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ABSTRACT
With substantial advances in emerging and enabling technologies in
IoT sensors, a vast amount of IoT-based environmental data allows
preparation for adverse impacts by providing helpful information
for predictive and precise services. However, data acquired by IoT
sensors can be corrupted by external environmental factors, which
can negatively affect the integrity of data interpretation. To address
this problem, a prior study proposed outlier detection techniques
using transform-based sparse profiles. However, it would lose its
worth without an evaluation methodology for data integrity after
probing datasets by outlier detection. In addition, it did not con-
sider data with steep peaks or data that is dependent on other data,
which is common in real-world scenarios such as soil moisture data
used in this paper. Therefore, we propose a process of preprocess-
ing defective soil moisture sensor data using local pattern-based
outlier detection (LPOD) and evaluating the integrity of data after
outlier detection. Our paper specifically aims to: 1) detect outliers
of original soil IoT datasets to eliminate fault data possibly giving
wrong decisions using local and global outlier detection (OD); 2)
exploit the results of statistical evaluation to determine whether
the outliers have been well eliminated; and 3) find the ground truth
pattern of soil IoT datasets considering precipitation. Experiments
using real-world soil moisture datasets show that the LPODmethod
outperforms other statistical outlier detection methods, suggesting
that the preprocessed data can improve the integrity of IoT datasets.
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1 INTRODUCTION
The rapid development of Internet of Things (IoT) technology has
led to the continuous collection of large amounts of data in var-
ious places, such as homes, offices, and even agricultural farms.
Scientists have focused on data mining related to environment-
related phenomena, which are known to impact agriculture sub-
stantially [3, 14, 18]. Effectively managing soil moisture data from
sensors gives actionable knowledge, such as automation of irri-
gation, to help farmers [21]. Sensors typically acquire data and
record them in a time order, thus constituting a time series. The
proliferation of time series datasets generated by modern environ-
ment IoT sensors can help informative discoveries reach better and
faster decisions if farming industries leverage the datasets correctly.
However, it needs to have confidence that there are no silent data
faults in the acquired real-time IoT datasets because data faults
can adversely affect the integrity of data mining. Therefore, sensor
data quality or outlier detection to improve data integrity plays a
fundamental role in adopting corresponding IoT sensors [2, 12].

Our solution is to eliminate outliers and assess data fidelity using
statistical methods. An efficient and effective outlier elimination em-
powers data fidelity by timely correcting anomaly situations [1, 13].
Outlier detection (OD) has become a data analytics field of interest
for many researchers. It is now one of the main tasks of time series
data analytics in wide-ranging domains [11]. To detect sensor fail-
ures or outliers (anomalies), identifying unusual instances that de-
viate significantly from the majority of data is underpinned. There
are various outlier detection techniques, such as statistical-based,
distance-based, clustering-based, and density-based, to identify and
remove abnormal instances. In this case, statistical detection meth-
ods have the limitations of high computational cost. They might
also suffer from the curse of dimensionality when applied to large
datasets. To improve such a problem, a distance-based detection
method has been proposed, which detects outliers by calculating
the distance between all data objects. However, this method has
the limitation of not being able to identify outliers properly when
the data distribution is complex [19]. Due to the abovementioned
problems, we designed an IoT sensor outlier detection elimination
model to improve and reflect the data characteristics. Then, we eval-
uate the reliability of data eliminated outliers using soil moisture
data, which has the statistical characteristic of peak and declining
time series and is collected from April 29, 2023, to September 4,
2023, in two farm-land spots. The significant contributions of our
approach presented in this paper are as follows:

• We propose a local pattern-based outlier detection (LPOD)
algorithm that detects outliers based on local data. The soil
moisture data in this study has steep peaks and valleys, and
the values differ for each data interval. LPOD can reflect
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these data characteristics, showing higher outlier detection
performance than algorithms that detect outliers based on
global datasets (z-score and transform-based).

• After detecting outliers and correcting or eliminating the
data, we present a method to evaluate whether the data
has been corrected accurately using statistical validation
methods such as the Augmented Dickey–Fuller (ADF) test,
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, Auto Corre-
lation Function (ACF), andAutoregressive IntegratedMoving
Average (ARIMA).

