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Abstract

Electrostatic discharge (ESD) testing for human body model tests is an essen-

tial part of the reliability evaluation of electronic/electrical devices and compo-

nents. However, global environmental concerns have called for the need to

replace the mercury-wetted relay switches, which have been used in ESD tes-

ters. Therefore, herein, we propose an ESD tester using metal oxide

semiconductor-controlled thyristor (MCT) devices with a significantly higher

rising rate of anode current (di/dt) characteristics. These MCTs, which have a

breakdown voltage beyond 3000 V, were developed through an in-house

foundry. As a replacement for the existing mercury relays, the proposed ESD

tester with the developed MCT satisfies all the requirements stipulated in the

JS-001 standard for conditions at or below 2000 V. Moreover, unlike tradi-

tional relays, the proposed ESD tester does not generate resonance; therefore,

no additional circuitry is required for resonant removal. To the best of our

knowledge, the proposed ESD tester is the first study to meet the JS-001 speci-

fication by applying a new switch instead of an existing mercury-wetted relay.

KEYWORD S
electrostatic discharge tester, high rate of rising of anode current (di/dt), human body model,
mercury-wetted relay, metal oxide semiconductor-controlled thyristor

1 | INTRODUCTION

Electrostatic discharge (ESD) testing is crucial for ascer-
taining the safety of electronics and electrical devices. As
per the ANSI/ESDA/JEDEC JS-001 standards, the human
body model (HBM) test is one of the reliability tests
required to be conducted during the semiconductor

production process [1]. As per the JS-001 standard, per-
formance values such as peak current (Ips), rise time (tr),
decay time (td), and ringing current (Ir) are considered to
be highly significant factors.

Figure 1 depicts a simplified schematic diagram of a
typical ESD tester used in the HBM test. Here, a high-
voltage source charges a capacitor (C1) through a
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charging resistor (R1) with a resistance exceeding 1 MΩ
when a charging switch (SW1) is turned on. In this sys-
tem, C1 represents the human body, with a capacitance
of 100 pF, whereas R2 represents an arm, with a resis-
tance of 1.5 kΩ. The rising rate of anode current (di/dt)
characteristics of mercury-wetted relay switches is similar
to those of an ideal switch; therefore, they are commonly
used for charging and discharging in ESD testers.

However, the use of mercury relays raises important
technical and environmental issues that need to be
addressed. For example, owing to the self-inductance of
the relay, a considerable voltage spike occurs instanta-
neously because of sparks when the contact breaks. Addi-
tionally, resonances with significantly higher maximum
peak currents occur because of the inductance of the
relay and parasitic components of the ESD tester.

Figure 2A shows the output current waveforms from
an ESD tester using conventional mercury relays acting
as switches under the condition of a short-circuiting wire
at applied voltages of 250 V, 500 V, and 1000 V. When
conventional mercury-wetted relays were applied to the
ESD tester without any additional circuits, a substantially
higher peak current characteristic than that at the source
voltage was observed, as specified by international stan-
dards [1]. For example, in the JS-001 standard under a
voltage condition of 1000 V, the peak current is defined
to be in the range 0.6 A–0.73 A; however, the experimen-
tal results show a peak current of �1.6 A. Furthermore, it
is evident that the resonance occurs when the relays are
applied as switches without the addition of other circuits.
Moreover, the high-current characteristics and resonance
phenomenon can adversely affect the peripheral circuitry
of the instrument, causing malfunction or destruction of
the surrounding circuits. Therefore, an additional reso-
nant removal circuit (RRC) block is generally required to
mitigate these potential problems. Figure 2B shows a
comparison of waveforms measured under conditions of
1000 V with (w/) and without (w/o) RRC.

A more pressing issue than the technical ones men-
tioned earlier is the restrictions imposed on the use of

mercury relays owing to global environmental concerns
[2–5], which call for the development of a new switch. It
is known that a solid-state relay that integrates insulated
gate bipolar transistors (IGBTs) or metal oxide semicon-
ductor field-effect transistors (MOSFETs) with photocou-
plers can replace a mercury-wetted relay; however, its
rising time is at the microsecond level, and there have
been no reports of results applied to ESD testers for HBM
till date [6–8]. Moreover, MOS-controlled thyristors
(MCTs) are well-known for their remarkable di/dt
properties [9–11].

This paper describes the proposed MCT-based ESD
tester, which was developed as per the ANSI/ESDA/
JEDEC JS-001 standards in an in-house foundry at the
Electronics and Telecommunications Research Institute,
for HBM testing. Moreover, for the first time, an attempt
has been made to replace the ESD tester using the

F I GURE 1 Simplified electrostatic discharge tester circuit

diagram for human body model (HBM) test

F I GURE 2 Measured current waveforms in HBM tester using

mercury relays (A) under 250 V, 500 V, and 1000 V and (B) under

1000 V conditions with and without resonant removal circuit

(RRC)
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mercury-wetted relay with an ESD tester using MCTs,
which is the novelty of this study.

