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ABSTRACT Optical camera communication (OCC) has emerged as a promising alternative technology
for radio frequency (RF)-based communication systems. However, existing OCC approaches only consider
transmitting data through broadcasting, without any ability for point-to-point communication. In this paper,
a new modulation scheme termed distance color-coded on-off keying (DCC-OOK) is proposed that uses
distance information retrieved from relative localization. The proposedmethod allowsOCC to perform point-
to-point communication and facilitates bidirectional communication. An OCC system that uses multi-sensor
fusion of a camera and LiDAR is considered, in which calibration of the sensors and LED array segmentation
for performing relative localization between the OCC transmitter and the OCC receiver are explained. The
results indicate that both point-to-point and bidirectional communication were achieved with the proposed
OCC system. During implementation, the distance between transmitter and receiver was varied between
1.0 and 4.0 m, and the system demonstrated a maximum data rate of 38.4 kbps with a lowest BER of 0.03.

INDEX TERMS Optical camera communication, modulation, bidirectional, multi sensor fusion, relative
localization, on off keying.

I. INTRODUCTION
To solve the limitations in RF communication, such as
the limited spectrum and susceptibility to interference,
optical wireless communication (OWC) has emerged as an
alternative technology [1]. The advantages of OWC include a
large available spectrum, resistance towards electromagnetic
interference (EMI), license-free operation [2], good com-
munication security, and high energy efficiency [3]. Optical
camera communication (OCC) is a subsystem of OWC that
employs an image sensor as the receiver and a light-emitting
diode (LED) as the transmitter. The main advantage of OCC
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over other OWC subsystems (for example, LiFi) is its ability
to use a variety of data carriers, including visible light,
infrared (IR), and ultraviolet (UV). Additionally, OCC offers
long-distance communication [4], resistance towards ambient
light in outdoor applications, and the ability to capture data
from different sources independently [5].
Although it appears to be comparable to other OWC

approaches, such as LiFi or VLC, OCC is different. The
key distinction is in the receiver approaches; other OWC
techniques employ a photodiode as the receiver, but OCC
employs a camera. To get the information, the OCC receiver
processes a picture provided by the camera. As a result,
because the image may contain undesirable items, the image
processing approach is crucial in OCC to pick areas of the
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image that contain the conveyed information. As a result of
the receiver differences, the communication strategy in OCC,
LiFi, or VLC differs.

Currently, collective intelligence is implemented in various
fields [6]. In intelligent transportation systems (ITS), one
application of collective intelligence is platooning, which
significantly reduces fuel consumption and provides a smooth
traffic flow [7]. In drone systems, collective intelligence is
used to establish drone swarming when performing certain
goals, such as formation control [8], espionage [9], or defense
mechanisms [10]. Moreover, collective intelligence is widely
used in robotics applications to create multi-agent systems,
in which robots perform collaborative actions to accomplish
a certain mission [11].

The application of collective intelligence in the afore-
mentioned fields requires reliable communication between
each entity in the system. Most research in collective intel-
ligence proposes radio frequency (RF) as the communication
technology. However, in some fields, using RF-based com-
munication strategies can incur several critical disadvantages.
For example, when vehicles use RF communication in ITS,
the communication latency between vehicles is quite high
because the data has to be transmitted to a nearby base
station (BS) before reaching the destination [12]. This latency
issue can be solved by using 5G communication, which
allows low-latency data transmission. Nevertheless, the BS
for 5G has a small coverage area, meaning numerous BSs
need to be installed to cover the whole area in ITS, which
incurs high installation costs. Moreover, if some areas are
not covered by the BSs, the communication is inoperative,
disabling vehicle collaboration and interrupting the collective
intelligence between the vehicles.

Communication based on RF is also widely employed in
drone systems to provide reliable communication between
the drones. However, RF-based systems are prone to signal
jamming [8] and spoofing [13], which could break the
collective intelligence in the drone system and incur a higher
risk of information leakage. In the field of robotics, there are
certain applications where RF-based communication cannot
be used, such as underwater situations.

To solve these issues, OCC has emerged as an alternative
solution for replacing RF-based communications. For exam-
ple, OCC has been widely proposed in ITS as a promising
technology for vehicular communication because it allows
for direct point-to-point communication between vehicles,
resulting in significantly reduced latency [8]. In vehicular
applications, the OCC receiver is mounted on the windshield
of the vehicle to allow reading the transmitted data from the
vehicle in front, while the transmitter is mounted on the tail
lamp to send information to the following vehicle. The data
is transmitted in a broadcast manner, allowing all the vehicles
behind to receive the data.

In addition, OCC has emerged as a communication
solution for drone systems. OCC improves drone system
security, making the drones resistant to network jamming

and spoofing. Several studies have applied OCC to drone
systems. For example, Zhang et al. [8] proposed OCC for
effectively controlling drone swarming. Long-range drone
communication was also performed by Takano et al. [14],
where long-distance OCC-based drone communication was
achieved over a distance of 300 m. Importantly, it is easy
to integrate OCC with existing ITS, drone, or robotics
systems because most modern systems use image sensors
for perception, meaning no changes are required in terms of
hardware configuration when adopting OCC.