• To assess data reliability, we extensively evaluate our out-
liers elimination approach based on several outlier detection
models, including Z-score, transform-based, and LPOD. Our
results demonstrate that LPOD presents superior prediction
accuracy measured in RMSE compared to statistical outlier
detection algorithms based on z-score and transform-based
OD.

• By directly integrating the environmental datasets collected
from soil moisture and weather, we find a ground truth pat-
tern for the outlier detection model.

2 PRELIMINARIES
2.1 Outliers of Soil Datasets
The soil moisture datasets acquired from real-world orchard sites
can contain point and collective outliers, as depicted in Figure 1.

• Point Outliers: This type of outlier commonly occurs in
a data point comparatively far from the whole dataset. For
example, there are three-point outliers, 𝑃1, 𝑃2, and 𝑃3, in
Figure 1a. For illustrative purposes, point outliers in this
figure show relatively high deviations from the original data
points.

• Collective Outliers: When a subset of data points is abnor-
mal to the entire dataset, those are called collective outliers.
For example, Figure 1b contains one collective outlier period
from 𝐶1 to 𝐶4. This type of outlier is defined as a sequence
of data points making an outlier pattern [8].

Outlier detection (OD) is finding the patterns of an outlier or a
fault in datasets whose behavior is not as expected [5, 9], like the
example anomalous data points in Figure 1. We first explore the
statistical techniques that form the fundamentals of OD. Then, we
introduce signal transform-based OD and LPOD methods to detect
anomalies based on time series data characteristics [15, 16].

• Z-score: The Z-score is a statistical measure of how many
standard deviations away a given observation is from the
mean. We use the Z-score to detect anomalous data points
from a dataset’s mean (𝜇) in terms of standard deviations
(𝜎).

𝑂𝐷_𝑠𝑐𝑜𝑟𝑒 (𝑥𝑡 ) = (𝑥𝑡 − 𝜇)/𝜎, 𝑥 = 𝑥1, . . . , 𝑥𝑛 . (1)

Given 𝑂𝐷_𝑠𝑐𝑜𝑟𝑒 (𝑥𝑡 ) at time 𝑡 , one can detect an outlier if
it is higher than a predefined threshold 𝜃 . If outlier data is
detected more than 𝜃 times, we change detected outlier data
into normal using interpolation. The choice of 𝜃 is critical be-
cause it determines which outliers are selected. For instance,

(a)

(b)

Figure 1: An illustration of two types of data outliers: (a)
point and (b) collective outliers.

using a specific 𝜃 can determine the range of outliers elimi-
nated if a small 𝜃 can lead to the loss of valid data. Therefore,
it needs to consider a trade-off in setting an appropriate 𝜃 to
preserve normal data.

• Transform-based: The transform-based approach exploits
spatial-temporal data characteristics to detect outlier pat-
terns. This technique capitalizes on their overall patterns
being spatiotemporally smooth in time-series datasets. In
that case, transformation techniques can be more effective
because the transformed data usually explicitly reveals the
data’s correlation [17, 23]. We apply the inverse transform
to these selected coefficients to reconstruct data without
outliers for outlier elimination.

• Local Pattern-basedOD: The local pattern-basedODmethod
detects outlier patterns by leveraging the characteristics of
the soil moisture data used in this paper. The data has steep
peaks and valleys, and the values in each data interval are
different. The values of point outliers and collective outliers
vary depending on the interval. Therefore, statistical tech-
niques that consider the data locally are needed to detect
outliers.

2.2 Time-Series Data Characteristics
This study aims to detect and correct sensor outliers and then sta-
tistically validate the accuracy of the data. The data collected by
soil moisture sensors steep peaks and valleys, and the values dif-
fer for each interval of the data. It is essential to consider their
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characteristics. In particular, the collected data may exhibit vari-
ous characteristics such as trends and seasonality, which can be
summarized as follows [22]:

• Trend: Soil moisture data collected directly in this study
shows an increasing trend over time, as shown in Figure 2
declining points (𝑉1 to 𝑉3). The declining points represent
the time just before the next rainfall, which indicates that
the soil moisture is increasing over time.

