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Abstract: (1) Background: Pressure ulcers (PUs) substantially impact the quality of life of spinal
cord injury (SCI) patients and require prompt intervention. This study used machine learning
(ML) techniques to develop advanced predictive models for the occurrence of PUs in patients with
SCI. (2) Methods: By analyzing the medical records of 539 patients with SCI, we observed a 35%
incidence of PUs during hospitalization. Our analysis included 139 variables, including baseline
characteristics, neurological status (International Standards for Neurological Classification of Spinal
Cord Injury [ISNCSCI]), functional ability (Korean version of the Modified Barthel Index [K-MBI]
and Functional Independence Measure [FIM]), and laboratory data. We used a variety of ML
methods—a graph neural network (GNN), a deep neural network (DNN), a linear support vector
machine (SVM_linear), a support vector machine with radial basis function kernel (SVM_RBF),
K-nearest neighbors (KNN), a random forest (RF), and logistic regression (LR)—focusing on an
integrative analysis of laboratory, neurological, and functional data. (3) Results: The SVM_linear
algorithm using these composite data showed superior predictive ability (area under the receiver
operating characteristic curve (AUC) = 0.904, accuracy = 0.944), as demonstrated by a 5-fold cross-
validation. The critical discriminators of PU development were identified based on limb functional
status and laboratory markers of inflammation. External validation highlighted the challenges of
model generalization and provided a direction for future research. (4) Conclusions: Our study
highlights the importance of a comprehensive, multidimensional data approach for the effective
prediction of PUs in patients with SCI, especially in the acute and subacute phases. The proposed ML
models show potential for the early detection and prevention of PUs, thus contributing substantially
to improving patient care in clinical settings.

Keywords: spinal cord injury; pressure ulcer; machine learning; prediction model; laboratory test

1. Introduction

Spinal cord injury (SCI) results primarily from traumatic events and can cause con-
siderable sensory and motor impairments and complications [1]. Among the myriad
challenges that patients with SCI encounter, pressure ulcers (PUs) are notable; previous
studies revealed that over 20% of SCI individuals develop PUs, with significant implica-
tions for morbidity, mortality, and quality of life, especially in developing countries [2,3].
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Untreated PUs have a significant impact on patient well-being and place a high financial
burden on healthcare systems. These ulcers exacerbate physical and emotional distress and
reduce patients’ quality of life [4]. Economically, the treatment of PUs is costly, with the
U.S. healthcare system spending approximately USD 26.8 billion annually [5].

These PUs typically occur over bony prominences due to prolonged pressure, and key
sites for PUs include the sacrum, heels, and ischial tuberosities, with complications ranging
from infections to delayed rehabilitation, underscoring the need for early prediction and
intervention [6]. Prevention is crucial in the management of pressure ulcers, especially for
individuals at higher risk such as those with spinal cord injuries, and regular repositioning,
careful skin inspection, and the use of pressure-relieving devices are key strategies [7]. The
prediction and early identification of pressure ulcers are vital, as early-stage ulcers can often
be managed more easily and heal faster compared to advanced ulcers, thus highlighting
the importance of innovative prediction and intervention strategies in healthcare [8]. The
severity of SCI varies, with more severe cases, such as complete tetraplegia, showing a
higher PU risk due to an extensive loss of sensory and motor functions [9]. This increased
risk is attributed to prolonged immobility and areas prone to sores, like the sacrum and
heels [10]. The management and prediction of PUs in patients with SCI have advanced
through the use of traditional clinical assessments and monitoring tools [11]. While the
Braden Scale, Norton Scale, and Spinal Cord Injury Pressure Ulcer Scale (SCIPUS) are
commonly used in clinical settings, their predictive accuracy varies considerably among
individual patients with SCI, as highlighted in previous studies [12,13]. The Braden Scale
evaluates factors like sensory perception and moisture, the Norton Scale focuses on physical
condition and activity, and the Spinal Cord Injury Pressure Ulcer Scale is tailored specifically
to patients with SCI, considering aspects like spasticity and sweating [12]. In previous
studies, the Braden Scale has demonstrated the highest overall accuracy, whereas the
Norton Scale has exhibited greater specificity [12,14]. However, another study reported that
functional assessments, such as the Functional Independence Measure (FIM), outperformed
both the SCIPUS and Braden Scales in terms of accuracy [15]. This variability highlights
the need for more individualized and effective assessment tools for pressure ulcer risk
assessment in this patient population. Molecular markers, including proinflammatory
cytokines like interleukin (IL)-1α, show promise in early pressure ulcer detection, though
their clinical application remains exploratory [16,17]. The challenges encompass enhancing
predictive accuracy and ensuring that methods are cost-effective, accessible, and universally
applicable. Tackling the challenges of pressure ulcer management requires a combination of
clinical expertise and cutting-edge technologies, including alternative support surfaces and
wireless patient monitoring systems. These technologies are integral for risk identification,
effective repositioning, and microclimate control, thereby emphasizing the need for a
patient-centric care approach [18].