However, OCC suffers from several drawbacks compared
to RF-based communication or other OWC methods. First,
OCC has a relatively low throughput caused by the low frame-
per-second (fps) rates of generally available cameras. This
issue can be solved by using a high-fps camera to increase the
throughput. Second, existing OCC systems transmit data in a
broadcast manner, which only allows reception of the trans-
mitted data provided that the receiver is located in the field
of view of the transmitter. Moreover, although broadcast-
manner transmission is beneficial in certain situations, when
transmitting confidential data, a point-to-point approach is
preferred to ensure information security. Third, because OCC
mainly communicates in a broadcast manner, it is difficult to
perform bidirectional communication using OCC.

In this paper, we propose a new modulation technique for
OCC systems that enables point-to-point data transmission
and easier bidirectional communication. We expect the
proposed method to find applications in regular OCC systems
that require point-to-point data transmission and bidirectional
communication. However, we hope that the proposed method
can be adopted in multi-agent robot systems, vehicular
communication, or UAV swarms as its communication
backbone in the future. By using the proposed method, the
OCC system can securely transmit data to the target receiver
directly without having to broadcast the information to all
visible receivers, while also providing the ability to establish
bidirectional communication. Currently, transmitting data to
a target receiver can be performed by applying a preamble
code at the beginning of the data packet, where each preamble
code is unique to each OCC system [15].

However, assigning preamble codes to differentiate the
receiver of the data packet is not practical in mobile
environments because this would force the OCC receiver to
continuously focus on the OCC transmitter and constantly
receive and decode data packets from the source, even if the
data packet is for another receiver. In other words, using the
preamble method still requires the receiver to continuously
decode frame-by-frame transmitted data packets even if the
information is not for them, which wastes receiver resources.

Most modern vehicles and drones are equipped with
range-measuring devices (such as LiDAR) that can provide
distance information directly. In this work, we propose using
relative distance information between the transmitter and
the neighboring receiver by adding it to the OCC data
modulation, where the relative distance information is coded
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as a color and combined with existing on-off keying (OOK)
modulation to control the LED. Accordingly, we propose a
new modulation technique termed distance color-coded on-
off keying (DCC-OOK) for mitigating broadcast issues in
OCC, enabling point-to-point communication and providing
easier bidirectional communication.

By localizing the relative location of the neighboring
entities using a fusion of the camera and LiDAR, this enables
the system to recognize the receiver easily while allowing
other receivers in the field of view of the transmitter to
automatically disregard the transmitted data and focus on
other tasks rather than having to focus on receiving and
decoding the transmitted data frame-by-frame. The proposed
method exploits distance information extracted using the
relative localization method to be coded as a color in the
LED. When two OCC systems need to communicate with
each other, they will be at the same distance from each
other. Hence, they will have the same LED array color.
When the LED array colors match, both OCC systems can
start communicating. In contrast, if the LED colors do not
match, the OCC systems can discard the information and
focus on another task while waiting for a neighboring OCC
system to present the same LED array color, requesting
communication.

The overall contributions of this paper are as follows:

1) A method is provided to efficiently localize an LED as
an OCC transmitter to obtain the relative distance by
using multi-sensor fusion of a camera and LiDAR.

2) A new distance color-coded on-off keying (DCC-
OOK) method is presented for enabling point-to-point
communication in OCC.

3) Easier setup is achieved for bidirectional communica-
tion in OCC compared to existing methods.

The remainder of this paper is organized as follows:
Section II highlights recent work on OCC modulation,
while Section III provides an explanation of the method for
performing relative localization used in this work. Section IV
contains a detailed explanation of the proposed DCC-OOK
modulation. Section V details the experimental results and
subsequent analysis, and the paper is concluded in SectionVI.

II. RECENT WORKS
Over the years, several modulation methods have been
proposed for OCC. On-off keying (OOK) is one such
modulation scheme, in which an ‘‘on’’ LED represents a ‘‘1’’
bit, while a ‘‘0’’ bit is represented by an ‘‘off’’ LED [16].
Several types of OOK schemes have been proposed by
researchers. In [17], an asynchronous OOK was proposed to
mitigate the synchronization problems present in traditional
OOK. To improve the performance, Manchester coding
and the camera rolling shutter effect were combined with
OOK [18]. By combining these techniques, a higher data rate
with a lower bit-error rate (BER) was achieved.

Instead of using the on-and-off states of LEDs, the
frequency shift keying (FSK) scheme uses several LEDs that

operate at different frequencies to transfer the data [19].
By transmitting data using FSK modulation, a higher OCC
data rate can be achieved. However, based on [20], the
communication distance is limited, with a maximum distance
of less than 2 m. The emerging use of RGB LEDs and color
cameras has facilitated a new modulation scheme termed
color shift keying (CSK). The CSK scheme transmits data
through a variation of colors emitted by an RGB LED [21].
The color camera captures these variations in color and
decodes them accordingly. Although CSK is able to provide
a higher data rate, it suffers from a short communication
distance because the colors cannot be identified over longer
distances [22].

To improve the communication distance, an undersam-
pling modulation scheme has been proposed. Undersampled
frequency shift on-off keying (UFSOOK) is a modulation
technique that uses undersampling [23], which allows longer
communication distances for OCC. Meanwhile, to improve
the data rate of OCC, quadrature amplitude modulation
(QAM) has proved effective [24]. By using QAM, several bits
can be transmitted using a single LED, which significantly
improves the data rate compared to other modulation schemes
that only allow single-bit transmission by a single LED.

