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ABSTRACT Although advances in deep learning have brought remarkable improvements to Overlapped
Speech Detection (OSD), the performance in far-field environments is still limited owing to the lack of real-
world overlapped speech and a low signal-to-noise ratio. In this paper, we present an end-to-end audiovisual
OSD system based on decision fusion between audio and video modalities. Firstly, we propose a simple
yet powerful audio data augmentation method for spontaneous distant speech data. Secondly, to maximize
the effectiveness of the video modality, we design a video OSD system based on a cross-speaker attention
module that explores the visual correlation between multiple speakers. Lastly, we present cross-modality
attention module to make the final decision more accurate. Our experimental results demonstrate that our
approach outperforms current state-of-the-art methods on a real-world distant speech dataset. Moreover,
our approach can robustly detect overlapped speech when compared with its counterpart, which uses audio
modality alone.

INDEX TERMS Overlapped speech detection, far-field audio data augmentation, audiovisual speech
processing, multimodal deep learning.

I. INTRODUCTION
Overlapped speech detection (OSD) is an essential com-
ponent of speech-based systems, particularly in sponta-
neous multiparty conversations. Advances in deep learning
have achieved remarkable success, and a variety of neural
network-based audio OSD systems [1], [2], [3], [4] have been
proposed to improve the performance of close-talk speech
data. However, the performance in far-field conditions is still
limited owing to the degraded signal quality and the low
signal-to-noise ratio (SNR).

Recently, there has been increasing interest in incorpo-
rating visual information into speech-based systems such as
automatic speech recognition (ASR) [5], [6], [7], [8], [9] and
voice activity detection (VAD) [10], [11], [12], [13], [14],
[15]. Note that visual information contains additional cues,
such as lip movements and number of speakers. In addition,
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video modality is entirely invariant to acoustic signal cor-
ruption, such as high levels of acoustic noise or transient
interferences. For these reasons, visual information enhances
the performance of speech processing compared with its
counterpart, which uses audio modality alone.

Our goal is to develop an end-to-end audiovisual OSD
system that improves the performance, especially in multi-
speaker distant-talking speech such as meeting scenarios,
by incorporating audio and visual information. In recent
works, S. Cornell et al. [16], [17] showed that the Tempo-
ral Convolutional Network (TCN) and Transformer-based
approaches for joint VAD+OSD systems can outperform
recent state-of-the-art methods on spontaneous distant speech
data, such as the AMI meeting corpus [18]. Although these
studies have brought remarkable improvements to VAD
systems, there are still challenges in OSD systems, such
as class imbalance. This imbalance, which arises because
speech overlap is very rare in real-world human conversa-
tions, results in relatively low performance. Building on these
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FIGURE 1. Proposed end-to-end audiovisual OSD system architecture.

previous studies, we study how to incorporate visual informa-
tion into the audiomodality to improve the performance of the
OSD system.

To successfully develop our approach, we emphasize the
following three points: 1) Most existing audio OSD sys-
tems have relied on close-talk or synthetic mixed speech for
training. However, there are differences between close-talk
and far-field speech in terms of acoustic characteristics, such
as SNR and distortion from reverberation. To alleviate this
problem, we propose an audio data augmentation algorithm
for far-field OSD. 2) To maximize the effectiveness of video
modality, we designed a video OSD system based on a
cross-speaker attention module that explores the visual corre-
lation between multiple speakers. This approach enables the
detection of overlapping speech without audio information.
3) To better leverage both audio and video modalities for
OSD systems, we present an end-to-end audiovisual OSD
system that combines the decision vectors of audio and video
OSD systems based on the cross-modality attention module
to encourage features across modalities compared to a sim-
ple concatenation of the decision vectors. Considering these
points, audioOSD, videoOSD, and audiovisual OSD systems
were implemented and evaluated. A more detailed discussion
of our approach is provided in Section III.

Our primary contributions of this paper are summarized as
follows:

• We developed an end-to-end audiovisual OSD system
that works robustly for multi-speaker distant-talking
speechwhen comparedwith stand-alone audiomodality.
To the best of our knowledge, this is the first study to use
a multimodal approach for far-field OSD.

• The proposed audio data augmentation algorithm makes
it possible to improve the performance of current state-
of-the-art audio OSD systems in a real-world meeting
dataset.

• The proposed multimodal approach effectively captures
the correlation between audio and videomodalities, even
in the presence of background acoustic noise.

