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Abstract

A photonics‐based terahertz (THz) wireless fronthaul is proposed, and its

feasibility is investigated by real‐time demonstration. The proposed wireless

fronthaul can be simply integrated into existing fiber‐optic fronthaul, to serve

as a complementary or emergency network. An optical signal can be converted

into a THz wireless signal by photonics‐based THz‐signal generation

technology, utilizing a unitraveling carrier photo‐diode. Following wireless

transmission, the THz wireless signal is reconverted to an optical signal by

using a Schottky‐barrier diode and an optical transmitter. To investigate the

feasibility of our proposed concept, real‐time transmission over a 100m‐
equivalent configuration is demonstrated with 24.33 Gb/s common public

radio interface option 10 signals, at a carrier frequency of 275 GHz. The

latency added by the proposed wireless fronthaul was measured to be few

100 ns, which is negligibly lower than the wireless transmission latency

required by 6G key performance indicator.
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1 | INTRODUCTION

Mobile fronthaul generally refers to the connection
between baseband units (BBUs) and remote radio units
(RRUs). Fiber‐optic links are widely utilized for the
implementation of transmission links for mobile
fronthaul, because they provide wide bandwidth, low
loss, and high reliability.1,2 However, fiber optic links
have high deployment costs and limited flexibility. These
limitations have become more noticeable with the
evolution of mobile communication technology, as the

coverage area of each mobile cell tends to decrease
because of increasing carrier frequency. Wireless
fronthaul can compensate for these limitations by
offering connection flexibility and lower deployment
costs. Hence, wireless fronthaul has attracted significant
interest in recent years.3–8 One of the promising
applications of wireless fronthaul is the complementary
(or ad hoc) network of the fiber‐optic fronthaul.

Figure 1 illustrates the concept of mobile fronthauling
with a wireless fronthaul. As shown in Figure 1, it covers
shaded areas where optical fiber deployment is not
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affordable, and it can also be used as an emergency
network when fiber‐optic links are disconnected. The
requirements of the wireless fronthaul are as follows. First,
it should be compatible and seamlessly integrate with the
existing legacy fiber‐optic fronthaul. Second, it should offer
a transmission capacity ranging from tens of gigabits of
transmission to potentially hundreds of gigabits. In
function split option 7.2, the data rate is expected to
increase to ~100Gb/s.9 Additionally, the network should
be transparent to support centralized control at BBUs
without any protocol changes. Finally, the latency of the
wireless network should be sufficiently low.

A terahertz (THz) wireless link with photonics‐based
THz signal generation can satisfy the above requirements
because it provides seamless wireless signal generation,
supports a high data rate, and is inherently transparent.
There have been several demonstrations applying a
photonics‐based approach and integrating it with fiber‐
optic links.10–13 These demonstrations showed ~100Gb/s
transmission using coherent signal formats over a few
meters of links. These results imply that the photonics‐
based THz wireless link has significant potential for high‐
speed wireless communication. However, the short‐reach
high‐speed links in the previous demonstrations were not
appropriate for THz wireless fronthaul applications.

In this paper, we propose a THz wireless fronthaul
that can serve as a complementary network to legacy
fiber‐optic networks. Because most existing fiber‐optic
fronthaul systems employ a nonreturn‐to‐zero (NRZ)
signal format, the proposed THz wireless fronthaul also
adopts the NRZ signal format for seamless integration
with a previously installed fiber‐optic mobile fronthaul.
To investigate the feasibility, real‐time transmission was
demonstrated over a 100m‐equivalent wireless link
(10m wireless setup with 20 dB attenuator) using an
off‐the‐shelf network tester and optical transceivers. NRZ
common public radio interface (CPRI) option 10 signals

of 24.33 Gb/s were transmitted over a wireless link, and
the measured bit error rate (BER) satisfied the KP4 (RS
544,514) threshold BER (2.2 × 10−4). Furthermore, the
latency added by the proposed wireless fronthaul was
confirmed to be considerably lower than that of a 6G key
performance indicator (KPI). To the best of our
knowledge, this is the first real‐time demonstration of
THz wireless fronthaul.

2 | EXPERIMENTAL SETUP

Figure 2 shows the experimental setup used to demon-
strate the proposed THz wireless fronthaul. For real‐time
BER measurements, a network tester (VIAVI MTS‐5800)
was used. Using the network tester, 24.33 Gb/s of NRZ
data were generated following the CPRI option 10. The
signal was converted into an optical signal using electro‐
absorption modulated laser (EML)‐based off‐the‐shelf
optical transceiver 1 (Lightron SFP28 C‐band transceiver).
The wavelength of the data‐carrying light was 1529.55 nm
(196 THz). It was then amplified using erbium‐doped fiber
amplifier 1 (EDFA 1). A constant‐wave (CW) light with a
wavelength of 1531.7 nm (195.725 THz) was generated by a
tunable laser diode (TLD, Pure‐photonics PPCL550). The
polarization of the data‐carrying and CW light were
aligned using polarization controller 1 (PC 1). The two
wavelength‐separated lights were combined using a 50:50
optical coupler and amplified using EDFA 2. The
combined light was then injected into a unitraveling
photodiode (UTC‐PD) after polarization alignment and
optical power adjustment by PC 2 and a variable optical
attenuator (VOA), respectively. In the UTC‐PD, a beat
signal was generated by via an optical heterodyne mixing
procedure between the two wavelength‐separated lights.
The center frequency of the beat signal was 275GHz
because the frequency difference of the lights was already

