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Abstract: Air compressors are widely used in industrial fields. Compressed air systems aggregate
air flows and then supply them to places of demand. These huge systems consume a significant
amount of energy and generate heat internally. Machine components in compressed air systems are
vulnerable to heat, and, in particular, a radiator to cool the heat of the overall air compressor is the
core component. Dirty radiators increase energy consumption due to anomalous cooling. To reduce
the energy consumption of air compressors, this mechanism emphasizes a machine learning-based
radiator fault detection, using features such as RPM, motor power, outlet pressure, air flow, water
pump power, and outlet temperature with slight true fault labels. Moreover, the proposed system
adds an LSTM-based motor power prediction model to point out the initial judgment of radiator
fault possibility. Via the rigorous analysis and the comparison among machine learning models,
this meticulous approach improves the performance of radiator fault prediction up to 93.0%, and
decreases the mean power consumption of the air compressor around 2.24%.

Keywords: predictive maintenance; air compressor; machine learning; fault detection; radiator;

energy Consumption

1. Introduction

An air compressor is one of the indispensable, energy-intensive tools, which account
for 10% of energy consumption in global industrial fields. In numerous industrial sectors
such as food, chemicals, and metal fabrication, compressed air has been widely used [1].
However, compressed air, as an energy source, is over two times more inefficient than
electricity [2]. In particular, the energy cost of air compressors accounts for 75% or more of
the total life-cycle cost. Moreover, at least 10% of the energy input into air compressors is
wasted. In compressed air systems, reducing energy consumption can be monitored via an
overheating check or other sensing information.

However, cooling components, such as radiators that reduce the overheating of air
compressors, are vulnerable to fault detection. If the fault detection of cooling components
is delayed, the energy cost of compressed air systems such as OPerational EXpenditure
(OPEX) significantly increases, regardless of whether fault detection happens. Here, pre-
vious research on predictive maintenance for air compressors and fault detection-based
energy saving are briefly introduced.

Predictive maintenance for air compressors has recently been studied in various
industrial fields [3-11]. Panda et al. [3] developed an ML-based predictive maintenance
framework to detect air compressor failure for the downtime reduction of heavy-duty
trucks, whose air brake system converts air pressure into mechanic force. Cerrada et al.

Energies 2024, 17, 1428. https:/ /doi.org/10.3390/en17061428

https:/ /www.mdpi.com/journal/energies


https://doi.org/10.3390/en17061428
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-7303-4672
https://orcid.org/0000-0003-3672-824X
https://doi.org/10.3390/en17061428
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17061428?type=check_update&version=1

Energies 2024, 17, 1428

20f12

[4] proposed a Learning Methodology for Multivariable Data Analyses (LAMDA)-based
classification model, using current signals to detect the tapered bearings of a reciprocating
air compressor. Loukopoulos et al. [5] provided a Remaining Useful Life (RUL) estimation
model using ML prognostics techniques with fault valve data of the reciprocating air
compressor. Lee et al. [6] presented a proactive fault diagnosis of a radiator with a
Gaussian mixture ML model for the initial fault classification, and then detected advanced
faults using an LSTM autoencoder. However, their approaches equipped sensors on the
radiator for anomaly detection directly. Moreover, they did not procure data from the
radiator near air compressors, which are involved in compressed air systems. Recently, a
neural designer proposed an ML-based bearing fault detection for air compressors [7,8].
However, despite the availability of information through the radiator label, Rodriguez [7]
only provided an anomaly detection for the bearings of air compressors. Guo et al. [9]
developed a Dual-Channel Transformer Network with the Convolutional Block Attention
Module (DCTN-CBAM) to predict the bearings” RUL. Even though the bearings’ fault
detection focuses on noise db, similar to a radiator’s features, noise db have a weak
correlation with motor power consumption. Moreover, Guo et al. [10] suggested a dual
attention mechanism, which combines the anomaly attention from the features of an
anomaly transformer and CBAM (AT-CBAM) to improve the accuracy of the fault detection
of drilling pumps. However, datasets of air compressors, which are considered in this
paper, do not guarantee time-domain information. If motor power and other features
of each air compressor are gathered, attention mechanisms such as transformer may be
considered. Gribbestad et al. [11] suggested an RUL prediction model for air compressors
based on transfer learning; however, any power consumption of the air compressors was
not considered. Thus, existing studies have shown limited interest in the fault detection
of cooling component affecting the energy consumption of air compressors, compared to
bearings’ and motors’ faults.