• Seasonality: Soil moisture data shows a pattern of increas-
ing value at a specific point, such as the interval 𝑅 in Figure 2,
and then gradually decreasing. The cycle is the time from the
start of the first precipitation to the start of the subsequent
precipitation.

Figure 2: Characteristics of time series data from a soil mois-
ture sensor.

Under these considerations of time series characteristics, the
data must satisfy the stationarity. Stationarity implies that the data
exhibit constant mean and variance over time and lack trends or
seasonality. However, real-world data collected often exhibits trends
and seasonality. This research involves preprocessing the data to
transform it into a stationary form and then using statistical testing
methods to validate this transformation. Converting the data into a
stationary form eliminates trends and seasonality, making it suitable
for applying statistical models. This process aims to enhance data
reliability and enable more accurate analysis and modeling.

3 OUTLIER DETECTION APPROACH
Figure 3 shows an overall process for detecting outliers and as-
sessing data validity, which consists of four steps. As shown in
Figure 3, we first detect outliers in raw data using OD such as Z-
score, Transform-based OD, and LPOD. After removing anomalies,
we verify stationarity to fit the ARIMA model to the data. After
fitting the ARIMA model, we compare the performance of each
data processing method using the Root Mean Square Error(RMSE)
value. This analysis outcome will suggest the most effective OD
method and data validation method.

3.1 Transform-based OD
We adapt transform-based OD (proposed in [16]) in conjunction
with three OD techniques in Section 2.1. In detail, the transform-
based OD approach begins by transforming original datasets using
DCT (Discrete Cosine Transform). Let us consider 𝑥 , which ex-
presses the transformed components of the original datasets (𝑥)

after DCT to model the correlation between the transformed coeffi-
cients and energy (or information) represented among them.

Thus, each coefficient component has its energy coefficient de-
fined as: 𝑒 (𝑥𝑡,𝑖 ). 𝐸𝐶 (𝑥𝑡,𝑘 ) is formulated as the energy concentration
(𝐸𝐶) contained in the number of coefficients components, denoted
as 𝑘 , of the entire transformed components (𝑥𝑡 ), which is calculated
as:

𝐸𝐶 (𝑥𝑘 ) =
∑𝑘
𝑛=1 𝑒 (𝑥𝑛)2∑𝑁
𝑛=1 𝑒 (𝑥𝑛)2

, 𝑛 = 1, 2, ..., 𝑁 , 𝑘 ≤ 𝑁 . (2)

𝑘 refers to the number of dominant coefficients to represent re-
lated datasets [14]. When data is reconstructed even using only
𝑘-dominant coefficients, data fidelity is improved by deleting out-
liers.

3.2 Local pattern-based OD
The soil moisture data has steep peaks and valleys, and the values
differ for each data interval, as shown in Figure 4. In this case, if
outliers are removed by considering the entire data set, it has a
limitation in that it cannot reflect the characteristics of each inter-
val. Therefore, global algorithms such as Z-Score do not correctly
remove outliers in data with such complex patterns and data dis-
tributions. We propose an LPOD algorithm that reconstructs data
without outliers by investigating the difference between adjacent
observations in a local of the data, not in the global data area.

LPOD is a method of reconstructing data without outliers by in-
vestigating the difference between adjacent observations in a subset
of data, not the entire dataset. In this case, we use a sliding window
technique to move the data interval to detect outliers in each in-
terval [20]. The window size was set as a percentage of the total
data set. At this time, we set the normal range for each interval, as
shown in the bands of Figure 4, and we identify outliers as data that
exceeds this range. We calculate the average and standard deviation
of the data using statistical methods to construct the relationship
between the data and to determine the data in the normal range.
We also calculate the mean and standard deviation of the data, such
as Equations 3 and 4, to construct the relationship between the data
statistically and to identify normal data categories. Next, the upper
and lower ranges are set with the average, standard deviation, and
threshold values to set the normal range, as in Equation 5. Finally,
data that exceeds the upper and lower ranges are detected as out-
liers, as in Equation 6. At this time, the data detected as outliers
are removed and reconstructed into data without outliers through
linear interpolation.