Recently, the usage of MIMO techniques has gained
researcher attention. Instead of using a single LED, an array
of LEDs is utilized as the transmitter. The MIMO technique
enables a more efficient operation of OCC compared
to using a single LED. In [25], a rolling-shutter-based
MIMO using an LED array is introduced. By using the
method, it promises flicker-free transmission, although the
communication distance is short and does not support rotation
detection. In [26], a color-intensity modulation using the
MIMO technique is presented, where a high frame rate
camera is employed. The work shows that LED colors
with different intensities can be utilized to modulate data
and successfully produce a quite high data rate of up to
126.72 kbps. However, the intensity level is difficult to detect
by the camera, which limits the communication distance to
1.4 m and the BER value to up to 10−1. The authors in
[27] show OCC systems using the MIMO technique and
OOKmodulation. Their work shows promising results where
the communication distance increased up to 20 m with a
high data rate of 1.920 kbps using an 8 × 8 LED array.
The proposed scheme is also not affected by camera types
(global shutter and rolling shutter) used to perform the OCC
systems. However, the authors did not present the possibility
of performing bidirectional communication or point-to-point
data transmission.

To date, many OCC modulation schemes have been
proposed. However, all existing OCC modulation techniques
only consider transmitting information in a broadcasting
manner, where the data is transmitted to all other OCC
systems that are in the field of view. However, broadcasting
information places OCC at a disadvantage because data
security is vulnerable due to the inability to select the
destination. Bidirectional communication using OCC is also
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difficult to perform when the data is broadcast. In this paper,
a new OCC modulation technique that considers point-to-
point communication using OCC is proposed, in which the
system can select the data destination based on relative
localization information. The proposed scheme also allows
easier implementation of bidirectional OCC because the
system is able to select the communication partner.

In the proposed method, a relative localization technique
is employed, where a multi-sensor fusion of LiDAR and a
camera is used for localization. There is no other modulation
scheme that uses relative localization information to be added
to the modulation schemes, making this work the first to
combine relative localization with a modulation scheme for
OCC systems. The relative localization commonly used in
robotics systems, especially in robot swarm applications,
provides accurate positioning to avoid collisions or cooperate
between entities [28]. The relative localization is also utilized
in the autonomous vehicle for cooperative perception to
widen the sensing coverage among vehicles [29]. Numeru-
ous works also utilize relative localization in the UAV
for navigation guidance and formation control [30], [31].
From the aforementioned works, the relative localization
method is done by utilizing multi-sensor fusion of cameras,
LiDAR, UWB, and other types of sensors. Therefore, multi-
sensor fusion-based relative localization is proven to provide
accurate localization performance.

The proposed method uses a fusion of LiDAR and
cameras to perform the relative localization. To join the
sensor data, a calibration technique, often called point
cloud registration, is required. Generally, the methods for
calibrating the LiDAR and camera can be grouped into
two categories: traditional approaches and learning-based
approaches. In traditional approaches, the transformation
parameters are retrieved by using handcrafted features such
as FPFH [32], SHOT [33], or Tensor [34]. The traditional
approaches suffer from difficulty creating a handcrafted
feature, which requires an expert to calculate it. However,
the traditional approaches win in terms of processing time,
where the computational complexity is very low and yields
a fast system response time. Meanwhile, the learning-based
approaches utilize deep neural networks to automatically
generate the features or perform direct end-to-end learn-
ing to generate the transformation [35], [36], [37], [38].
Unfortunately, deep neural networks dramatically increase
computational complexity, which results in the impossibility
of applying them to time-sensitive applications such as
modulation schemes. Therefore, the traditional approaches
are better for modulation schemes due to their fast processing
times.

III. MULTI-SENSOR FUSION FOR RELATIVE
LOCALIZATION
To establish the DCC-OOK method, it is important to
determine the precise localization of the OCC transmitter.
In this work, the fusion of a camera and LiDAR is employed
to estimate the relative localization between entities. Since

FIGURE 1. Flowchart of the relative localization method.

the LED size of the OCC transmitter is quite small, a certain
technique needs to be performed to localize the OCC
transmitter precisely. First, the camera and LiDAR need to be
calibrated to unify their field of view and correctly project the
3-D point cloud generated by the LiDAR to the 2-D images
generated by the camera. Then, a segmentation method is
used to localize the estimated location of the OCC transmitter
in the 2-D images. After determining the location of the
OCC transmitter, point cloud matching is performed based
on the location of the OCC transmitter to recover its relative
distance information. Fig. 1 summarizes the steps to perform
the relative localization as a flowchart. The details of each
method are discussed in the following subsection.

A. INTRINSIC AND EXTRINSIC SENSOR CALIBRATION
The camera used in this work is a pinhole model that creates
multiple distortions in the produced images, meaning it
required initial calibration to fix the distortion problem. This
process is termed camera intrinsic calibration, where the aim
is to recover the camera intrinsic parameters Ki and distortion
coefficient β from the images and then generate rectified
images. In this work, the camera intrinsic calibration module
from OpenCV [39] was used to perform the calibration.

Next, a rigid-body transformation that defines the relative
pose between the camera and LiDAR is calculated, which
is also known as sensor extrinsic calibration. The aim is
to determine the transformation vector of six parameters
(θ = tx , ty, tz, rx , ry, rz), where the parameters represent
the relative position of LiDAR in the reference frame
of the camera. To find these parameters, reference points
from the 2-D image and 3-D point cloud need to be extracted.
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FIGURE 2. Captured checkerboard image.