FIGURE 1 Concept of mobile
fronthauling with the wireless fronthaul.
BBU, baseband unit; RRU, remote radio unit.
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set to 275 GHz. A frequency of 275 GHz was intentionally
selected by experimental optimization to obtain the best
transmission performance. A wireless link was established
using two antennas, with antenna gains of 48 dB each.
After the wireless transmission, the received power was
adjusted using a variable THz attenuator (RPG, WTA 220‐
330) and THz‐band amplifier. The signal was then down‐
converted to a baseband using a Schottky barrier diode
(SBD, VDI WR3.4ZBD‐F). The baseband signal was
amplified using two amplifiers. An equalizer (SHF EQ.
16A) was used between the amplifiers to enhance the
high‐frequency components. The signal was then trans-
ferred to the clock data recovery board and converted to an
optical signal by Transceiver 2. Finally, the optical signal is
received using Transceiver 1.

Figure 3 illustrates the frequency characteristics of
the key THz components, THz amplifier, and UTC‐PD.
The graph with square symbols shows the THz amplifier
gain as a function of the frequency. The graph with
circular symbols on the auxiliary axis depicts the UTC‐
PD output power as a function of frequency at a driving
current of 6 mA. At 275 GHz, the gain of the amplifier
was ~17.1 dB, and the THz output power was −9.1 dBm.

3 | DEMONSTRATION OF
WIRELESS TRANSMISSION

Figure 4A shows a photograph of the established 10m
wireless transmission setup. An additional transmission
distance was simulated by adjusting the attenuation value

of the variable THz attenuator. For instance, a 100m
transmission was emulated by a transmission distance of
10m and attenuation of 20 dB. The BER values were
measured for various configurations, such as back‐to‐back
(i.e., two antennas were closely placed), 10m+ 2 dB,
10m+ 8 dB, 10m+ 15 dB, and 10m+ 20 dB. For all
configurations, BER values below the KP4 forward error
correction (FEC) threshold (2.2 × 10−4) were achieved at
the optimal operating point. Two types of performance
limitations were observed in the experiments. Initially, the
BER deteriorated as the UTC‐PD current increased to a
certain level, which is attributed to the saturation of the
THz amplifier, thereby limiting the allowable range of the
UTC‐PD current. Additionally, the BER degraded when

FIGURE 2 Experimental setup for real‐time demonstration of wireless fronthaul. CDR, clock data recovery; EDFA, erbium‐doped fiber
amplifier; PC, polarization controller; SBD, Schottky barrier diode; TLD, tunable laser diode; UTC‐PD: unitraveling carrier photo‐diode;
VOA, variable optical attenuator.

FIGURE 3 Frequency characteristics of sub‐THz band
components. Square symbols: THz amplifier gain and circle
symbols: UTC‐PD output power.
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the UTC‐PD current reached 6.5mA owing to UTC‐PD
saturation. As a result of this saturation, the BER of the
100m equivalent configuration was considerably worse
than that of the other configurations. These limitations can
be overcome by improving the saturation power of the
components.

In addition, we measured the round‐trip time to
determine the latency added by the wireless fronthaul.
The results are displayed in Table 1. In the loop‐back
measurement, which directly connects the Tx and Rx of
the optical transceiver at the network tester directly by
1m patch‐cord, the measured round‐trip time was 12 ns.
With the wireless fronthaul, the measured round times in
the B2B configuration and 10m wireless transmission
were 435 and 572 ns, respectively. These round time
values are low compared to the 100 μs wireless transmis-
sion latency observed for the 6G KPI.14 The round‐trip
time was mainly attributed to the propagation time of the
optical patch cords and tens of meters of erbium‐doped
fibers in the EDFA. Notably, the propagation time
through a 1m optical fiber was ~5 ns. If the optical
components are compactly integrated and the number of
employed EDFA is reduced, the latency can be further
reduced.

4 | CONCLUSION

In this paper, we present a real‐time demonstration of a
THz wireless fronthaul, which is the first such demon-
stration, to our knowledge. The THz wireless fronthaul
adopts photonics‐aided THz signal generation technol-
ogy, which enables seamless and transparent integration
with the legacy fiber‐optic mobile fronthaul. This high
compatibility can make it a complementary or an
emergency network to the existing mobile fronthaul.
Through real‐time BER measurements, the transmission
of a 24.33 Gb/s NRZ signal, following CPRI data option
10, was experimentally demonstrated over 100m‐
equivalent wireless links. The measured round‐trip time
caused by the insertion of the THz wireless fronthaul was
a few 100 ns, which is considerably lower than the
wireless transmission latency required by the 6G KPI.
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FIGURE 4 Demonstration of the proposed THz wireless fronthaul. (A) Photograph of a 10m wireless transmission setup and (B) bit
error rate measurement results.

TABLE 1 measured round‐trip time.

Configuration Round‐trip time (ns)

Loop‐backa 12

B2B 435

10m wireless transmission 572 ns

aThe Tx and Rx of the transceiver at the network tester were directly
connected by a 1m patch‐cord.
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