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Abstract

To meet increasing traffic requirements in mobile networks, small base sta-

tions (SBSs) are densely deployed, overlapping existing network architecture

and increasing system capacity. However, densely deployed SBSs increase

energy consumption and interference. Although these problems already exist

because of densely deployed SBSs, even more SBSs are needed to meet increas-

ing traffic demands. Hence, base station (BS) switching operations have been

used to minimize energy consumption while guaranteeing quality-of-service

(QoS) for users. In this study, to optimize energy efficiency, we propose the

use of deep reinforcement learning (DRL) to create a BS switching operation

strategy with a traffic prediction model. First, a federated long short-term

memory (LSTM) model is introduced to predict user traffic demands from user

trajectory information. Next, the DRL-based BS switching operation scheme

determines the switching operations for the SBSs using the predicted traffic

demand. Experimental results confirm that the proposed scheme outperforms

existing approaches in terms of energy efficiency, signal-to-interference noise

ratio, handover metrics, and prediction performance.
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1 | INTRODUCTION

As mobile traffic demands increase, small base stations
(SBSs) have been densely overlapped to meet traffic
requirements in high-traffic areas. Densely deployed SBSs
can improve mobile services, but can cause serious
energy consumption problems. According to an Ericsson
Mobility Report, data traffic from mobile networks is
expected to grow by a factor of seven between 2020 and
2026 [1]. Accordingly, the energy consumption from the
dense deployment of SBSs will also increase to eventually

occupy a significant portion of the energy consumption
in information and communications technology. In addi-
tion, whole base stations (BSs) consume approximately
70%–80% of the total energy consumption of cellular net-
works [2]. To address this issue, several BS-switching
operation strategies have been studied to minimize BS
energy consumption [3].

BS switching operation methods that switch BS status
ON/OFF, that is, deactivation or sleep strategies, have
recently been studied [4–8]. The BS switching operation
is considered one of the most efficient methods for
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reducing energy consumption because the current net-
work architecture does not need to be changed. Although
the BS-switching operation strategy can significantly
reduce energy consumption, it can degrade the quality of
service (QoS) for mobile users. A deactivated BS causes
handovers for the users it serves. Consequently, these
users are associated with a suboptimal BS. If BSs fre-
quently change their mode between active and deacti-
vated in a high-traffic area, mobile users may experience
serious QoS degradation from frequent handovers. To
control the degradation in QoS, it is necessary to study
BS switching operation techniques while considering
traffic demand and user mobility.

In this study, we introduce a deep reinforcement
learning (DRL)-based BS switching operation scheme
with a federated traffic prediction model to optimize sys-
tem energy efficiency. We first formulate an energy-
efficiency optimization problem that minimizes energy
consumption and QoS degradation. To minimize the QoS
degradation, we adopted a traffic demand forecasting
model using a federated learning-based long short-term
memory (F-LSTM) model. Finally, to obtain efficient
switching operations in dynamic environments, we opti-
mized energy efficiency using DRL-based BS switching
operations with the forecasted traffic demand. The main
contributions of our study are summarized as follows.

• We formulated an objective to maximize the energy
efficiency by developing an energy efficiency model.
BS switching operations can reduce energy consump-
tion, whereas they cannot maintain the QoS because of
handovers from the deactivated SBS. Therefore, the
energy efficiency model consists of an energy con-
sumption model and a data rate model. Subsequently,
we established an equation that maximizes energy effi-
ciency while guaranteeing QoS stability.

• To implement the traffic-aware BS switching operation
method, we proposed the F-LSTM model, which pre-
dicts user trajectories. The trajectories from each user
have spatiotemporal-dependent patterns. Hence, we
use the trajectory to determine and forecast traffic
demand. However, users cannot predict traffic accu-
rately using only their own data because the size of the
dataset is not large enough. Since there is a privacy
problem with sharing user trajectory data, we used a
federated learning approach that does not share trajec-
tory data. In addition, our model needs the ID of the
previous cell, which provides the user trajectory and
user communication conditions. The predicted trajec-
tories can be used to determine the user traffic demand
for the next time slot.

• The proposed traffic-aware BS switching operation
scheme determines the switching operations using the

forecasted traffic data. In our method, the DRL model
determines the switching operations by considering
the energy and QoS degradation factors. Our scheme
makes decisions that can minimize energy consump-
tion by switching OFF inefficient BSs. It can also mini-
mize QoS degradation by reducing frequent and
repetitive switching operations and handovers.
Through the proposed scheme, we achieved significant
performances in the experiments.