𝜇 =
1
𝑁

𝑁∑︁
𝑖=1

𝑥𝑖 . (3)

𝜎 =

√√√
1

𝑁 − 1

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝜇)2 . (4)

𝑢𝑝𝑝𝑒𝑟, 𝑙𝑜𝑤𝑒𝑟 = 𝜇 ± 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 · 𝜎. (5)

𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 = {𝑥𝑖 ∈ 𝑋 |𝑥𝑖 > 𝑢𝑝𝑝𝑒𝑟 or 𝑥𝑖 < 𝑙𝑜𝑤𝑒𝑟 }. (6)
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Figure 3: The process of detecting outliers and evaluating the validity of data.

Figure 4: Outliers of soil moisture data in Uiseong detected
by LPOD.

In summary, LPOD sets data intervals by moving a window over
the entire data set to reflect the different characteristics of each
interval. A normal range band is estimated for each interval through
statistical calculations, as shown in Figure 4. Data that exceeds this
range is detected as an outlier and is marked as a red point. The
detected outliers are removed, and the data is reconstructed by
interpolation using linear interpolation.

3.3 Stationarity Evaluation
After the OD process, we perform statistical analysis to evaluate
the data’s reliability. The data with eliminated outlier patterns is
closer to stationarity because it has more normal patterns than the
original data. Therefore, it is necessary to determine whether the
data with the outliers eliminated is normal and compare it with the
raw data regarding stationarity. To verify stationarity, we use ADF,
KPSS, and ACF graphs.

The ADF test is a unit root test for time series. If a unit root exists,
the time series is not stationary. The null hypothesis of the ADF test
is that the time series has a unit root, and the alternative hypothesis
is that the time series does not have a unit root. The null hypothesis
can be rejected if the ADF test statistic is less than the significance
level value. In other words, the stationarity of the time series can
be evaluated [7]. In this study, the significance level value is set
to 0.05, the commonly used level in statistics, and the probability
of rejecting the null hypothesis is set to 5 percent. However, the
ADF test can vary depending on the data, such as the sample size,
so it is not ideal to use it alone. Therefore, it is desirable to judge
stationarity by considering the ADF test results in conjunction with
the KPSS test and the ACF graphs.

The KPSS test evaluates whether the variance of time series data
is constant [6]. It can evaluate stationarity from a different perspec-
tive than the ADF test. The null hypothesis of KPSS is the opposite
of the null hypothesis of the ADF test. Therefore, if the test statistic
of the KPSS test is greater than the significance level, the time series
is considered to be stationarity. An autocorrelation function (ACF)
graph is a statistical graph that measures the autocorrelation of time
series data. Autocorrelation is the correlation between data points
at a given time interval or lag [10]. The ACF graph of data that
satisfies stationarity should have autocorrelation values within the
confidence interval (shown in sky blue in Figure 5) and converge
to zero quickly.

The statistical validation process to determine the stationarity
of data is as follows. First, if the ADF test statistic is less than 0.05
and the KPSS test statistic is more significant than 0.05, the time
series is considered stationary at the beginning. Then, if the time
series converges to a value close to 0 in the ACF graph, the data is
finally considered stationarity.
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3.4 ARIMA Evaluation
We use the ARIMA model to validate the reliability of soil moisture
data for each outlier elimination method. Since the ARIMA model
can evaluate the accuracy by predicting the data and comparing
the predicted values with the observed values, we can assess data
validity by evaluating the model accuracy of data that has station-
arity. For example, in the case of original data with outliers, the
specific patterns of the data may be distorted due to the outliers
described in Section 2.1, making it difficult to fit the model correctly.
In contrast, data with stationary characteristics of the time series
is expected to show a more apparent pattern than the original data
and fit the model better. As a result, the validity of the data can be
evaluated by comparing the accuracy of the original data and the
data with stationarity.

