88 (4.37)kNN

56.10 (2.36)56.74 (2.17)57.33 (2.91)57.81 (2.21)RF

COMPARE

62.80 (2.71)62.96 (2.58)63.44 (2.53)63.44 (2.44)SVM

62.03 (4.90)62.10 (4.87)62.17 (4.94)62.19 (4.93)LDA

65.44 (3.06)65.49 (3.07)65.61 (3.19)65.63 (3.13)kNN

67.60 (1.63)67.84 (1.49)69.69 (1.27)68.75 (1.40)RF

aACC: accuracy.
bPREC: precision.
cREC: recall.
dF1-score: the weighted average of precision and recall.
eSVM: support vector machine.
fLDA: linear discriminate analysis.
gkNN: k-nearest neighbor.
hRF: random forest.

Figure 3. The Mel-frequency cepstral coefficient 33 variability between the major depressive disorder (MDD) and control groups in (A) vowel, (B)
digits, and (C) passage tasks.
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Table 6. Comparisons of the depression detection performance of convolutional neural network (CNN) models in all tasks (N=318).

Test setData set and models

F1-scored (%), mean (SD)RECc (%), mean (SD)PRECb (%), mean (SD)ACCa (%), mean (SD)

Vowel

51.13 (24.38)46.66 (24.55)64.04 (21.56)65.44 (6.58)Proposed CNNs

46.24 (2.46)41.06 (3.83)53.16 (1.26)47.70 (1.76)VGG16

47.37 (4.30)43.06 (6.30)53.29 (0.83)47.97 (0.95)VGG19

14.89 (28.38)20.00 (40.00)10.99 (21.99)47.02 (3.98)ResNet50

56.84 (1.87)51.81 (3.01)63.13 (1.81)56.83 (1.33)Inception-v3

58.29 (2.24)54.20 (4.66)63.34 (0.99)57.53 (0.85)MobilieNet-v2

59.99 (0.75)60.01 (1.16)59.93 (0.77)55.93 (0.78)VGGish

66.09 (1.16)66.43 (1.96)65.78 (0.82)62.54 (0.98)YAMNet

Digit

51.53 (26.23)47.72 (24.99)56.79 (28.83)66.60 (7.10)Proposed CNNs

54.32 (5.20)48.49 (7.53)62.65 (1.19)61.69 (1.24)VGG16

44.79 (5.90)35.94 (6.53)60.62 (1.66)53.20 (1.62)VGG19

17.03 (26.00)30.00 (45.83)11.89 (18.16)54.15 (9.25)ResNet50

62.06 (2.04)58.72 (3.76)65.99 (1.50)61.69 (1.24)Inception-v3

62.9 (2.70)60.49 (3.81)65.59 (1.64)61.92 (2.03)MobilieNet-v2

50.52 (2.14)51.26 (2.94)49.83 (1.60)46.00 (1.74)VGGish

58.04 (1.76)55.18 (3.06)61.32 (0.73)57.37 (0.83)YAMNet

Passage

77.27 (2.10)77.90 (2.73)76.83 (3.92)78.14 (2.40)Proposed CNNs e

65.64 (1.05)65.48 (3.11)65.97 (1.48)66.80 (0.40)VGG16

61.80 (2.08)66.38 (5.16)58.14 (2.69)65.58 (2.52)VGG19

23.54 (21.24)17.11 (18.59)79.98 (9.15)56.62 (4.84)ResNet50

66.23 (0.60)69.86 (2.04)63.00 (0.69)65.46 (0.28)Inception-v3

67.29 (0.97)68.98 (3.07)65.94 (2.13)67.56 (1.28)MobilieNet-v2

63.13 (0.75)66.70 (1.70)59.96 (0.81)62.17 (0.69)VGGish

63.69 (0.74)67.39 (1.46)60.38 (0.46)62.65 (0.52)YAMNet

aACC: accuracy.
bPREC: precision.
cREC: recall.
dF1-score: the weighted average of precision and recall.
eThe accuracy, precision, recall, and F1-score of the model that the best performance are italicized for emphasis.
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Figure 4. Mean and SD of the receiver operating characteristic curve and area under receiver operating characteristic curve (AUC) based on the
convolutional neural network (CNN) models with 10-fold cross-validation in the passage task.

Figure 5. Comparison of the classification accuracy according to the model parameter size in convolutional neural network (CNN) models. ResNet:
residual neural network; VGG: visual geometry group; YAMNet: yet another mobile network fully connected.
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Table 7. Performance comparisons of a bench model [61] and a proposed convolutional neural network (CNN) model for depression detection and
Patient Health Questionnaire-9 score prediction on audio data sets in a text-dependent setting (read-dependent speech mode) and a text-independent
setting (spontaneous mode; N=318).

Data setsModels

Text-independent setting (single fold)Text-dependent setting (mean of 10-fold)

RMSECCCF1-score (%)ACC (%)RMSEdCCCcF1-scoreb (%)ACCa (%)

5.530.28737.8456.829.210.2877.2778.14Proposed CNNs model

5.700.49739.7858.578.100.4350.9051.65GCNN-LSTMe [61]

aACC: accuracy.
bF1-score: the weighted average of precision and recall.
cCCC: Concordance Correlation Coefficient.
dRMSE: Root Mean Square Error.
eGCNN-LSTM: Gated Convolutional Neural Network-Long Short Term Memory.