The remainder of this paper is organized as follows.
In Section 2, we review the related studies on BS switch-
ing operations. In Section 3, we describe the system
model and define the problem. In Section 4, the design of
the traffic-aware BS switching operation method using
the F-LSTM model is described. The simulation results
and a discussion of the proposed scheme are presented in
Section 5. Finally, the conclusion of this study is pre-
sented in Section 6.

2 | RELATED STUDIES

BS switching operations are a promising method for
addressing energy consumption problems in dense
mobile networks. However, it is an NP-hard problem to
determine the optimal BS switching operation that mini-
mizes the energy consumption with various constraints
in polynomial time [9]. Therefore, heuristic and
greedy methods have been adopted to determine optimal
BS switching operations [4, 5, 7, 10]. In Oh and
Krishnamachari [4], a dynamic BS switching operation
was proposed that considered the handover traffic of the
neighboring BSs. This operation determines the BS
switching operations by comparing the calculated hand-
over traffic with the switching threshold. In Oh and
others [5], a BS switching operation method was pro-
posed that minimized the effect of switching operations
that increased the load on neighboring BSs. It defines a
network impact that considers the additional load caused
by the handover users of deactivated BSs. By treating the
network impact as a decision metric, it can also reduce
the signaling and implementation overhead. To improve
energy performance while ensuring full coverage, a BS
switching scheduling scheme for both the uplink and
downlink was proposed [7]. A set of BS switching
patterns at the global system level offers full coverage by
applying suitable scheduling schemes.

However, traditional optimization methods have
computational complexity problems because they must
ensure the data rate and QoS for users. Hence, some stud-
ies have defined dynamic BS switching operations as a
Markov decision process (MDP). In Li and others [11],
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reinforcement learning (RL) was applied to solve the
MDP problems. In particular, an actor-critic approach
was used that incorporates the strengths of both policy
and value-based RL approaches [12]. In El-Amine and
others [13], an energy-efficient strategy was introduced
for BSs with multiple sleep mode (SM) levels to reduce
energy consumption. It focuses on multilevel SM, where
the BSs can switch between several SM levels. To opti-
mize the balance between energy savings and delay, a
Q-learning algorithm was proposed to adapt the BS states
based on user locations and velocities. Additionally, to
strike a balance between energy savings and system
delay, an advanced algorithm was proposed to determine
the optimal SM level for BSs by assessing various SM
options [14]. The calculation of the system delay takes
into account the wake-up time associated with each SM
level, aiding in the selection of the most suitable switch-
off SM policy. A BS switching operation scheme using
the Q-learning method was proposed to minimize the
energy consumption and data loss in El Amine and
others [15]. This scheme determined the operations based
on the interference of the mobile user, expected through-
put, and buffer size of each BS. The method in Masoudi
and others [16] utilized an online RL technique, specifi-
cally SARSA, to develop an algorithm for determining
the appropriate SM based on factors such as time and BS
load. To demonstrate the effectiveness of the algorithm,
actual mobile traffic data collected from a BS located in
Stockholm were employed.

Unfortunately, increasing the dynamics of the net-
work environment significantly increases the state-action
space of existing RL models. This requires an exponen-
tially increasing space and degrades the performance of
the RL model. To handle a high-dimensional state-action
space, DRL-based approaches were researched in earlier
studies [17, 18]. In Ye and Zhang [19], a traffic demand-
aware DRL approach was studied to incorporate the spa-
tial and temporal correlations of traffic arrivals. To assist
in the exploration of the DRL process, a cost-greedy
action refinement procedure was defined to address the
inefficiency of the random exploration procedure. In Ju
and others [20], the challenge was to efficiently deter-
mine the optimal active mode/SM for BSs in ultradense
networks. The proposed method introduced a DRL-based
approach to reduce energy consumption. A crucial aspect
of this approach is the utilization of a decision selection
network to streamline the selection process and decrease
the complexity of the action space. In addition, to dynam-
ically consider changing traffic demands, forecasting the
traffic demand of cells has also been studied in BS switch-
ing operations [21, 22]. Because operating a BS in SM
causes handovers for the users it serves, their QoS signifi-
cantly degrades. In Wu and others [23], a traffic-aware

dynamic BS switching operation was proposed that
jointly adopts a convolutional-LSTM method and DRL
methods. In the convolutional-LSTM model, both the
geographical and semantic spaces were considered as
traffic similarity graphs. Using the predicted traffic, the
DRL model performs a training process to reduce the
energy and QoS degradation costs.