The target-based calibration technique was adopted, where
a checkboard is used as the reference point to calibrate the
sensors. Fig. 2 displays an image of the checkerboard in 2-D
and 3-D formates.

The translation and rotation parameters are achieved by
applying the random sampling consensus (RANSAC) to the
sampled 2-D and 3-D points. Initially, several reference
points from the 2-D and 3-D images are selected, and the
selected points must be of the same object presented in
both images. After selecting the set of 2-D and 3-D points,
RANSAC is employed to remove any outliers while keeping
the inliers for calculating the translation and rotation vectors.
Then, the translation and rotation vectors are calculated using
the set of inlier points.

The generated translation and rotation vectors are estima-
tions of the parameters. A Levenberg-Marquardt algorithm
is employed to refine the calibration parameters to achieve
lower rotation and translation errors between the 2-D and 3-D
points. The equation for the Levenberg-Marquardt algorithm
has a function to minimize the projection errors, which is
represented as follows:

X̂ = ArgminxF(x) (1)

where x refers to the parameter vectors resulting from
RANSAC, F(x) refers to the errors between the 2-D and 3-D
points, and X̂ refers to the optimized parameter vectors that
achieve the lowest errors.

The overall steps for performing the extrinsic calibration
method are depicted in Algorithm 1.

B. OBJECT SEGMENTATION
Usually, object detection is employed to find an object’s
location in an image. However, using object detection only
outputs a bounding box that is not sufficiently tight to fit the
object shape. Hence, object segmentation is utilized because
it can produce a pixel resolution mask of the target object.

Algorithm 1 Steps to Perform the Camera-LiDAR Extrinsic
Calibration
Input: Fcam: frame from camera stream,FLiDAR: frame from

LiDAR stream
Output: Refined calibration parameters θ =

(tx , ty, tz, rx , ry, rz)
1: From the camera stream, get the recent frame Fcam and
FLiDAR

2: Make sure that Fcam and FLiDAR are taken at the same
timestamp

3: Select reference points from Fcam and store them in
imgpoint_sets

4: Select reference points from FLiDAR and store them in
pclpoint_sets

5: Load the RANSAC model
6: while err > TargetErrorRANSAC do
7: Find the inliers from imgpoint_sets and pclpoint_sets
8: Calculate the calibration parameters using the inliers
9: Measure the projection error
10: end while
11: Load the calibration parameters from RANSAC
12: Load the Levenberg-Marquardt model
13: while err > TargetErrorLevenberg-Marquardt do
14: Calculate the calibration parameters
15: Measure errors
16: Update the parameters
17: end while

Typically, object segmentation can be grouped into three
categories: semantic, instance, and panoptic.

In semantic segmentation, only the group of an object is
detected, without any ability to distinguish different objects
in the same categories. Instance segmentation is able to detect
the object class as well as assign a unique identifier to
each detected object. Panoptic segmentation is a combined
version of semantic and instance segmentation. In this
work, semantic segmentation was selected because it can
differentiate between objects that belong to the same class.
Although panoptic segmentation can also achieve this, it was
not selected due to its heavy computational burden.

Instance segmentation was developed using the YOLOv8
model, which was initially developed and perfected by Ultr-
alytics [40]. YOLOv8 is the latest version of the YOLO (You
Only Look Once) series, which is noted for providing good
performance in object detection tasks. YOLOv8 was selected
because it has a good balance between detection performance
and computational complexity. Moreover, YOLOv8 can
generate an acceptable performance level within a short
period. This was beneficial in this work because OCC
requires a system with a high frame speed to improve its
communication quality. The YOLOv8 model architecture is
displayed in Figure 3.

YOLOv8 is available in several versions, includ-
ing YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and
YOLOv8x. Although all variants use the same architecture,
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FIGURE 3. YOLOv8 architecture for segmentation task.

they are different in terms of the depth multiplier, width
multiplier, and ratio, which determine the size of the
calculated image. YOLOv8s was selected as the instance
segmentationmodel in this work, as it has FLOPs of 28.6 with
an input image size of 640 pixels.

As displayed in Figure 3, the overall format of YOLOv8
consists of four layers: input, backbone, neck, and pre-
diction. The input layer receives the input image, which
is resized to 640 pixels. Then, important features from
the input image are extracted using the backbone layer,
which uses the CSPDarknet53 architecture. The next layer
is a C2f module, which replaces the neck layer used
in previous YOLO models. To generate the segmenta-
tion mask, two segmentation heads are employed and
positioned after the neck layer. The segmentation heads
consist of detection modules and a prediction layer to
generate a prediction of the segmentation mask of an
object.

In this work, the objective was to detect the location of
an LED array that was acting as the transmitter for OCC.
However, there was no open dataset that provided the data of
LED arrays with corresponding segmentation labels. Hence,
we developed an image dataset for training the YOLOv8s
segmentation model.

The image dataset was developed by ourselves and
contains images of an 8 × 8 LED array from various
angles, distances, and environments (indoors and outdoors).
We collected the dataset using the LED array and camera,
specifically the Logitech Brio camera. To collect the dataset,
the LED array is installed on a tripod and controlled to show
a random pattern with various colors as determined in the
modulation schemes.