Through the experiments described in Section IV, we demon-
strate that these three advantages help improve the far-field
OSD performance.

II. DATASET
In this work, we used the AMI meeting corpus [18], which
consists of over 100 hours of meeting recordings. The corpus
was recorded using a wide range of devices, including micro-
phone arrays, per-speaker headsets, lapel microphones, and
individual cameras, and had almost 4 participants. And it is
manually annotated for many different phenomena including
speaker activity and orthographic transcription.

In [16] and [17], which is our baseline system, the
author claims that using training targets obtained via forced-
alignment (FA) brings substantial improvement, even when
official manual annotation is used as the ground truth in the
evaluation stage. For this reason, we used the same FA-based
labels for training, and the test set was evaluated using official
annotation.

III. PROPOSED OVERLAPPED SPEECH DETECTION
In this study, we aim to develop an end-to-end audiovisual
OSD system for multi-speaker distant-talking speech. The
complete system is illustrated in Fig. 1. First, we present
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audio data augmentation algorithm to improve the perfor-
mance of existing audio OSD systems in Section III-A. Next,
we propose a video OSD system to detect overlapped speech
using only visual information by analyzing the visual correla-
tion between speakers, as described in Section III-B. Finally,
in Section III-C, we explain an end-to-end audiovisual OSD
system based on a cross-modality attention module for com-
bining the decision vectors of audio and video OSD.

FIGURE 2. Proposed audio OSD system architecture.

TABLE 1. Frame-level speaker counting frequency (%) for the AMI
development and test sets.

A. AUDIO OSD
For audio OSD system, we use the TCN-based model as
shown in Fig. 2. As a sequence labeling model, we input x =

[x1, x2, . . . ,xt], where t is the length of the input sequence,
and the corresponding class label y = [y1, y2, . . . ,yt] is used
to guide the training, where 0 refers to no overlap and 1 refers
to overlap. In this paper, we use 80 log-mel filterbank features

computed using a Hann window length of 400 with a 10 ms
shift as the input sequence.

As mentioned earlier, the OSD task on real-world data
is affected by class imbalance. Table 1 shows the speaker-
counting statistics for the AMI. The number of 2-speakers,
3-speakers, and 4-speakers frames corresponding to over-
lapped speech is a very small fraction of the total number of
frames, especially in the case of FA-based labels. To avoid
suffering from this imbalance, most of the existing audio
OSD systems use artificially mixed audio chunks randomly
selected from close-talk speech data (headset and lapelmixes)
and far-field speech data (microphone arrays). However,
these synthetic data may degrade the system performance,
partly because of the mismatch between the training data
(close-talk mixed speech) and testing data (far-field speech).

FIGURE 3. Example of proposed audio data augmentation.

TABLE 2. Frame-level class frequency (%) for the overlapped speech
detection task on the AMI training set and after augmentation method.

To overcome this problem, we propose a simple yet effec-
tive audio data augmentation algorithm for real-world far-
field OSD. First, we segment all sequences of the 1 channel
audio data of the first microphone array into a fixed-length
sub-sequence with a 1 s stride, where each sub-sequence
corresponds to 6 s audio chunks. Next, to increase the
number of positive training samples, the artificial audio
chunks are created by summing up two randomly chosen
sub-sequences only if the percentage of utterance frames
of each sub-sequence is more than 80%. For class balance,
almost half of the training dataset consists of artificially
mixed audio chunks as shown in Table 2. Note that the
maximum possible number of overlapping speakers in an
artificial audio chunk is 8, because each sub-sequence can
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consist of up to 4 speakers. The example of proposed audio
data augmentation method is illustrated in Fig. 3.

B. VIDEO OSD
The video OSD system aims to detect overlapped speech
using only visual information. Through this approach,
we expect to enhance the robustness against high levels of
acoustic noise or degraded signal quality. Existing works in
this area, such as lip-reading [19], [20], [21], have focused
on recognizing lip movements for a single speaker. However,
these approaches are difficult to use in real-world multi-
speaker scenarios because the speaker’s mouth may some-
times be undetectable (e.g., the speaker may turn his/her head
to talk to others).

FIGURE 4. Proposed video OSD system architecture.