Nevertheless, the approaches mentioned above can-
not handle the degradation in QoS during handover. The
BS switching operation causes frequent handovers for
users; therefore, robust connectivity is an important issue
[24, 25]. The handover users experience QoS degradation
because deactivating the optimal BS forces users re-
associate with another BS and obtain services from a sub-
optimal BS. Thus, a BS-switching operation method that
considers mobility and traffic forecasting is required to
minimize the degradation in QoS. However, the mobility
dataset of each user is not sufficient to train the model;
therefore, the dataset must be shared on a centralized
server. To handle the data privacy problems caused by
data sharing and improve the performance of the fore-
casting model in fast-changing mobile networks, a feder-
ated learning-based mobility forecasting model must be
examined [26–28].

In this paper, we introduce a DRL-based BS switching
operation scheme with the F-LSTM model to predict traf-
fic that optimizes energy efficiency. The proposed
F-LSTM model consists of a global model and multiple
local models, with each model consisting of various
LSTM layers. The trained global model can predict user
locations; therefore, the predicted locations can be calcu-
lated as traffic. We used the predicted traffic data to
reduce the degradation in QoS for the handover users. By
expressing the changes in traffic as user trajectories, the
change in QoS of the handover users can be considered.
Therefore, our proposed DRL-based BS switching scheme
determines operations by considering the predicted traf-
fic, current traffic demand, status of the BSs, and active
time of the BSs. Moreover, we determine the BS opera-
tions by considering the active time to minimize the fre-
quent switching that causes handovers.

3 | SYSTEM MODEL AND
PROBLEM DEFINITION

In this study, a heterogeneous network (HetNet) that
consists of M macro BSs (MBSs) and S SBSs is
considered, as illustrated in Figure 1. In addition, U users
move continuously and are preferentially associated with
the SBS that provides the highest signal-to-interference
noise ratio (SINR). The sets of MBSs, SBSs, and users
are denoted by M¼f1, …, Mg, I¼f1, …, Ig, and
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U¼f1, …, Ug, respectively. To provide services to users
in areas with high-traffic demand, SBSs are deployed and
have coverage overlaps. The active status indicator of an
SBS is denoted by as, where 1 represents the active mode
and 0 represents the SM. Time T is divided into t time
slots during which the active status of the SBSs remains
unchanged.

We define the energy consumption model of an SBS
using two parts: a fixed energy part and a load-dependent
energy part. SBSs in SM only consume the fixed energy,
as reported in Chang and others [29]. Therefore, we
express the energy consumption, Pt

I , of the SBSs in time-
slot t as follows:

Pt
I ¼
X
i � I

ai ϕ1þΔ
X
u � U

bui pi

 !
þ 1�aið Þϕ0

 !
, ð1Þ

where ϕ1 is the fixed energy consumption of an active
mode SBS, ϕ0 is the fixed energy consumption of a sleep
mode SBSs, and Δ is the load-dependent power consump-
tion of the SBSs. bui is the association indicator for user
equipment (UE) u with SBS i and takes a value of 1 for
an associated UE and 0 for a non-associated UE. Finally,
pi is the transmission power of SBS i.

We aimed to minimize the energy consumption of the
SBSs while minimizing the QoS degradation caused by
switching operations. In other words, minimizing the
energy consumption of the SBSs with minimal QoS deg-
radation can be solved as an energy efficiency maximiza-
tion problem. “Energy efficiency” refers to the ability to
obtain an achievable data rate per unit of energy con-
sumed. This means that the user QoS can be guaranteed
while the energy consumption is minimized. Therefore,
the achievable data rate in timeslot t can be calculated
according to the Shannon capacity as follows:

Rt ¼W �
X
u � U

log2 1þ τtu
� �� �

, ð2Þ

where W represents the system bandwidth and τtu is the
SINR of UE u served by the BS during time slot t.
Incorporating the AWGN channel model, the SINR τtu is
computed as follows:

τtu ¼
pu,i �hu,iP

j � I ∖ ipu,j �hu,jþσ2
, ð3Þ

where pu,i is the transmission power of SBS i to UE u,hu,i
is the channel gain between UE u and its serving BS, σ2

represents the noise power, and the summation runs over
all SBSs except i. This way, the energy efficiency of the
system is expressed as follows:

EEt ¼Rt

Pt
I
: ð4Þ

To determine the optimal BS switching operation
strategy for maximizing energy efficiency, we formulated
the problem as an MDP that can be defined as a tuple
hS, A, P, R, γi. Here, S is the state space, A is the action
space, P is the state transition function, R is the reward
function, and γ is the discount factor, γ � ½0,1�. The MDP
design is described in detail in the following.