The camera is placed in front of the LED array at a
distance between 1 and 6 m, where one image is taken
from each distance. Additionally, the camera was also
placed at a random, various angle from the LED array
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FIGURE 4. LED array image dataset for training the segmentation model.

to improve segmentation performance when detecting the
image at a skew angle. Moreover, the image collection
from various distances and angles is performed in two
environments: indoors and outdoors. In both indoor and
outdoor environments, the LED array image is taken with a
complex background where the settings of distance and angle
are the same. Finally, we collected a total of 750 images of
8 × 8 LED arrays.
After collecting the images, each was labeled manually

using the labeling software Computer Vision Annotation
Tool (CVAT) [41] to provide the segmentation mask labels.
Finally, after obtaining the labels for each image, the dataset
was ready to be trained for the YOLOv8s model. An example
of captured images in indoor and outdoor environments for
the dataset is presented in Figure 4.

C. RELATIVE LOCALIZATION MEASUREMENT
After performing the sensor calibration steps, projected
images that displayed the LiDAR points on the 2-D images
were gathered. Then, from the segmentation, the estimated
pixel location of the object could be determined. Since the
LiDAR point cloud data was already in 3-D position format
(x, y, and z with units in meters), the distance of the object
could be instantly recovered.

In the mask of the detected object, more than one point
cloud resided inside the mask. Hence, to obtain the relative
distance of the object, the average point cloud data in the
x, y, and z axes needed to be calculated, as demonstrated
in Equations 2, 3, and 4. Finally, the relative distances
could be calculated using Equation 5, where it refers to the
Pythagorean theorem to find distance in a 3-D space [42]
with the difference between two points is the average point
cloud data in x, y, and z axes.

Xavg = 6X/nX (2)

Yavg = 6Y/nY (3)

Zavg = 6Z/nZ (4)

drelative =

√
X2
avg + Y 2

avg + Z2
avg (5)

where Xavg, Yavg, Zavg is the average position of the object
in X, Y, and Z axis, respectively. 6X , 6Y , and 6Z is the
total position of the points in X, Y, and Z axis. The total
number of points in X, Y, and Z axis represented by nX ,
nY , nZ , respectively. The relative distance between objects is
expressed by drelative.

IV. PROPOSED DCC-OOK MODULATION SCHEME
DCC-OOK modulation is a scheme that uses distance infor-
mation between the transmitter and receiver to enable point-
to-point data transmission in OCC, instead of broadcasting
the data, which is widely proposed in existing modulation
schemes. The idea originates from a simple observation in
OCC systems, where the distance between the transmitter and
receiver is always the samewhen observed relatively from the
transmitter or receiver-side. Hence, to ensure correct point-to-
point transmission in OCC, the distance information can be
leveraged.

In DCC-OOK, the distance between the transmitter and
receiver is color-coded, where the color coding is set
manually. The color code for the distance used in this work is
displayed in Figure 5. Based on this color code, the LED array
of the transmitter will display the corresponding color. Hence,
if the receiver is located 1 m away from the transmitter, the
LED array of the transmitter will turn blue. Then, the receiver
who also know that the distance to the transmitter is 1 m,
will receive and decode the data only when the LED array
of the transmitter light up blue color. If the LED array of the
transmitter is any other color, the receiver will not receive
and decode the data because that information would be for
another receiver positioned at a different distance relative to
the transmitter.

Figure 6 displays a block diagram that explains the detailed
steps of the proposed DCC-OOK modulation working
principle. Initially, the transmitter needs to localize the
receiver by using the fusing of the camera and LiDAR.
The localization process is initiated by performing receiver
detection, where the LED array of the receiver is detected by
using the segmentation method. Then, relative localization is
performed to retrieve the distance between the transmitter and
the receiver.

Simultaneously, the data stream from the sensor that is to
be transmitted is then encoded as the packet payload. The
distance information is also encoded with the packet payload
and the data stream. Embedding the distance information in
the packet payload helps the receiver verify that the data
is received from the correct transmitter. The data encoding
functions to convert the decimal number from the sensor
reading and relative localization into a binary number.

The sequence number (SN) is inserted into the data packet
to provide each data packet with an identifier for easier packet
merging when transmitting large data packets. The SN is
also important for detecting missing packets that could occur
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FIGURE 5. DCC-OOK color coding used in this work.

during data transmission. Then, the preamble is added to the
data packet, where the preamble is the first part of the packet
frame. The preamble acts as a sign for the start of the frame to
help in synchronizing the data transmission. In this work, the
preamble was modified so that the bit values corresponded to
the distance results from relative localization.

Moreover, the preamble is also color-coded, where the
LED array displays a different color according to the distance
from the relative localization. Different distances between
the transmitter and receiver will cause the LED array to
display different colors, which are already coded. The data
packet is then complete and can be mapped into the LED
array. The mapping of the data packet to the LED array
uses the OOK principle, where ‘‘0’’ bits turn off the LED
inside the LED array, and ‘‘1’’ bits turn on the LED inside
the LED array (hence the term OOK mapping). Thereafter,
OOK mapping is used to control the LED array that emits
the signal to the receiver. In this work, the OOK mapping
is inspired by [27], where a similar 8 × 8 LED array is
utilized.

In the receiver, the LED array of the transmitter is detected
using a camera. This detection uses the segmentation method
to localize the LED array in the images. Then, relative
localization is performed to measure the distance to the
transmitter. Preamble detection is then executed to verify that
the detected preamble is the same as the color code of the
distance from the relative localization. If the color code from
relative localization is different than the detected preamble,
this means that the data is not for that receiver. Hence, data
transmission is halted. If the detected preamble has the same
color code as the distance from relative localization, the
process continues. When the detected preamble and color
code from the distance from relative localization match, this
means that the data is meant for the receiver and has been
successfully transmitted to the correct receiver.