Studies on fault detection coupled with energy saving have been investigated [12-17].
Drakaki et al. [12] surveyed recent work on machine learning (ML)- and Deep Learning
(DL)-based induction motor predictive maintenance and then used power spectrum infor-
mation as a feature for fault detection. Lee et al. [13] presented an One-Versus-All (OVA)
multi-class classification method for compressor faults, which shows high accuracy. In
addition, energy saving through fault detection was analyzed for refrigerators. However,
because this compressor is considered as a component of refrigeration systems, data char-
acteristics of the air compressor in compressed air systems differ. Guo et al. [14] proposed
a Moving Average (MA)-based ML method to reduce energy by detecting faults in air
conditioning systems. Rodriguez et al. [15] provided a K-means clustering algorithm to
predict faults for the predictive maintenance of wind turbines for energy saving, maximiz-
ing useful life, and maximizing productivity. Shi et al. [16] considered a multi-objective
optimization model for low energy consumption with higher flow rate and efficiency.
However, they employed a traditional method, not ML technologies, and only planned
to study unexpected component faults in future research. Hu et al. [17] added cooling
modules for energy saving in compressed air systems, which cool the incoming air flow
into air compressors. However, they do not mention the failure detection of air compressors.
Accordingly, according to the previous studies, fault detection-based energy saving for air
compressors has not been extensively investigated.

However, much research on reducing the energy consumption of compressed air
systems has focused on control operations to reduce energy consumption [18-20]. Mousavi
et al. [18] proposed an energy consumption model to control compressed air systems. Liu
et al. [19] provided a genetic algorithm-based operation optimization model to reduce
the total energy consumption of pipelines using air compressors. Bayoumi et al. [20]
presented a symbolic model to provide each air compressor with the optimal electrical
power consumption. In this paper, air pressure allocation to reduce the power consumed
by any operation of an air compressor is not considered. Here, the suggested solution
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focuses on predicting faults in cooling components affecting motor power consumption in
compressed air systems.

Through the sophisticated analysis of the existing research, studies on fault detection
for saving energy in compressed air systems are still required.

Contributions

To detect faulty components affecting energy consumption, this paper proposes an
ML-based anomaly detection mechanism to predict faulty radiators increasing the energy
consumption of the overall compressed air systems and, first, suggests a Long Short-
Term Memory (LSTM)-based motor power prediction model to forecast overheating in air
compressors. The main contributions of this paper are summarized as follows: On the theo-
retical side, a predictive maintenance model targeting the overheating of air compressors
guarantees a predicted accuracy of about 93.0% with a ground truth of 20%, considering
power consumption and temperature instead of noise db. On the practical side, if experts
in compressed air systems assign a margin of error from the predicted motor power con-
sumption, an Artificial Intelligence (Al) analytic engine using the proposed ML-based
and LSTM-based fault detection and prediction models can reduce the overall energy
consumption of the compressed air systems by around 2.24%.

2. System Model
2.1. Proposed Idea

Figure 1 presents a predictive radiator maintenance model for energy saving in com-
pressed air systems where such an approach can develop an Al analytic engine through
measured features from compressed air systems equipped with sensors [21]. Generally,
compressed air systems consist of various air compressors with radiators, cooler, air tanks,
dryers, air regulators, and users. Air compressors provide energy from compressed air, a
radiator reduces the heat of the overall air compressors, a cooler also reduces the heat of the
compressed air, a dryer removes the noise from the compressed air, such as water, an air
regulator controls the amount of air flow, and finally, users utilize compressed air in their
work process. First, workers within a smart factory monitor motor power consumption
based on LSTM [22]. Then, if the predicted motor power consumption increases past a
threshold value, sensing or measured data for testing applies to an ML-based predictive
maintenance framework, which was already trained to detect radiator faults. If the pre-
dicted motor power (a red line) exceeds a threshold value (J) against true motor power (a
blue line), the radiator fault should be checked due to the overheated air compressors.