In this work, we focus on analyzing the interaction between
multiple speakers to avoid the partial occlusion of individual
speakers. The architecture of the proposed video OSD sys-
tem, which adopt the sequence labeling model like the audio
OSD system, is illustrated in Fig. 4. Note that to pair with
artificial audio chunks of audio OSD system for multimodal
training, the duration and number of speaker video sequences
should be set to 6 s and 8, respectively. First, to extract
speaker feature vector from the each speaker video sequence,
we use video backbone network inspired from ResNets with
(2+1)d convolutions [22], as shown in Fig. 5. If the number
of speaker video sequences is fewer than 8, or the input
data are absent for some reason such as some meetings have
fewer than 4 participants, the input image is replaced with
a black image, as shown in Fig. 4. Therefore, we obtained
an 8 × 512 dimensional feature vector (8 in the speaker
domain, and 512 in the context domain) for the multi-speaker
video sequences. Here, the parameters of video backbone
network are shared across all speakers. Next, to capture the
visual relationship between multiple speakers for OSD task,
we adopted the cross-speaker attention module consisting
of a scaled dot-product multi-head self-attention layer [23]
with four attention heads, followed by a position-wise feed-
forward layer. The module aims to find interactive infor-
mation between the feature vectors from multiple speakers.
The output of the fully-connected layer as decision vectors is

constrained to the range of 0–1 and can be considered as the
probability of the absence or presence of overlapped speech.

C. AUDIOVISUAL OSD
Through the above tasks for audio and video OSD,
we obtained decision vectors for both audio and visual modal-
ities. To make the final decision more accurate, we proposed
a cross-modality attention module, which contains two trans-
former layers with four attention heads, as shown in Fig. 1.
The module aims to explicitly model the correlation between
the decision vectors in different modalities. The two inputs of
the module are denoted as the audio-modality decision vector
fa and video-modality decision vector fv. Then, we used
the module where the decision vectors from the audio OSD
system attend to the decision vectors from the video OSD
system and vice versa:

φcross1
(
f a, f v, f v

)
= Softmax

(
f af vT
√
d

)
f v (1)

φcross2
(
f v, f a, f a

)
= Softmax

(
f vf aT
√
d

)
f a (2)

where φcross1(·) is responsible for measuring the correlation
from the audio to video, φcross2(·) is responsible for finding
multi-speaker interactive information from video to audio,
and d is the decision vector dimension. These are fed to
normalization layers followed by fully-connected layer per-
forming the final decision (the output dimension of the fc
layer matches the number of audio frames). This design
enables the module to properly fuse the two decision vectors
made from both modalities so that the complete system can
robustly detect overlapped speech when compared to a simple
approach, such as the concatenation of decision vectors. In the
following experiments, we demonstrate that our approach
improves OSD performance in multi-speaker distant-talking
speech.

IV. EXPERIMENTAL RESULTS
In this section, we compare our approach with a recent
state-of-the-art system proposed for OSD on AMI far-field
data. Our approach consists of audio, video, and audiovisual
OSD. To evaluate our proposed audio data augmentation for
audioOSD,we used Long-Short TermMemory (LSTM) [24],
Convolutional-Recurrent Neural Network (CRNN) [25], and
TCN implemented in [17] for fair comparison. As audio input
features, we used 80 log-mel filterbank features extracted for
each 6 s audio chunks.

For video OSD, it is necessary to reduce the size of the
input image to achieve computational efficiency. In this study,
we extracted 10 consecutive facial images from each speaker
video sequence at 0.6 s intervals and resized to a fixed resolu-
tion of 112×112. To achieve this, we adoptedMediaPipe [26]
to estimate the locations of the face. Note that if there is no
input data available, such as when a face cannot be detected,
the input image is replaced with a black image, as mentioned
earlier. To extract speaker feature vector from each speaker
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FIGURE 5. Proposed video backbone network architecture.

TABLE 3. Performance (AP, %) comparison between our proposed data
augmentation algorithm and baseline approach [16] for existing audio
OSD systems.

TABLE 4. Performance (AP, %) comparison by modality. Audiovisual OSD
system uses TCN as audio OSD.

video sequence, we utilize the R(2+1)D network having
18 layers. To implement our approach, we used the PyTorch
framework. And we used the Rectified Adam (RAdam) opti-
mizer [27] to minimize the cross-entropy loss between the

TABLE 5. Performance (AP, %) comparison for different SNR levels.

TABLE 6. Performance (Recall) comparison for different number of
overlapping speakers. Both methods use TCN as audio OSD.

estimated frame-level posterior probabilities and the true
class distribution with a learning rate of 0.001.