Discussion

Principal Findings
Our results suggest that the speech characteristics obtained
through text-dependent speech can be a promising biomarker
for MDD. In this study, we recorded speech data using a mobile
phone with predefined text-based reading speech tasks and
confirmed the potential for automatically detecting depression
based on the recorded data and a deep learning approach. As
previous studies have suggested the possibility of detecting
depression in speech data [21,25,27,30,57,63], we could easily
access speech data for depression detection. We extended the
research from image-oriented studies to speech studies using
2D CNN architectures. The sound signal was then transformed
into an LM spectrogram as a common denominator in an image
application and was used as the input to a 2D CNN.

In the passage task, the approach that adopted the CNN model
improved performance by approximately ≥7% compared with
the conventional ML approach. Compared with conventional
ML methods for evaluating handcraft-based extracted feature
sets, the acoustic feature extraction approach of CNNs generally
exhibits features in a broader spectrum and shows higher
performance, as shown in terms of classification accuracy. When
the performances of the 3 text-dependent reading tasks were
compared (Table 6), the CNN model also showed higher
classification performance in the audio sample reading the
passage task. The passage task is a neutral expression
standardized with Korean phrases that contain balanced
proportions of consonants and vowels, and because the text is
longer than the vowel and digit task, it can be used as a more
reliable depression diagnosis protocol. These results provide
opportunities for performance improvement if further
development and optimization of CNN architecture with more
spectrum of text-dependent speech data sets are implemented
in audio-based depression detection studies.

The features of the audio samples were extracted from
well-known pretrained models (VGG16, VGG19, Inception-v3,
ResNet50, MobileNet-v2, VGGish, and YAMNet), such as
features extracted through a customized CNN model, and the
classification performance was compared. We found that the
feature set extracted through pretrained models from all data

sets of text-based speech tasks did not significantly affect the
classification performance, as shown in Table 6. The shallow
network we built showed good classification performance in
detecting depression, with fewer resources in the text-based
speech tasks. These results show that the available CNN models
designed and trained on the ImageNet data set are not
necessarily critical for good performance in tasks based on
nonimage data, such as a spectrogram. ResNet50 did not perform
well in the classification of all 3 tasks. In general, this can be
justified by the need for a larger data set to compute the weights,
as shown in Figure 5.

Audio samples in the passage task achieved 78% accuracy in
depression detection (Table 6), and we observed that the CNN
model proposed in the text-dependent setting was advantageous
in detecting depression based on the benchmark experiments
and comparisons (Table 7). However, our model could not be
generalized for the prediction of PHQ-9 score and in
spontaneous situations. Text-dependent read speech is more
private and can be easily obtained with a smartphone compared
with voluntary speech containing personal information [30,62].
Implementing these text-dependent speech tasks has the
advantage of reducing acoustic variability and enabling more
precise analysis because they acquire speech in a controlled
manner and can standardize speech acquisition to produce
consistent results in detecting depression. We presented the
possibility of detecting depression by recording a
text-reading-based audio sample from a smartphone. If this
approach is applied to daily life, anyone can be screened for
depression anywhere without difficulty.

Previous studies have focused on developing depression
detection models based on open cohort data [7,21]. However,
because these data sets collected speech data from
English-speaking countries, their application to
non-English-speaking countries may be difficult. Owing to the
linguistic or cultural differences between English-speaking and
non-English-speaking countries, it is necessary to collect a
corpus suitable for non-English-speaking countries and analyze
depression detection. Thus, we collected a Korean-based audio
corpus. To the best of our knowledge, there are few cases of
speech corpus for detecting depression in Korea, and our data
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set may serve as the starting point for improving access to
psychiatric treatment in Korea.

Limitations
Our study had some limitations. First, we used a small number
of voice samples in the experiments; thus, we are currently
recruiting additional participants to collect more data to run
deep learning. With further research in this cohort, we plan to
report the outcomes of developing ML techniques for disease
diagnosis and severity prediction. Second, all the audio samples
were recorded in a quiet environment. Extended studies are
needed to apply this approach to other recording environments
(eg, in the wild and noisy conditions). In addition, we plan to
explore different strategies for combining our speech-based
systems with various information, such as video or physiological
signals. Approaching the multimodal detection will present a
robust framework that operates under more precise and natural

conditions. We believe that these efforts will help to build more
robust predictors of MDD for daily life in the future.

Conclusions
This study has opened new opportunities to identify speech
markers related to the assessment of depression through readily
obtainable speech patterns. This study also presented an
approach to automatically detect whether a person has
depression by analyzing their speech. We acquired audio
samples from 318 participants with depression and healthy
controls based on the Korean text-dependent read speech tasks
using a smartphone and analyzed their association with
depression. We found that there are many benefits of learning
audio acoustic patterns and detecting depression using deep
learning. This approach has the potential to reduce depression
and shows that it is powerful and effective in ADD via speech.
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