1. State: The state st at each time slot t consists of four
factors: the forecasted traffic demand Dt, the traffic
demand Dt−1 at time slot t−1, the active status of SBSs
i,at−1i , and the active time of SBS i, tta,i. Thus, the state
st can be expressed as

st ¼fDt
,Dt−1,at−1i , tta,ig: ð5Þ

2. Action: The action at is the decision to perform
switching operations for an SBS at time slot t.
According to the state transition function P stþ1jst,atð Þ
with a given state st and action at, the current state st

F I GURE 1 Overview of our proposed scheme and the

heterogeneous network architecture considered in this study,

which consists of multiple macro base stations (MBSs) and small

base stations (SBSs). The MBSs are deployed in each coverage

region, whereas the SBS coverage overlaps with the MBS coverage.
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transitions to the next state stþ1 when action at is
executed. Action at can be represented as

at � f0,1g, ð6Þ

where 0 is for the deactivating operation and 1 is for
the activating operation.

3. Reward: Executing action at on SBS i affects the
neighboring BSs Ni. Hence, we defined the reward by
considering neighboring BSs. Reward rt is composed
of three parts: the energy cost of SBS i,Pt Nið Þ, where
neighboring BSs Ni include SBS i; the cost of QoS deg-
radation, Ct

i a
t−1,atð Þ; and the fixed value for switching

penalty, φt at−1,atð Þ. The switching penalty is consid-
ered to minimize continuous and frequent switching
operations. Reward rt can be expressed as

rt ¼Ct
i at−1,at,Ni
� �

−Pt Nið Þ−φt at−1,at
� �

: ð7Þ

The cost of QoS degradation Ct
i a

t−1,at,Nið Þ consists of
handover factors and the achievable data rates of the UEs
at neighboring BSs Ni. Pt Nið Þ can be calculated only for
Ni, not for all SBS, using (1). To reduce the OFF opera-
tion for SBSs that service many UEs, we used handover
factor hti . This means the UEs from a deactivated SBS i
are handed over to neighboring BSs Ni. Hence, the hand-
over factor hti can be calculated as

hti ¼
X
u � U

bui,t−1−b
u
i,t

� �
, ð8Þ

where bui,t and bui,t−1 are the association indicators for
UE u served by SBS i at time slot t. Moreover, the cost
of QoS degradation Ct

i a
t−1,atð Þ can be defined as

follows:

Ct
i at−1,at,Ni
� �¼ hti

� �−1 � R Nið ÞP
n,i′ � Ni

bui′
, ð9Þ

where R Nið Þ is the achievable data rate of UEs who
are associated with neighboring BSs Ni.
To maximize the system energy efficiency, we

adopted the state-action value function as the expected
value at a given state st when action a is executed. The
state-action value function Q st, að Þ is defined as

Q st, að Þ¼ rtþ γq �min
a0

E Q stþ1, a0
� �� �

: ð10Þ

Therefore, our objective, which is to maximize the
energy efficiency, can be used to determine the action

with the given state st as a¼ arg maxaQ st, að Þ for all
SBSs, which can be defined as follows:

max
a1,…,ai

EE, ð11Þ

s:t: C1 : τmin ≤ τu, 8u
C2 : pui ≤ pmax, 8u, i
C3 : pum ≤ pmax, 8u,m
C4 :Rmin ≤Ru, 8u

ð12Þ

where τmin is the minimum threshold of SINR, pui and pum
are, respectively, the transmission powers of the SBSs
and MBS to UE u, pmax is the maximum transmission
power, Ru is the achievable data rate of UE u, and Rmin is
the minimum threshold of the achievable data rate. C1 is
the minimum SINR constraint of UE, C2 and C3 are the
maximum transmission power constraints, and C4
ensures the data rates of the UEs.

4 | PROPOSED BS SWITCHING
OPERATION SCHEME

In this section, the DRL-based BS switching operation
scheme with traffic prediction is introduced. A handover
occurs when a BS switches from active mode to SM and
this can significantly impact the QoS. During a handover,
the connection between the UE and the associated BS is
severed, and a new association is established with the new
BS. The more handovers a UE experiences, the more likely
it is that the QoS will be impacted. This is because each
handover requires time for a new association and can
result in disruptions to the communication link. This can
degrade communication quality, increasing congestion
and reducing performance. In conclusion, minimizing the
number of handovers is important for maintaining a high
QoS in mobile communication environments. This can be
achieved through user trajectory prediction, which can be
represented by user mobility and handover predictions.