The data need to exhibit stationarity to fit data to the ARIMA
model. However, data measured with soil moisture sensors repre-
sent non-stationary time series data. Therefore, before fitting the
ARIMA model, it is crucial to determine whether the data is station-
ary using the stationarity evaluation Indicators in Section 3.3. Root
Mean Square Error (RMSE) is used as the evaluation metric, and
its formula is given in Equation 7 [4]. RMSE is a standard metric
used to assess the difference between This metric is employed to
evaluate the performance of ARIMA models, with lower values
indicating more accurate predictions by the model.

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 ) . (7)

4 RESULTS AND DISCUSSION
4.1 Datasets
To evaluate the proposed process to detect outliers in soil moisture
sensors, we collect a real dataset from IoT stations installed in two
farm-land spots in South Korea: Andong and Uiseong. The data
used in this study are collected from soil moisture sensors and
weather sensors. The weather sensor collects data on temperature,
wind direction and speed, ground temperature, relative humidity,
solar radiation, sunshine hours, and precipitation. The soil moisture
data are a total of 35,946 data points collected at 5-minute intervals
for 155 days from April 29, 2023, to September 4, 2023. The weather
sensor data are 1,406 data points collected at 1-hour intervals for 84
days from May 1, 2023, to July 3, 2023. Each sensor is continuously
monitored and collected at each measurement interval.

4.2 Stationarity Evaluation
Three statistical tests were performed to determine the stationarity
of data collected from IoT sensors. The data used for the tests in-
cluded the original data without preprocessing and the data with
outliers eliminated using three OD techniques described in Sec-
tion 2.1. Table 1 shows the results of the ADF and KPSS tests. We
can make several observations from these results. In the case of
ADF, if the statistical value is less than the significance level of
0.05, it is considered stationary. In the case of KPSS, if it is more
significant than 0.05, it is considered stationary. However, all data
showed non-stationarity in the KPSS test, so it was considered
non-stationary.

Table 1: ADF and KPSS test results according to preprocessing
method.

Outlier Detection ADF (p < 0.05) KPSS (p > 0.05 )

Original 0.000106 0.01
Z-score 0.059088 0.01

Transform-based OD 0.075294 0.01
LPOD 0.009237 0.01

Most time series datasets measured and observed in reality are
non-stationary, as shown above. Therefore, The differencing, which
subtracts the previous value in a time series from the current value,
was applied to reevaluate the stationarity of the data. This step
keeps the mean of the series constant over time and reduces its
time dependency, whichmakes it achieve stationarity. Table 2 shows
the differencing results for all data sets. As we can see, the ADF
and KPSS tests meet the significance level condition, thus being
considered stationary.

Table 2: ADF and KPSS test results after differencing.

Outlier Detection ADF (p < 0.05) KPSS (p > 0.05 )

Original 0 0.1
Z-score 0 0.1

Transform-based OD 0 0.1
LPOD 0 0.1

Finally, we visualize the stationarity of the data through the ACF
graphs. In Figure 5, the x-axis of the graph, lag, represents previous
data points from the current data point. For example, if the data is
measured at 1-hour intervals and the lag is set to 2, the lag is 2 hours
before the current data point. Therefore, the y-axis of the graph,
ACF, compares the current data point with the data point 2 hours
before. If the lag is 0, it is always 1 because it is the autocorrelation
of the current data point with itself. Therefore, it is excluded, and
the graph is analyzed.

In Figure 5, the cases of (5a) show significant deviations from
the confidence interval around lag 10 and 20. Therefore, they are
evaluated to be non-stationary data. The data detected as outliers
using three preprocessing methods are converging stably based
on a specific lag point (z-score(5b):8, transform-based OD(5c):27
LPOD(5d):6), as shown in Figure 5. Therefore, the data can be eval-
uated as stationary when using the three techniques of Z-Score,
Transform-based OD, and LPOD. In Section 4.2, we conducted the
same stationarity experiments using datasets from the Andong and
Uiseong sites. The experimental results were similar, so we only
included the experimental results using the datasets collected at
Andong in this paper.