2 | ESD TESTER BASED ON MCTS

Figure 3 shows the photograph and measured breakdown
voltage characteristics of an MCT, which was developed
and manufactured at an in-house foundry. The MCT was
manufactured using a 6-in. silicon wafer, and the MCT
bare die was 5.4 mm � 5.4 mm in size. When the gate
voltage is 0 V, the leakage current is �12.0 nA for an
anode voltage of 2000 V, and the breakdown voltage is
�3000 V. This paper does not focus on the design and
fabrication details of the MCT device; hence, they are not
provided here.

Figure 4 illustrates the simplified block diagram of an
ESD test board that complies with ANSI/ESDA/JEDEC
JS-001 specifications; the diagram consists of a control
block and an ESD tester. Semiconductor switches, such

as high-voltage solid-state relays, MCTs, IGBTs, and sili-
con carbide (SiC) MOSFETs, can be considered as alter-
natives to conventional mercury-wetted relays in ESD
testers. However, solid-state relays have a long rising
time in the order of microseconds [6–8]. The IGBTs and
SiC MOSFETs require a minimum voltage of 15 V to turn
on the gate [12,13]. Conversely, MCTs exhibit both high
peak current and high di/dt slope [9–11]. Moreover,
MCTs require a relatively low gate turn-on voltage of 5 V,
which is one of the major benefits of replacing mercury
relays in the ESD testers.

For the charging (SW1) and discharging switches
(SW2) shown in Figure 1, the aforementioned self-
developed MCTs were used instead of conventional
mercury-wetted relays. To drive the gate of the MCT to
�5 V, each boost converter outputs a voltage of 10 V for
an input voltage of 5 V from the main instrument. The
isolated MCT gate driver for �5 V operation comprises a
switching driver, Zener diodes, capacitors, and resistors.
A high-voltage power supply for ESD test voltages, low-
voltage power supply, and MCT gate driver are all con-
trolled by a control block (MICOM).

Figure 5 shows the proposed ESD test board and tes-
ter module with dimensions of 120 mm � 70 mm and
23 mm � 23 mm, respectively. The inductance of the dis-
charging loop of the ESD tester module can influence the
rise time, ringing, and decay time of the output current.
To minimize these influences, an MCT bare die was used
to fabricate the ESD tester module and minimize the
length of the discharging loop by fabricating it as a chip-
on-board. Additionally, the cathode of the MCT bare die
was connected by four stitch-bonded aluminum
(Al) wires with a thickness of 5 mil, as shown in
Figure 5D.

Figure 6 depicts the output current waveforms of the
proposed ESD tester and an ESD tester with conventional
relays under the condition of a short-circuiting wire at
1000 V. The waveforms were measured at a bandwidth of
1 GHz and sampling rate of 5 GS/s using a Tektronix
CT1 current probe. Although the developed MCTs were
applied to the ESD tester (red) without any additional cir-
cuits, no resonance occurred, in contrast with conven-
tional relays (green). The proposed ESD tester exhibited
characteristics almost identical to those of an ESD tester
with conventional relays, to which relays and an RRC
block have been added (blue). From this result, we can
see that MCT can solve environmental issues by repla-
cing conventional mercury-wetted relays. Moreover, we
can see that the proposed ESD tester does not require
RRC because resonance does not occur.

According to the ANSI/ESDA/JEDEC JS-001 stan-
dard, the required voltage levels for testing are 250 V, 500
V, 1000 V, 2000 V, and 4000 V. However, as the

F I GURE 3 Photograph and measured breakdown voltage

behavior of the fabricated MCT device

F I GURE 4 Simplified block diagram of an electrostatic

discharge test board including the proposed electrostatic discharge

tester
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breakdown voltage of the developed MCT is �3000 V, as
shown in Figure 3, it was evaluated only under the volt-
age conditions of 2000 V or less.

Figure 7 depicts the output current waveforms of the
proposed ESD tester with MCT relays without RRC
under a short-circuiting wire for the voltage of 250–
2000 V. Following the JS-001 standard, the peak current
(Ips) was determined using a linear extrapolation of the
exponential current decay curve back to the time tmax of
peak current Ips,max, rise time tr (the time required for the
current to increase from 10% to 90% of Ips), and decay
time td (the time required for the current to decrease
from 100% to 36.8% of Ips). The measured Ips, tr, td, and Ir
values at a voltage of 2000 V were 1.37 A, 8.0 ns,
158.4 ns, and 0.05 A, respectively.