To achieve this, we propose an F-LSTM model to pre-
dict each user trajectory to consider future traffic
demand. The F-LSTM model consists of local models for
each UE and a global model of the system. To focus not
only on predicting traffic demand but also on using the
traffic predicted by a DQN agent, we set the local models
to obtain the LSTM model to predict the traffic that con-
sists of time-series data. The LSTM model, which is a type
of recurrent neural network, can outperform other
methods in the prediction of time-series data. While
robust time-series forecasting models are available, the
limited amount of trainable data and the need for quick
learning and transmission to a central server in federated
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learning led us to employ a stacked LSTM model in an
auto-encoder architecture.

To obtain an optimal global model, each local model
learns its local data and uploads its local weights. After
uploading the local weights, the global model aggregates
and averages the local weights at the end of each commu-
nication round. The optimal global model, acquired after
the completion of all rounds, is then employed to predict
the user trajectories in the DRL-based BS switching oper-
ation scheme. Subsequently, the DRL-based BS switching
operation scheme determines the switching operations by
considering the user traffic predicted for each predicted
trajectory. An overview of the proposed scheme is
depicted in Figure 1.

4.1 | F-LSTM-based traffic
forecasting model

To consider future traffic demand and reduce the disad-
vantages of BS deactivation, we applied the F-LSTM
model in multiple communication rounds to predict user
trajectories. To reduce the local model’s complexity to
minimize the computational load, we predicted the next-
located cell ID d̂

t
u of UE u as a trajectory. Then, the pre-

dicted next-located cell IDs of the UEs can be calculated
for the predicted traffic demand as D̂

t
.

In the federated learning framework, the models are
trained by the system and UEs during the communica-
tion rounds Λ,Λ¼f1, 2, …, Λg. In the λth communica-
tion round, each participant UE downloads the global
weights wλ

g from the system. Then, each UE participant
initializes the local weights wλ

u with the global weights
wλ
g. The participant UEs train their local model to mini-

mize the defined loss function, which is defined as

wλ ∗
u ¼ argminfL wλ

u

� �g, ð13Þ

where L wλ
u

� �
is the categorical cross-entropy, that is, in

the case of classification with local weights wλ
u in commu-

nication round λ.
During the training process, we preprocess the input

dataset with normalization to obtain the training data.
The training data consist of four main features: the longi-
tude and latitude of the GPS coordinates longlu, lat

l
u, time-

stamp tslu, and current cell ID dlu. Thus, the input Xu for
the local model of UE u can be expressed as

Xu ¼fX1, …, XLg, ð14Þ

where Xu ¼f longlu, lat
l
u

� �
, tslu, d

l
ug, and L is the length of

the input.

At every epoch, the validation loss is checked using
the training data to prevent overfitting. After the training
process, the testing process begins. The weights can be
updated by backpropagation, which is more commonly
used than the stochastic gradient descent algorithm,
while the participant UEs upload their local weights.

With a set of uploaded local weights
W λ, W λ ¼fwλ

1, …, wλ
ug, the system aggregates the set of

local weights W λ as global weights wλþ1
g in communica-

tion round λþ1. The global weights wλþ1
g in communica-

tion round λþ1 can be aggregated according to the
federated averaging algorithm (FedAvg) in McMahan
and others [30], and it can be defined as

wλþ1
g ¼

X
u � U

ωuw
λ
u, ð15Þ

where ωu is the aggregation coefficient. When the λth
communication round is terminated, the global model
obtains aggregated weights wλþ1

g . Finally, the participant
UEs obtain the aggregated global weights at the begin-
ning of each communication round.

4.2 | DRL-based BS switching operation
scheme

RL is a well-known approach for solving MDP prob-
lems [31]. RL does not require complex mathematical
models, and it solves the problem by learning the model
and interacting with the environment. However, since
environments can become more complex and have
higher dimensions, the DRL method, which is a deep
neural network adapted to Q-learning, has been studied.
In addition, a continuously increasing environment can
cause overestimation problems in the learning policy. To
improve the DRL performance, double-deep Q-learning
(DDQN) was developed to be robust and stable [32].
Thus, we apply the DDQN method to the BS switching
scheme. The proposed DRL-based BS switching operation
scheme is shown in detail in Figure 2.