Al Analytic Engine for Air Compressor Systems

A

% Places of demand

Air Regulator

Motor Power

Cooler Air Tank Dryer ﬁ

Figure 1. Proposed radiator fault predictive maintenance model for compressed air systems.
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2.2. Correlation Analysis and Feature Extraction

In our work, a well-organized predictive maintenance dataset for air compressors
from Kaggle, which consists of 1000 rows, includes radiator statuses as follows: dirty and
clean [8]. A dirty flag means that the radiator of the air compressor is anomalous. The
air compressor system was divided into five groups based on Revolutions Per Minute
(RPM) control point items. Each group consists of 200 rows for radiator statuses as follows:
160 rows for clean and 40 rows for dirty radiators. In this dataset, other labels exist such as
the statuses of bearings and exhaust valves. However, their information is not relevant to
predictive maintenance.

First of all, to understand the characteristics of air compressors, Figure 2 shows a
correlation heatmap generated from the given dataset. The features circled in yellow
aligned with red underlines show high correlation with a radiator as label. All features
are similar to several measured temperatures. Moreover, at the center of motor power
consumption with green underlines, RPM, outlet pressure bar, air flow, water pump power,
and the mentioned temperatures (e.g., outlet temp. and oil tank temp.) are shown to have
a high correlation aligned with green circles. However, because noise db have a slightly
high correlation with RPM and motor power consumption, noise db, even over 0.7, as a
feature for important predictive maintenance, are included for comparison.
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Figure 2. A correlation heatmap.
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2.3. Proposed LSTM-Based Motor Power Prediction Model

Assuming that time series sequences for motor power consumption exist, factors
affecting heat, which may be generated near air compressors, can be monitored. Then, two
types of LSTM models to predict motor power consumption, like in Table 1, are considered.
Here, a cross-validation method (i.e., k = 5) for good performance is used, and then this
approach can compare two LSTM models with different test rates for Mean Average
Percentage Error (MAPE). In Table 1, if the test rate increases, the MAPE of multi channels
is slightly low. However, if the test rate decreases, the MAPE between multi channels and a
single channels is similar. That is, when the measured data of air compressors are sufficient
for the training data, a motor power prediction method using a multi-channel-based LSTM
model may be considered. On the contrary, when the sensed data of air compressors are
not sufficient, a motor power prediction method using a single-channel-based LSTM model
is effective. Here, both LSTM models assume a window size = 7 and horizon factor = 1.

Figure 3 shows the Mean Absolute Error (MAE) and predicted motor power for
samples of test data, when five channels and a 20% test ratio are assumed. Compared with
Figure 4 (left), the MAE converges to low values. The predicted motor power consumption
follows a time series well, according to Figure 3 (right) and Figure 4 (right), due to the low
test ratio (i.e., 20%). Finally, engineers in the smart factory may decide a threshold value
through the difference between true motor power and predicted motor power. Sometimes,
according to long time series, operators of compressed air systems may not detect the exact
threshold value because motor power consumption gradually increases.

Additionally, an LSTM-based radiator predictive maintenance model was not consid-
ered because all authors judged that the selected dataset aggregate sensed or measured
information from various mixed air compressors for fault detection. Thus, the proposed
LSTM-based motor power prediction model assumes that data are aggregated indepen-
dently from mixed air compressors in compressed air systems. The basis of the judgment is
explained additionally in Section 3.3.

Table 1. Comparison for a proposed LSTM-based motor power prediction model.

Test Rate
40% 30% 20%

Estimation Metric Channels

Motor power, Outlet temp., Water inlet
MAPE ! temp., Water outlet temp., Oil tank temp.

Motor power 13.57% 12.57% 11.77%

12.67% 12.55% 11.51%

I MAPE: Mean Average Percentage Error.

400

—— Train 160004 True motor power
350 4 Validation ! —— Predicted motor power

300 4 15,000

14,000 1

13,000

MAE
N
S
151
Motor Power [Watt]

100 4 12,000

11,000 7

T r T T T T T T T T T T T T T T
[} 25 50 75 100 125 150 175 200 16 18 20 22 24 26 28
Epoch Some Parts of Test Sequences

Figure 3. MAE (left) and comparison of LSTM-based motor power prediction model (right) with 5
channels and 20% test ratio.
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Figure 4. MAE (left) and comparison of LSTM-based motor power prediction model (right) with 1
channel and 20% test ratio.