Table 1 compares the JS-001 standard requirements
with the measured values of the proposed ESD tester
under the conditions of a short-circuiting wire at an
applied voltage of 2000 V or less. The table shows that
using the proposed MCT components, the ESD tester sat-
isfies all the requirements defined by the international

F I GURE 5 Photographs of (A) fabricated electrostatic

discharge test board, (B) top and (C) bottom of the ESD tester

module, and (D) wire interconnection of the metal oxide

semiconductor-controlled thyristor (MCT) bare die for discharge

(MCTD)

F I GURE 6 Measured HBM waveforms of electrostatic

discharge testers under 1000 V conditions

F I GURE 7 Measured HBM waveforms from which (A) peak

current and rise time and (B) peak current and decay time were

extracted under the voltage conditions of 2000 V or less
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standard. To the best of our knowledge, this is the first
attempt to replace conventional mercury-wetted relays
with semiconductors. Moreover, we predict that ESD tes-
ters satisfying the JS-001 international standard can be
developed using MCTs with higher breakdown voltages
even at voltages beyond 2000 V.

The JS-001 standard further defines peak current and
rise time characteristics under 500 Ω load conditions at
two voltage levels: 1000 V and 4000 V. As mentioned

above, the proposed ESD tester was evaluated only at
1000 V given the breakdown voltage characteristics of the
developed MCT; the results are shown in Figure 8. The
measured peak current and rise time under 500 Ω load
conditions at 1000 V were 0.49 A and 19.8 ns, respec-
tively. These values satisfy the requirements of the JS-001
standard (Table 2).

As mentioned earlier, an ESD tester that uses MCT
was proposed and evaluated up to 2000 V for HBM. To
satisfy all the requirements of the JS-001 standard, an
MCT with breakdown voltage characteristics of 4000 V or
more is needed. The factors that affect the breakdown

TAB L E 1 Comparison of JS-001 standard and measurement results of proposed electrostatic discharge tester under short-circuiting wire

conditions

Voltage level (V) 250 500 1000 2000

JS-001

Peak current, Ips (A) 0.15–0.18 0.30–0.37 0.60–0.73 1.20–1.47

Rise time, tr (ns) 2.0–10.0 (10%–90% of Ips)

Decay time, td (ns) 130–170 (150 � 20)

Maximum ringing current, Ir (A) 15% of Ips

This work

Peak current, Ips (A) 0.16 0.36 0.68 1.37

Rise time, tr (ns) 9.0 7.8 7.2 8.0

Decay time, td (ns) 148.0 151.0 158.8 158.4

Maximum ringing current, Ir (A) 0.015 0.04 0.05 0.05

F I GURE 8 Measured HBM waveforms from which key

metrics were extracted under the conditions of a 500 Ω load at

1000 V

TAB L E 2 Comparison of JS-001 standard and measurement

results of the proposed electrostatic discharge tester under

conditions of a 500 Ω load at 1000 V

Parameter JS-001 [1]
This
work

Peak current, Ipr (A) 0.37–0.55 0.49

Rise time, tr (ns) 5.0–25.0 (10% to 90% of Ips) 19.8

F I GURE 9 Simplified conceptual diagram of the MCT

structure [11]

JUNG ET AL. 547
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voltage of high-voltage power semiconductors, including
the structural design and process conditions of the device,
vary widely; however, they are largely dependent on the
thickness and resistivity of the N-drift region, as shown
in Figure 9 [11,14,15].

The MCTs developed by our group demonstrated
breakdown voltage characteristics of 1700 V under the
conditions of thickness and resistivity in the N-drift
region of 150 μm and 75 Ω�cm, respectively [11]. The
MCTs used in this study were fabricated under condi-
tions with the thickness and resistivity of the N-drift
region of 475 μm and 175 Ω�cm, respectively, and
showed the breakdown voltage properties of �3000 V,
as shown in Figure 3. To develop MCTs with a break-
down voltage above 4000 V, we have been studying
MCTs with the condition that the thickness and resis-
tivity of the N-drift region are 550 μm and 850 Ω�cm,
respectively, while referring to prior studies. Table 3
summarizes the breakdown voltage characteristics of
the MCT for changes in thickness and resistivity of the
N-drift region.

3 | CONCLUSIONS

The mercury-wetted relay has been restricted from use
owing to global environmental concerns. MCTs with
excellent di/dt properties were developed in-house,
applied to EDS testers, and evaluated for testing as
replacements for the mercury-wetted relay, which have
been used in the ESD testers for HBM. The proposed ESD
tester is demonstrated to satisfy all the requirements for
the HBM test as defined by ANSI/ESDA/JEDEC JS-001
standards for voltages of 2000 V or less. The results
showed that the proposed ESD tester can solve the envi-
ronmental issues posed by the ESD tester using the
mercury-wetted relay. Moreover, the proposed ESD tester
does not need additional resonance removal circuits,
which is a considerable advantage. This is the world’s
first attempt at replacing the ESD tester using the
mercury-wetted relay.
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