In DDQN, the deep neural network represents the
action and state spaces, and the state-action value func-
tion, that is, the Q-value function, is approximated. The
DDQN applies the online network and target network, and
the online network estimates the Q-value Qðs, aÞ of the
state-action pair s, ah i, while the target network produces
the approximated true value y. As a result, the DQN
updates its weights to minimize the loss function LðθÞ,
which is defined as follows:

LðθÞ¼E y�Q s, ajθð Þð Þ2� �
, ð16Þ

6 PARK and YOON
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where θ represents the weights of the online network.
In addition, the approximated true value y can be calcu-
lated as

y¼ rðs, aÞþ γqQ s0, arg max
a0 � A

Q s0, a0jθð Þjθ�
� �

, ð17Þ

where θ� represents the weights of a target network.
The action from online network Q s, ajθð Þ can be

selected using a simple ϵ-greedy policy. The target
network is a duplicate of the online network Q s, ajθð Þ.
While updating the weights of the online network, the
weights of the target network are fixed. To stabilize
learning, an experience replay memory strategy that
stores the transition of the experience is used. Therefore,
the DDQN can train the model by sampling minibatches
of the experience-replay memory. The next state s0 can be
obtained from both the online network and target network
by calculating the optimal value Q s0, a0jθð Þ. Then, the
target value y is calculated using the discount factor γq

and the current reward rtðs, aÞ. Finally, the error is
obtained from (17) and backpropagated to update the
weights.

In our proposed DRL-based BS switching operation
scheme, traffic demand D̂

t
are aggregated with the

predicted traffic data from the proposed F-LSTM model
at the beginning of each time slot t. With the observed
current state st ¼fD̂t

, Dt�1, at�1
i , tta,ig from our environ-

ment, the agent decides on action ati , which represents
the active or SM operations for SBS i, and the system
executes the actions for all SBSs. At the end of time slot t,
the agent stores the experiences that include multiple

experiences si, ai, r si, aið Þ, s0ð Þ in the replay memory.
Then, the agent randomly samples a mini-batch from
the replay memory to update the network. The mecha-
nism of the proposed scheme is summarized in
Algorithm 1.

F I GURE 2 Proposed deep reinforcement learning (DRL)-based base station (BS) switching operation scheme.
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5 | EXPERIMENT RESULTS AND
DISCUSSION

In this section, the performance of our proposed scheme
is evaluated by comparing it with existing approaches. To
set the simulation settings, a multicell HetNet environ-
ment is considered that consists of multiple MBSs and
multiple SBSs. The coverage radii of the MBSs and SBSs
were 1000 m and 100 m, respectively. The maximum
transmission powers of the MBSs and SBSs were 20 W
(43 dBm) and 1 W (30 dBm), respectively. The network
parameters for the simulations were set according to
3GPP specifications [33, 34]. To consider the spatial and
temporal characteristics of user mobility in urban
areas, we utilized the mobility trace dataset from San
Francisco [35]. The traffic applied to the dataset is shown
in Figure 3. The other parameters and hyperparameters
are summarized in Table 1.

To train the model of the proposed scheme, we used
the TensorFlow platform with the Adam optimizer and a
backpropagation algorithm [36]. We also use the Flower
framework to build the simulation environment for fed-
erated learning using the FedAvg algorithm [37]. To pre-
dict the unlabeled trajectory data, we utilized an LSTM
auto-encoder model, which consists of two encoder layers
and two decoder layers. To avoid overfitting and acceler-
ate training, we adopted a batch normalization enhance-
ment method [38]. In the LSTM model, we set the
learning rate, time step, and batch size to 0.001, 5, and
128, respectively. The architecture of our LSTM auto-
encoder model is given in Figure 4. In the DRL model,
we set the learning rate decay ratio, batch size, and target

network update frequency to 0.98, 32, and 100 episodes,
respectively.

To evaluate our proposed scheme, we compared it
with existing approaches. We chose two BS switching
operation approaches to achieve fair comparisons: the

F I GURE 3 Normalized traffic demand according to

geographical space in San Francisco.

TABL E 1 Simulation parameters.

Parameter Value

Time slot (t) 30 min

Number of MBSs 15

Number of SBSs 45

Number of UEs 50, 100

Fixed energy consumption of active SBSs (π1) 160 W

Fixed energy consumption of sleep SBSs (π0) 24 W

Load-dependent power consumption of the
SBSs (Δ)

216 W

Bandwidth (W ) 20 MHz

Learning rate of the LSTM model 0.001

Time step of the LSTM model 5

Batch size of the LSTM model 128

Learning rate decay ratio in the DRL model 0.98

Target network update frequency of the DRL
model

100 episodes

Batch size of the DRL model 32

Abbreviations: DRL, deep reinforcement learning; LSTM, long short-term
memory; MBS, macro base station; SBS, small base station.