2.4. Proposed ML-Based Radiator Fault Detection Model

Next, a radiator fault detection model was designed, using ML classification tools as
follows: Support Vector Machine (SVM), random forest, logistic regression, eXtreme Gradi-
ent Boosting (XGBoost), and light Gradient Boosting Machine (GBM). Here, five sub-datasets
per RPM were divided as follows: RPM < 520, RPM < 1020, RPM < 1520, RPM < 2020,
and RPM < 2520. Using the correlation heatmap of Figure 2 to obtain the best classification
performance on radiator fault detection, this mechanism considers five ML-based scenarios
with different feature combinations, as shown in Table 2. ML1 consists of RPM, motor
power, outlet temp., water inlet temp., water outlet temp., and oil tank temp. Secondly,
ML2 adds information about noise db, and then reduces the amount of temperature infor-
mation by only including the representative outlet temperature. Thirdly, ML3 incorporates
ML2 and adds outlet pressure bar information. According to Table 2, the SVM technique
consistently demonstrates an accuracy of 80.0%. However, logistic regression shows the
best performance, compared with others. Random forest, XGBoost, and light GBM demon-
strate an accuracy of around 81%. Fourthly, noise db generally focus on detecting bearings’
faults. Heat, as opposed to sound, provides a more precise gauge of energy expenditure.
Accordingly, ML4 and ML5 include air flow and water pump power, excluding noise db.
Air flow and water pump power are factors with slightly high correlation with motor
power consumption. Here, any cross-validation methods, due to having the small sub-
datasets, were not considered. Even though random forest of ML2 presents slightly higher
performance, compared with XGBoost and light GBM, logistic regression shows the highest
accuracy, around 89.6%. The XGBoost and light GBM-based radiator fault detection models
show better performance at ML1, ML2, and ML3. Finally, Table 2 shows an accuracy of
93.0% in a logistic regression model based on ML5, compared with the other ML scenarios.
Here, the accuracy refers to an F1 accuracy score generated from the classification report,
using sklearn libraries.

Table 2. Comparison of machine learning-based mean test accuracy for radiator fault detection.

Accuracy of ML Models
SVM Random Forest Logistic Regression XGBoost Light GBM

Scenarios Features

RPM, Motor power, Outlet temp.,

ML1 Water inlet temp., Water outlet temp.,  80.0% 81.4% 83.6% 81.8% 81.4%
Oil tank temp.
MIL2 RPM, Motor power, Noise db, 80.0% 85.6% 89.6% 82.6% 82.8%
Outlet temp.
ML3 RPM, Motor power, Outlet pressure g 1o, 85.8% 92.4% 81.8% 81.8%

bar, Noise db, Outlet temp.
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Table 2. Cont.

. Accuracy of ML Models
Scenarios Features
SVM Random Forest Logistic Regression XGBoost Light GBM

RPM, Motor power, Outlet pressure

ML4 bar, Outlet temp., Wpump power, Oil  80.0% 78.0% 92.6% 72.2% 75.2%

tank temp.

RPM, Motor power, Outlet pressure

ML5 bar, Air flow, Outlet temp., 80.0% 72.0% 93.0% 71.6% 75.4%

Wpump power

Thus, this solution provides an LSTM-based motor power prediction model and an
ML-based radiator fault detection model, for energy saving and predictive maintenance in
compressed air systems.

3. Numerical Results
3.1. Performance Comparison among ML Models

The proposed two models were developed in the Google Colab environment, using
the keras, sklearn, pandas, seaborn, and matplotlib libraries. Because the measured data are
not an image, no GPU resources were required. However, because the LSTM-based motor
power prediction model was trained with the cross-validation method, the support of GPU
resources may be useful. Figures 5-9 show test accuracy for each ML scenario. The X axis of
the figures show the sections of test samples and means of test accuracy. The sections of the
test sample are equal to the five RPM-based groups. According to Figures 5-7, the measured
or sensed sub-datasets did not contribute significantly to training, resulting in around 80.0%
test accuracy for the third test samples. However, for the second and the fourth groups, test
accuracy, which exceeded the mean values, is mostly good compared with the other groups.
In particular, a logistic regression method shows the most powerful performance among
any combination of features. Figures 6 and 7 consider noise db, however, Figures 8 and 9
do not consider noise db as feature to compare the proposed model with the conventional
model.