In recent years, machine learning (ML) has become a significant factor in healthcare,
particularly in areas such as diagnosis, prognosis, and personalized treatment [19]. ML
uses algorithms, ranging from simple decision trees to sophisticated deep learning models,
to uncover complex patterns and correlations, leveraging increased computational power
and extensive healthcare datasets [20]. For instance, decision trees use a tree-like structure
to represent decisions and their potential outcomes, which makes them highly interpretable
and adaptable to different data types [21]. On the other hand, deep learning models employ
layered neural networks to analyze data in a complex manner, making them particularly
effective at identifying subtle patterns in large datasets [22]. Advanced algorithms are
currently being utilized in spinal cord injury (SCI) care to predict neurological and func-
tional recovery through the analysis of medical records and imaging data [22,23]. Machine
learning techniques, including these algorithms, are being explored for patients with SCI to
identify risk factors for pressure ulcers (PUs) [24]. This addresses the challenge of limited
clinical integration due to previously undefined risk factors.

The primary goal of our study is to establish optimal prediction models by comprehen-
sively integrating clinical, physical, and biological parameters, with a focus on improving
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the accuracy of prognostic predictions for pressure ulcers during the acute and subacute
phases of hospitalization in patients with SCI. The secondary goal is to translate these
models into practical tools for clinical application to enable the early intervention and
effective prevention of pressure ulcers, thereby significantly improving patient outcomes
during their hospital stay.

2. Subjects and Methods
2.1. Ethics and Study Design

This retrospective observational study was approved by the institutional review board
(IRB) of Dankook University Hospital (IRB No. 2021-05-021) and was conducted in accor-
dance with the ethical guidelines of the 1975 Declaration of Helsinki. We reviewed the
medical records of 1117 patients with SCI from Dankook University Hospital (DKUH) and
Chungnam National University Hospital (CNUH) in South Korea. Patients were included
if they underwent surgical or conservative treatment for traumatic or nontraumatic SCI
with confirmed spinal cord signal changes by spinal magnetic resonance imaging (MRI)
as demonstrated in previous studies [25,26] from May 1996 to May 2021. The clinical data
during the initial hospitalization period for SCI were collected by three researchers, who
were specifically assigned to ensure impartiality and minimize bias. These researchers were
not involved in the statistical analysis or development of the ML model due to a separation
of roles that was implemented to maintain the objectivity and integrity of both the data
collection and analysis phases. The clinical parameters included baseline characteristics,
such as sex, age, height, weight, alcohol consumption, smoking status, and medical history;
subscale and total score of the International Standards for Neurological Classification of
Spinal Cord Injury (ISNCSCI), the Korean version of the modified Barthel Index (K-MBI),
and Functional Independence Measure (FIM), which were initially assessed during the
initial hospitalization period for SCI. We obtained all the laboratory data from the labora-
tory medicine department of each hospital. The laboratory parameters included complete
blood count (CBC), electrolytes, lipid battery, glucose, albumin, protein, C-reactive protein
(CRP), the erythrocyte sedimentation rate (ESR), procalcitonin, blood urea nitrogen (BUN),
creatinine, aspartate transaminase (AST), alanine transaminase (ALT), and total bilirubin.
The patients with SCI who experienced PUs at least once during the hospitalization period
were classified into the PU group, while the patients who never experienced PUs were clas-
sified into the non-PU group. For the PU group, we extracted only clinical and laboratory
data from 3 days to 60 days before the onset of PU.