F I GURE 4 Summary of the long short-term memory (LSTM)

auto-encoder model architecture.
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DRL model with the convolutional-LSTM model and
the optimization method LSTM model. The existing
approaches are as follows.

1. Full activation: “Full Activation” was adopted to
show the performance of BS switching operations. In
Full Activation, all BSs always maintain the active
mode.

2. DQN with prediction (Compare1): “Compare1”
was adopted to compare the performance of the
considered rewards and prediction model [23]. In
Compare1, the convolutional neural network and
LSTM model, referred to as the C-LSTM model in this
study, is used to capture the relationships of semantics
and geography. It minimizes the cost that consists of
the energy cost and service delay cost.

3. Optimization with prediction (Compare2):
“Compare2” was used to effectively compare DRL-
based BS switching operations [22]. In Compare2, the
LSTM model is used to predict future traffic demand
by considering the positions and traffic of users. It
formulates the BS switching operation problem as a
Lyapunov optimization problem, and it solves the
problem by selecting modes that minimize the objec-
tive function.

4. Q-learning (Compare3): “Compare3” is a model
that uses Q-learning to make decisions on BS switch-
ing operations and is employed to demonstrate the
effectiveness of the proposed algorithm [15]. This
method uses dropping rate and delay constraints to
minimize QoS degradation caused by frequent hand-
overs. In contrast to the methods proposed in our
paper and other related papers, it controls power
using four modes, not just simple ON/OFF, but with
three levels of SM.

The proposed F-LSTM model trains the LSTM models
using a federated learning algorithm; thus, the hyper-
parameters for the LSTM model must be set for fast
convergence and accurate prediction. To set the step size
for the proposed LSTM model, we simulated the LSTM
model with various time-step sizes. The time-step size is
an important factor for improving the prediction score of
the LSTM model. Therefore, the selection of the optimal
time step affects the performance of the prediction
model. The user trajectory has spatiotemporal dependen-
cies, and the user trajectory in urban areas can change in
a number of different cases. As a result, setting the time-
step value can determine the length of the trajectory that
should be considered in the prediction. In Figure 5, the
accuracy is represented with time step values of 1, 3, 4, 5,
and 10 to determine the optimal value of our F-LSTM
model. The proposed model with time steps 1, 3, 4, 5, and

10 converged with accuracies of approximately 74%, 77%,
87%, 82%, and 69%, respectively. The proposed model
with a time step of 5 outperformed the other models. This
means that the time step should be set to a value that is
neither too long nor too short. Therefore, we set the time
step value to 5 because it is the optimal value for the pro-
posed model.

To show the prediction performance of our proposed
LSTM model, we compared the prediction accuracy of
the proposed LSTM model and existing models in
Figure 6. As illustrated in Figure 6, the proposed LSTM
model converges faster and obtains higher accuracy than
other existing prediction models in the training processes.
The proposed LSTM model, LSTM model in Compare1,
and LSTM model in Compare2 converged after approxi-
mately 6, 8, and 10 training epochs, with accuracies of

F I GURE 6 Comparison of accuracies obtained using the

proposed scheme and existing approaches.

F I GURE 5 Comparison of accuracies with various step sizes.
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approximately 87%, 71%, and 56%, respectively. We can
see that the proposed LSTM model after training has an
accuracy that is higher than that of Compare1 and
Compare2 by approximately about 22.5%–26.7%. The user
trajectory data have historical characteristics; therefore,
our proposed LSTM model, which was constructed with
the auto-encoder architecture, is better able to train using
the important features of the input data.

In federated learning, the local models upload their
trained weights to the global model after every local
update epoch. If the local update is too low or too high,
the global model converges very slowly or cannot con-
verge. Therefore, the local update epoch is the most
important hyperparameter affecting the convergence
time. In Figure 7, we compare the validation losses with

various local update epochs to determine the optimal
value. In Figure 7, we can see that the validation loss of
epoch 1 converges more slowly than other epoch values.
This indicates that an epoch that is too low will update
using weights that have not been sufficiently learned,
thus disturbing the convergence of the global model.
Therefore, we set the number of local update epochs to
10 to achieve fast convergence.