For testing, we used the 1 channel audio data of the
first microphone array of the test set in the AMI corpus.
The performance of the OSD is evaluated based on the
Average Precision (AP) widely used in tasks that exhibit
strong class imbalance, such as object detection. Table 3
shows the performance comparison between our proposed
audio data augmentation algorithm and baseline approach
under the same conditions (e.g., network architecture and
training techniques). The proposed algorithm significantly
improves the detection performance without additional train-
ing techniques, especially for CRNN (+14.8%AP). From the
results, we infer the following three points. 1) When using
far-field speech data for testing, the existing data augmenta-
tion method of baseline system [16], which uses the training
data consisting of close-talk and synthetic mixtures, had a
relatively low performance, partly because of the mismatch
between training and testing data in acoustic characteristic,
such as the level of background noise and reverberation.
2) The baseline approach created the same number of training
samples for 2, 3, and 4 concurrent speakers in order to address
the class imbalance problem. However, since it is very rare
for more than three people to talk at the same time in a real-
world meeting scenario dataset (e.g., approximately 3.8% of
the test set in the AMI corpus), our approach focuses on
generating new simultaneous speaker samples by overlapping
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two random audio chunks consisting of predominantly single-
speaker from the original array data. 3) The data augmenta-
tion technique by summing multiple chunks from real dataset
is similar to baseline approach, but our approach has signifi-
cantly higher performance than baseline approach for various
audio OSD systems. For these reasons, our approach can be
a more suitable and effective solution to the class imbalance
problem in the far-field OSD task.

To demonstrate the advantage of the decision fusion of the
audio and video OSDs, we evaluated both single-modality
(audio and video OSDs) and multi-modality (audiovisual
OSD) systems as shown in Table 4. The performance of
the video OSD system is not sufficient compared with the
performance of the audio OSD system as a result of the
relatively rough video sampling. However, it can be seen
that our multimodal approach significantly outperforms the
stand-alone audio modality system, despite the relatively
low performance of the video modality system. The results
confirm that using video information helps to enhance the
performance of speech processing compared with its coun-
terpart, which uses audio modality alone. It also proves that
the proposed cross-modality attention module can make final
decisions more accurately than simple concatenation of the
decision vectors (+2.1% AP).

To evaluate the acoustic noise robustness of our approach,
the test data were generated with five levels of SNR settings
by synthesizing the test set in the AMI corpus and the office
noise from the DEMAND noise dataset [28]. As shown in
Table 5, our multimodal approach improves robustness at
lower SNR when compared to the degradation of perfor-
mance in audio-only OSD systems. The results demonstrate
that our approach effectively captures the correlation between
audio and video modalities, even in the presence of back-
ground noise such as babbling.

As shown in Table 6, we report performance comparison
for different number of overlapping speakers. Recall is the
ability of the method to find the overlapped speeches, mea-
sured as the ratio of correctly detected overlapped speeches
to the number of actual overlapped speeches for each speaker
counting. From the results, we observed the following two
points. 1) Although our audio data augmentation algorithm
is designed to focus on scenarios with two concurrent speak-
ers, the audio OSD system detects more accurately as more
people speak at the same time. 2) The multi-modality system
consistently outperforms the audio single-modality system
regardless of the number of overlapping speakers, with the
most significant gain being in the sub-set with 2 speakers
(+0.15 Recall).

V. CONCLUSION
In this paper, we presented an end-to-end audiovisual OSD
system for multi-speaker distant-talking speech. Through
experimental results, we demonstrated that our proposed
audio data augmentation algorithm can improve the per-
formance of recent state-of-the-art audio OSD systems in
far-field conditions. The proposed cross-speaker attention

module-based video OSD system can capture spatiotemporal
features that are invariant to acoustic features. Finally, the
proposed cross-modality attention module can make more
accurate final decisions than that of a simple concatenation
of decision vectors. However, owing to the relatively rough
video sampling, the performance of the video OSD system
is not sufficient compared with the performance of the audio
OSD system. One possible solution is to increase the number
of consecutive images using denser video sampling. How-
ever, this is more costly; therefore, our future work will be to
further improve the performance with effective video modal-
ity representation and explore the audio-visual relationship
and synchronization information. Moreover, we will evalu-
ate our proposed system in the presence of visual artifacts
(e.g., partial occlusions) to analyze the effect of the interactive
correlation between multiple speakers.
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