4.3 ARIMA Evaluation
After confirming the stationarity of the data, statistical analysis-
based models can be used to assess model accuracy by comparing
predicted values to observed values. The training and testing data
are divided into an 8:2 ratio to employ the ARIMA model, with
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(a) (b)

(c) (d)

Figure 5: The ACF plot of the data processed by different
outlier detection techniques: (a) original, (b) z-score, (c) trans-
form based OD, and (d) LPOD.

RMSE used to gauge model performance. Table 3 and Figure 6
present the training outcomes with the ARIMA model. Figure 6
shows the overall patterns of the original data and the data after
outlier data elimination and whether the model accurately predicts
test values. We present the experimental results of the OD with
the highest RMSE performance only in this paper. Verifying if the
test and predicted curves match and reviewing the RMSE values in
Table 3 is essential to assess this visually. In this case, decreasing
the RMSE value signifies that the model makes precise predictions.
Accurate predictions imply that the data exhibits a discernible pat-
tern, affirming the validity of the data by minimizing the influence
of trends and seasonality from a statistical modeling perspective.

Table 3: The ARIMA model’s forecast results, with RMSE as
the performance indicator.

Andong Uiseong
Outlier Detection Root Mean Square Error (RMSE)

Original 0.4152 0.7131
Z-score 0.0979 0.5593

Transform-based OD 0.0401 0.0645
LPOD 0.0299 0.0429

In both Andong and Uiseong, as shown in Table 3, the data with
outliers removed using LPOD shows the best performance. The
original data (6a, 6c) shows point and collective outliers throughout
the data, so the test and predicted curves do not match. In LPOD
(6b, 6d), both outlier phenomena are removed; we can confirm this
since the two curves match. However, the part removed by the
collective outlier in 6d looks unnatural because it is a simple linear
interpolation algorithm, so there is room for improvement.

4.4 Finding Ground Truth Pattern
The current data shows outlier patterns, as shown in Figures 6a
and 6c. Outlier patterns correspond to data instances with two

different outliers, as described in Section 2.1. Removing segments
that show these outliers makes it possible to identify the regular
patterns or cycles in the data. This can be used as an important
feature in classification or regression problems. In Figure 7, the
ground trust pattern has very steep peaks and valleys, and the values
differ for each interval, which can vary depending on external
factors such as environmental impacts. We applied various outlier
techniques to identify this pattern, and the data removed by LPOD
showed the highest performance.

The data patterns with outliers removed can be analyzed by con-
sidering the associated data together. Precipitation, in particular,
plays a central role in supplying water to the soil. Therefore, we
can utilize the relationship between soil moisture and precipitation
data. Figure 7 shows the results of mapping precipitation data to
soil moisture data after removing outliers. The blue dots in Figure 7
represent cases of precipitation occurrence. When precipitation
occurs, steep peaks and valleys appear in soil moisture data. In ad-
dition, the values of the peaks and valleys in soil moisture data vary
depending on the frequency and amount of precipitation. Therefore,
a positive relationship was observed between precipitation and soil
moisture data, which can be seen as a ground trust pattern.

5 CONCLUSION
With the adoption of IoT sensors, the data collected can be utilized
for various purposes, such as data mining, classification, and pre-
diction. However, the collected data may have data defects due
to the influence of external environments. Therefore, this study
evaluated various outlier detection techniques (Z-score, Transform-
based OD, LPOD) based on real-world data to detect and eliminate
outliers. The soil moisture data has various characteristics, such as
steep peaks and different peak and valley values in each interval.
Therefore, we propose an LPOD algorithm that takes these charac-
teristics into account. To assess the validity of the data with outliers
removed, we evaluated the stationary of the data and analyzed the
accuracy of the model by fitting it to an ARIMA model.

The results showed that LPOD was the most effective method
for outlier detection and improved results over the original data set
in all measures, including ADF, KPSS, ACF, and RMSE. In addition,
we could find regular patterns in the data with outliers removed.
We found that precipitation data are positively correlated with soil
moisture data, allowing us to find the ground truth pattern.
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