After the preamble is successfully detected, the transmitted
data is decoded to recover the original data. In this stage,
data verification is performed again to verify that the data is
correctly transmitted to the receiver. This verification can be
conducted by comparing the distance information decoded
from the data with the distance measured from the relative
localization, where both should be the same value. If the
data decoder is passed, then the decoded data is checked for
any missing bits during the transmission. Simultaneously, the
decoded data is sorted based on the SN to create a complete
big packet. Finally, the decoded data stream can be recovered
and passed to further processes in the receiver.

A. BIDIRECTIONAL OCC USING DCC-OOK
Existing OCC systems widely use modulation schemes that
utilize the rolling-shutter effect. By utilizing the rolling
shutter effect of a camera, it is proven that it can increase
the data rate compared to other modulation schemes. Some
examples of modulation schemes that utilize the rolling-
shutter effect are Rolling OFDM [43], DCO-OFDM [44],
2D-OFDM [45], and FSK [46]. The rolling-shutter effect
of a camera generates a striped-pattern monochrome image
where every white or black stripe represents the bit ‘‘1’’ or
bit ‘‘0’’. However, this scheme has several disadvantages,
such as:

1) It is difficult to detect the stripe correctly since it
correlates with the transmitter power and the distance
between the receiver and transmitter.

2) Short-distance communication when using a wide field
of view camera.

3) Need to use a narrow field of view camera when
communicating over long distances to enable focus
only on the transmitter.

Based on the disadvantages of rolling-shutter effect-based
modulation schemes, it is difficult to use them in OCC
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FIGURE 6. Block diagram of the proposed DCC-OOK modulation for OCC.

FIGURE 7. Scenario of bidirectional OCC using the DCC-OOK.

systems for bidirectional communication. In long-distance
bidirectional communication, the receiver is only able to
focus on one transmitter to retrieve the striped-pattern image,
which means the receiver cannot see another transmitter.
Additionally, when using these existing systems, the transmit-
ter only broadcasts data by controlling the LED. Accordingly,
the receiver does not know whether the transmitted data is for
another receiver. Moreover, the receiver cannot acknowledge
the transmitter because it cannot be identified due to the
data only being broadcast. This means the OCC systems
cannot perform bidirectional communication and multi-
agent communication since the receiver is only tied to one
transmitter, and the transmitter broadcasts the information
without knowing the receiver. Therefore, we propose DCC-
OOK as a solution for bidirectional communication in OCC.

Using DCC-OOK, the LED array codes the relative distance
between the transmitter and receiver as a color, allowing for
their identification.

The transmitter sends data to the receiver by illuminating
an LED array with a color based on the measured distance
to the receiver. The receiver will only receive data from a
transmitter that illuminates the LED array with a color that
matches the distance between the receiver and transmitter.
Hence, DCC-OOK enables a virtual link between the
transmitter and receiver, and bidirectional communication
can be established.

Figure 7. explains the steps to establish bidirectional
communication in an OCC system using DCC-OOK. First,
as demonstrated in Figure 7a, each systems agent uses its
perception system of a camera and LiDAR to scan the
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surrounding area and measure the relative distance to the
surrounding agents. Hence, each agent has a list of the
surrounding agents along with the relative distances to each
agent. In this initial step, the LED array will be white,
meaning ‘‘initial setup, not ready for communication.’’

As depicted in Figure 7b, Agent 1 needs to communicate
with Agent 2, which is located around 3 m away relative to
Agent 1. Therefore, Agent 1 transmits data with a preamble
that is green based on the color code. Agent 3 receives the
transmitted data from Agent 1. However, since the distance
between Agent 3 and Agent 1 is less than 2 m, Agent
3 instantly realizes that the green preamble data is not for
them. Hence, the data is instantly discarded by the Agent 3.

Meanwhile, Agent 2 receives the transmitted data from
Agent 1 and knows that the distance to Agent 1 is
approximately 3 m, which is coded green. Hence, the color
code is a match, and Agent 2 starts to decode the data.
If Agent 2 needs to acknowledge Agent 1, it simply transmits
data in which the preamble will be green. Since Agent 2 is
also green in its data preamble, Agent 1 instantly realizes that
Agent 2 needs to communicate. Hence, Agent 3 and Agent
1 can establish bidirectional communication provided both
transmit green preambles according to the color code.

A similar situation is explained in Figure 7c, where Agent
1 needs to transmit data to Agent 3. Based on the relative
localization, the distance is less than 2 m and the preamble
should be blue. Hence, Agent 1 displays blue on its LED
array. Agent 3 retrieves the blue preamble and realizes that
the data is for them. Agent 3 then decodes the data for further
processing.

When establishing bidirectional communication between
Agents 1 and 3, both Agents have the same blue preamble.
When both Agents display blue, this means that both need to
exchange data and communicate with each other. As such,
based on Figure 6, if Agent 1 needs to communicate with
Agent 2, it should transmit data with a green preamble.
Meanwhile, if Agent 1 needs to transmit data to Agent 3,
it should display a blue preamble. If the agents need to
communicate bidirectionally, both agents should use the same
preamble color.