1.0
SVM
Random Forest
Logistic Regression
XGBoost
LightGBM
0.9 A
)
(=]
o
=
[
L=}
=4
4+
(4]
@
0.8
O.? T T T T T T
800:999 600:799 400:599 200:399 0:199 Mean

Test samples and Mean

Figure 5. Comparison of ML1-based radiator fault detection models.
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Figure 6. Comparison of ML2-based radiator fault detection models.
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Figure 7. Comparison of ML3-based radiator fault detection models.
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Figure 8. Comparison of ML4-based radiator fault detection models.
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Figure 9. Comparison of ML5-based radiator fault detection models.

3.2. Energy Saving Effects of Removing a Dirty Radiator

To calculate the motor power consumption per unit of an air compressor, we con-
sidered the energy-saving effects /textcolorredfrom removing a dirty radiator. Figure 10
presents the motor power consumption plotted against increasing the outlet pressure bar
according to the five RPM-based sub-datasets. Figure 10 (left) shows that both features
have high correlation and a positive linear function is generated. Then, the medium value
of the outlet pressure bar is considered for measuring energy saving because the changing
rate of the outlet pressure bar in air compressors is not high. The value of the selected outlet
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pressure bar reaches around 4.0. Figure 10 (right) shows that a clean (normal) radiator’s
motor power consumption is slightly low, compared with the air compressor with a dirty
radiator. Considering the mean motor power, a gap of motor power consumption appears
at about 2.34%. Moreover, according to the increasing RPM of the air compressor, the
difference of motor power consumption slightly increases. However, due to the random
motor power consumption of the air compressors in each RPM group, the results may have
a few deviations.

12,000
20,000 A ’ =
— RPM =520 Clean radiator
RPM =< 1,020 Dirty radiator
175001 __ Rem=1,520
— RPM=2,020
. 9,500
15,0007} RPM = 2,520
g B
£ 12,500 1 ]
@ I}
2 10,000 g oo
&
g g
] <]
E 7,500 s
5,000 4,500 1
2,500 1 /
T T T T T T T T T 2,000 T T T T T T
1 2 3 4 5 6 & 8 8 RPM#1 RPM#2 RPM#3 RPM#4 RPM#5 Mean
Outlet Pressure Bar [Bar] One of the air compressors with around 4.0 bar for outlet pressure

Figure 10. Comparison of motor power consumption models for outlet pressure bar (left), normal
radiators and faulty radiators (right).

3.3. The Limitations and Shortcomings of the Proposed Models

According to Figure 10 (left), datasets of air compressors can be classified into five
groups based on RPM. However, when the outlet pressure bar increases, the variation of
motor power consumption is very high. In addition, the properties of specific time series
in the datasets are not measured. Therefore, in this paper, this solution does not integrate
the proposed LSTM-based motor power prediction model with the proposed ML-based
radiator fault detection model. For a practical use, a predictive maintenance expert may
consider the variation rate in the proposed LSTM-based motor power prediction model.

4. Conclusions

In this paper, a predictive maintenance framework for energy saving in compressed
air systems is presented. The proposed framework consists of an LSTM-based motor power
prediction model and an ML-based radiator fault detection model, respectively. Using
well-defined air compressor datasets, the motor power consumption of compressed air
systems can be reduced by removing the faulty radiator. If workers in the smart factory
provide the ground truth for radiator faults at around 20%, the proposed ML-based radiator
fault detection model can predict radiator faults with an accuracy of around 93.0%. As a
future research project, the other fault components affecting energy waste in smart factories
are required to be investigated for predictive maintenance.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

CBAM Convolutional Block Attention Module
DL Deep Learning

GBM Gradient Boosting Machine

LAMDA  Learning Methodology for Multivariable Data Analyses
LST™M Long Short-Term Memory

MA Moving Average

MAE Mean Absolute Error

MAPE Mean Average Percentage Error
ML Machine learning

OPEX OPerational EXpenditure

OVA One-Versus-All

RPM Revolutions Per Minute

RUL Remaining Useful Life

SVM Support Vector Machine

XGBoost  eXtreme Gradient Boosting
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