In Figures 8 and 9, the comparisons of average energy
efficiencies for 1000 episodes on scenarios containing
50 and 100 UEs, respectively, are displayed. We can see
that in the figures, there are obvious increments in
energy efficiency when using the BS switching operation.
With the proposed scheme, the energy efficiency
increases further compared with other existing

F I GURE 1 0 Comparison of average handovers with various

UE scenarios.

F I GURE 9 Comparison of average energy efficiencies with

100 UEs.

F I GURE 8 Comparison of average energy efficiencies with

50 UEs.

F I GURE 7 Comparison of validation losses with respect to

various local update epochs.
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approaches. Specifically, our proposed scheme in the
50-UE scenario outperformed Full Activation by 36%,
Compare1 by 6%, Compare2 by 18%, and Compare3 by
15%, respectively. The proposed scheme in the 100-UE
scenario performed better than Full Activation by 31.7%,
Compare1 by 1.8%, Compare2 by 11%, and Compare3 by
11%, respectively. Moreover, high-traffic areas were cre-
ated by increasing the number of episodes and decreasing
the energy efficiency of Full Activation. However, the BS
switching operation schemes can ensure energy effi-
ciency. In addition, the proposed scheme converges to
higher values. This indicates that the proposed scheme
can learn the optimal BS switching policy better than
Compare1. Compare3 outperformed Compare2, which
does not utilize the RL method, but it exhibited lower
energy efficiency than the DQN-based Compare1. In real-
istic environments, there are more states to consider, and
ON/OFF actions that do not take future traffic demands
into account may result in users not receiving service
from the optimal BS.

To show the impact of the designed rewards on the
reduction of QoS degradation from handovers, we com-
pare average handovers for the 50- and 100-UE scenarios
in Figure 10. We refer to the proposed scheme, Full
Activation, Compare1, and Compare2 as PS, FA, C1, and
C2, respectively. We can see that in the figure, there are
significant reductions in handovers when the proposed
scheme is utilized. When comparing the
proposed scheme with Compare1, both approaches
reduced handovers by considering the QoS degradation.
However, the proposed scheme reduce more handovers
by using a reward that considers the QoS degradation
from handovers. The proposed scheme determines the
active mode for the SBSs that perform with low energy
efficiency and cause fewer UE handovers. As a result, it

achieved the lowest average handover with increased
energy efficiency. In addition, Compare3 utilized the
drop rate and delay constraints as metrics to minimize
handovers, obtaining results that are comparable to those
of our proposed scheme.

To show the impact of the proposed scheme, we com-
pared the average SINRs using boxplots in Figure 11.
This figure includes the smallest and largest observations,
lower and upper quartiles, and the median. The variance
and skew in the distributions of the SINRs are shown.
Regarding the performance results of the SINRs, the pro-
posed scheme performed better by approximately 39%,
10%, 26%, and 24% than the Full Activation, Compare1,
Compare2, and Compare3 methods, respectively. This is
because the proposed scheme determines the modes of
the SBSs by considering the reduction in QoS degradation
due to handovers. The users associated with BSs are ser-
viced with the optimal SINR in our environment, and
hence, the handover decreases the SINRs of the users
because of suboptimal BSs. Nevertheless, Compare3 also
aimed to minimize handovers, and the average SINR was
lower that that of both our proposed method and Com-
pare1. This is because we considered a switching penalty
to prevent frequent mode switching, which can cause
critical QoS degradation and additional energy consump-
tion. Therefore, Figures 10 and 11 prove that the pro-
posed scheme tends to determine the modes of the SBSs
that reduce QoS degradation.

6 | CONCLUSION

In this paper, we introduced a DRL-based BS switching
scheme with the F-LSTM traffic prediction model to
enhance energy efficiency. Our F-LSTM model predicts
future traffic by learning user trajectories through feder-
ated learning, ensuring rapid convergence and private
training. The DRL model uses these predictions to opti-
mize SBS operation modes, minimizing energy consump-
tion and QoS degradation. We considered factors such as
energy use, QoS degradation (data rate and handover
impact), switching penalty, and SBS active time to reduce
repetitive handovers. Simulation results demonstrate the
enhanced energy efficiency when maximizing energy
savings while minimizing QoS degradation.

In real mobile networks, varying the amount of user
data for training can lead to communication delays in
federated learning due to data uploading. To improve
federated learning performance, we will extend our
approach by adjusting each user’s training data volume.
Additionally, we will enhance BS switching by allocating
transmission power based on diverse communication
conditions for individual users.

F I GURE 1 1 Comparison of average signal-to-interference

noise ratios (SINRs) with 50 UE scenarios.
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