V. EXPERIMENT RESULTS AND ANALYSIS
A. EXPERIMENT SETUP
To perform the experiment, two sets of agent setups were
installed. The component configurations in each agent were
set identically to ensure that all agents had the same
characteristics. The components used in each agent are
described in Table 1.

As displayed in Figure 6, the sensors for OCC commu-
nication were installed on top of a tripod. The camera was
mounted on the top of the LiDAR and acted as the receiver
for the OCC and for recognizing the other setup. Then, an
8 × 8 LED array was located on the bottom of the LiDAR
as the transmitter for OCC. The LED array was controlled
by an Arduino UNO board connected to an NVIDIA Jetson

TABLE 1. Components installed in each agent.

AGX Orin board. The camera, LiDAR, and Arduino board
were connected to the NVIDIA Jetson AGX Orin board as
the main processor of the system. The field of view of the
LiDAR was limited to 120Â◦ to match the field of view of
the camera.

However, LiDAR can produce extensive point cloud data
that could slow the computation time. Hence, a distance filter
was applied to limit the maximum object distance to 8 m,
meaning it filtered out the point cloud of an object that was
located more than 8 m from the sensor. To coordinate the
components to work together, a robot operating system (ROS)
was employed. All the software required in the experiments
was written in Python and configured as a ROS node. After
configuring the hardware and software for each agent, both
agents were positioned next to each other at a minimum
distance of 1 m and a maximum of 4 m, as displayed in
Figure 5. Evaluation of OCC performance started after both
agents were in the correct position.

B. CALIBRATION RESULTS
The approximate estimated parameters of the translation and
rotation vectors generated by RANSAC were refined using
the Levenberg-Marquardt model to reduce the errors. Based
on the experiment, the errors were measured using root
mean square error (RMSE). The best RMSE achieved was
2.354 with parameter values of 0.208, -0.001, -0.251, 0.941,
-0.702, and 0.534 for tx , ty, tz, rx , ry, rz, respectively.
Based on the achieved best parameter values, these were

used when projecting the 3-D data to the 2-D images, and
the results are displayed in Figure 8. It is evident that the
point cloud data were tightly matched with the checkerboard
because all the point cloud data were correctly positioned
inside the checkerboard.

C. SEGMENTATION RESULTS
To train the YOLOv8 for instance segmentation, the collected
LED array dataset was split into 75% and 25% for training
and validation, respectively. The dataset was also split
proportionally for indoor and outdoor images to create
balanced information for the model to learn. Additionally,
the labels were normalized following the YOLOv8 model
requirements. Pre-trained weights for the YOLOv8 model
were used to speed up the training process, and these
pre-trained weights were trained using the COCO dataset
beforehand. Then, the pre-trained weights were loaded into
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FIGURE 8. Extrinsic calibration results between the camera and LiDAR.

TABLE 2. Settings used for the YOLOv8 segmentation model training.

TABLE 3. Training results of YOLOv8 segmentation for LED array.

the YOLOv8 model, and transfer learning was performed
using the LED array dataset. In the training process, the
model was trained using hyperparameters, hardware, and
software, as displayed in Table 2.

From the training process, the results of the trained
YOLOv8 model with its training performance are listed in
Table 3. At 0.50 IoU, the model achieved up to 0.91 mAP,
which indicated that the model successfully predicted most
of the mask precisely. Moreover, the precision and recall
performances were also stable, achieving values of 0.95 and
0.86, respectively. Overall, the training results exhibited a
promising performance in terms of the YOLOv8 model
and demonstrated that the model was ready for real-time
inference.

The trained weight of the YOLOv8 model was used for
the real-time inference. From the test results, it was evident
that the processing time was 0.1 ms for one frame, including
generating the mask location in the image. The experiment
tested the model performance when detecting the LED array
from distances of 1 to 4 m. From the experimental results, the
model was able to detect the LED array seamlessly within

FIGURE 9. LED array detection results from the YOLOv8 model.

TABLE 4. Relative localization results.

distances of 1 to 3 m. However, starting from 3 to 4 m, the
model had difficulty detecting the location of the LED array.
With the camera, the LED became small and the model had
difficulties in recognizing the LED array. However, although
difficult, the model was still able to detect the LED array
successfully with a lower confidence level. The detection
results from the experiment are displayed in Figure 9.

D. RELATIVE DISTANCE LOCALIZATION RESULTS
The performance of relative distance localization was tested
by performing eight measurement tests at different distances.
The test was performed with a distance from 1 to 4 m
in increments of 0.5 m. At each distance, the agent was
tasked with localizing another agent that was located in
front. The optimum calibration settings were applied, and the
measurement results are listed in Table 4.

As demonstrated in Table 4, the performance of the
proposed system had an error range of 1.68% to 9.52%
with measuring distances from 1 to 4 m. Based on the
implementation, the system experienced difficulties when
detecting the LED array as the size was quite small, meaning
the point cloud data inside the masking points were too few.
Errors were also caused by calibration problems. Sometimes,
the point cloud in the object mask was not the actual point
cloud of the object, resulting in distance measurement errors.

Figure 10 displays the implementation of relative local-
ization between the OCC systems. It is evident that the
segmentation was still able to detect and segment the LED
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FIGURE 10. Relative localization implementation.

TABLE 5. Transmitter and receiver parameters.

array even though the LED array was small due to the
distance. Moreover, the localization results were satisfactory
considering the LED array size, indicating that calibration
was successful.

E. BIDIRECTIONAL OCC USING DCC-OOK RESULTS
Table 5 lists the parameters used for creating the transmitter
and receiver. The same settings were employed for all agents
in the system. On the transmitter side, each data packet
consisted of 64 bits according to the size of the employed
LED array, 4 bits were reserved for the anchor to determine
the corner of the data, and a further 4 bits were reserved for
the preamble and SN bits. Then, most of the packet was filled
with the payload, which uses 52 bits. The payload consisted
of distance information resulting from relative localization
and data from the sensor reading.

To demonstrate the feasibility of the OCC system for
bidirectional communication, an experiment was conducted,
as depicted in Figure 11. The implementation was success-
fully performed using an 8 × 8 LED array as the transmitter
and camera as the receiver. As illustrated in Figure 11, the
bidirectional OCC simultaneously collected data from both
systems. Four types of sensors (as described in Table 1)
were employed to transmit data simultaneously to each
receiver, and the readings from the communication partner
were displayed on individual monitors corresponding to the
decoded results from each transmitter.

Based on the parameters presented in Table 5, each OCC
system needed to transmit 64 bits of data per frame, of which

FIGURE 11. Real-time sensor data collection using bidirectional OCC.

TABLE 6. Data rate and BER performance analysis in DCC-OOK OCC
systems.

the payload data was only 52 bits. We used an image
resolution of 1920 × 1080 pixels with a global sensor type
operating at 15 fps to capture the LED matrix’s flashing
results. On the receiver side, the image was captured at
a resolution of 1920 × 1080. The overall system fps was
only 15 Hz because LiDAR can be maximally operated
at 15 fps. Hence, the fps of the camera should match the
LiDAR’s fps to prevent object misdetection.

As displayed in Table 6, the performance of the proposed
system exhibited a data rate range between 0.0 and 38.4 kbps,
with a BER ranging from 1 to 0.03. The BER measurements
were conducted by focusing on the color and distance
characteristics in bidirectional OCC communication. High
data rates and low BER levels could be achieved with
optimal placement of the transmitter and receiver in the
communication system, which reduced signal attenuation and
distortion when transmitting light through the medium.

Furthermore, precise detection of the LED array by the
receiver resulted in clear images, allowing each bit sent
from the transceiver to be accurately read by the receiver.
However, as the communication distance increased, there was
a significant decrease in data rate and BER due to signal
attenuation with increasing distance and the difficulty in
distinguishing individual bits from the LED array.
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TABLE 7. Comparison of proposed method with existing modulation
schemes.

Consequently, the camera used was no longer capable of
detecting every bit available on the LED array. Moreover,
at longer distances, OCC could not work due to the LED
array not being clearly visible, causing a loss of data.
Although the data rate and BER performance of DCC-
OOK modulation were not significantly higher than other
existing modulation schemes, DCC-OOK allowed for easier
bidirectional communication in the OCC system.

Table 7 shows the comparison of the proposedmethod with
the existing method. Since the proposed method also utilizes
LED arrays as transmitters, several existing modulations with
LED arrays as transmitters are chosen to provide a more fair
comparison. The table clearly shows that the proposed DCC-
OOKmodulation is the only one equippedwith point-to-point
transmission and bidirectional communication. Then, the
proposed method is able to use any camera type, not limited
to certain camera types.

The communication distance of the proposed method is
in the medium range, better than some schemes that only
support up to 1.4 m. Moreover, the data rate of the proposed
OCC is worse than the data rate of color-intensity-based
modulation. However, although the data rate is the fastest, the
color-intensity modulation can only perform short-distance
communication. Finally, the BER of the proposed method is
worse than the work by Nguyen et al. The high BER value
indicates significant data loss during transmission, which is
caused by blurry images resulting from the tight positioning
of the LEDs in the array, making it difficult for the camera
to differentiate each LED. A possible solution is to utilize
a better LED array with wider-spaced LEDs and a higher
camera resolution.

VI. CONCLUSION
In this paper, a new modulation scheme termed DCC-OOK
was proposed to solve the current issues in OCC of the
transmitter only broadcasting data and sending it to a specific
receiver is not possible. By using the proposed method, the
transmitter knew the receiver’s location and the receiver also
knew which transmitter had sent the data.

To establish DCC-OOK, a relative localization scheme
using multi-sensor fusion of a camera and LiDAR was
employed to precisely measure the distances between the
OCC systems. Sensor extrinsic calibration using RANSAC
and Levenberg-Marquardt was used to project the 3-D data
into the 2-D images.

A YOLOv8-based segmentation model was also employed
to locate the LED array of the transmitter in the images.
The distance between the OCC systems was acquired
by calculating the point cloud inside the object mask.
To establish the DCC-OOK, the distance was inserted to
encode the data and modify the data preamble to ensure that
the LED arrays illuminated in different colors based on the
distance.

From the implementation results, the proposed DCC-
OOK system demonstrated that bidirectional communication
between OCC systems was possible by the transmitter only
communicating with a receiver that had the same color code.
The implemented bidirectional communication can achieve
data rate up to 38.4 kbps and BER of 0.03.

The positioning information between OCC systems was
an important aspect of correctly transmitting data to the
target receiver. Using DCC-OOKwas also beneficial because
the transmitter was able to select the data receiver, which
was automatically aware due to the color code emitted by
the transmitter. In future studies, the relative localization
performance will be improved and additional OCC systems
will be employed to implement multi-agent communication
in OCC.
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