2.2. Machine Learning Analysis

In this study, the recursive feature elimination (RFE) technique was used for feature
selection. In the RFE method, a given machine learning algorithm is trained on the initial
set of baseline features, after which the importance of each feature is computed. The least
important feature is then iteratively eliminated at each step. This elimination process is
repeated until the optimal set of features that contributes significantly to the model remains.
The linear support vector machine (SVM_linear) classifier was selected as the training
algorithm. The selection process was implemented using the RFE with a cross-validation
(RFECV) module provided by the scikit-learn library [27], which ensures robust feature
selection by considering the cross-validation performance during the elimination process.

We utilized various machine learning methods, combining advanced deep learning
with traditional techniques. We employed the graph neural network–graph convolutional
network (GNN-GCN) and deep neural network (DNN), which are complex artificial neural
networks. GNN-GCN analyzes data structured in graphs, while DNN processes data
through interconnected layers [28]. Traditional methods used for classification include
linear support vector machine (SVM_linear) and support vector machine with a radial
basis function kernel (SVM_RBF) for decision boundary-based classification, K-nearest
neighbors (KNN) for proximity-based classification, random forest (RF) as an ensemble



J. Clin. Med. 2024, 13, 990 4 of 18

of decision trees to improve prediction accuracy, and logistic regression (LR) for binary
outcome probabilities.

The GNN-GCN model was trained using a graph matrix computed by Euclidean
distances between input data, while the other models were trained directly on input data.
The GNN-GCN and DNN models were implemented using PyTorch 1.10 [29], and the
other ML methods were implemented using scikit-learn 0.24.

Fivefold cross-validation was performed to evaluate the model performance. The
dataset was randomized and divided into five partitions, one of which was used for testing
and the other for training. To ensure balanced case–control ratios in each partition, a
stratified K-fold cross-validation method was used. Cross-validation was repeated five
times to ensure a robust and reliable evaluation. Model performance was evaluated by
accuracy, area under the receiver operating characteristic curve (AUC), and F1-score.

To improve the interpretability of the problem, we performed additional analyses on
the decision tree. The decision tree was trained with entropy as the partitioning criterion.
The graph shows the use of features for prediction and the corresponding criteria.

2.3. Statistics

All the laboratory, neurological, and functional data were compared between the
two hospitals using PASW 20.0 (IBM Corp., New York, NY, USA). The Shapiro–Wilk test
was used to assess the normality of the distribution of all the numerical data from each
group. The chi-squared test was used for categorial parameters, and the independent t test
was used for continuous parameters to compare the differences between the two groups.
p < 0.05 indicated statistical significance.

3. Results
3.1. Flow of the Machine Learning Algorithm

Figure 1 outlines the flow of our machine learning algorithm. Clinical data, sourced
from the two participating hospitals, were collected during several preprocessing stages.
This involved imputation using the KNN method and subsequent filtering of missing
values (NaN). Data from patients with a feature coverage exceeding 80% were subjected
to imputation, while those with a feature coverage less than 70% were discarded during
the NaN filtering stage. For the PU cohort, data were further curated to capture only the
interval, spanning 3 days prior to PU onset, up to 60 days before its incidence. Concur-
rently, laboratory data pertaining to the PU group were processed through date filtering
and imputed using mean values. The processed clinical and laboratory datasets were
subsequently combined and applied to feature selection. Using these consolidated data,
seven distinct machine learning models were developed. The efficacy of the combinations
was determined through a 5-fold cross-validation procedure, with performance metrics
presented in terms of accuracy, AUC, and F1-score.
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Figure 1. Flow of the machine learning process.

3.2. Data Characteristics and Dataset Selection for Each Hospital

Table 1 presents the baseline characteristics of patients from Dankook University
Hospital (DKUH) and Chonnam National University Hospital (CNUH), categorized by
the presence or absence of pressure ulcers. While DKUH focused on the formulation and
refinement of machine learning algorithms, CNUH was utilized exclusively for external
validation. Notably, patients with pressure ulcers exhibited longer hospital stays across both
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institutions. For our machine learning models, we utilized parameters from the ISNCSCI, K-
MBI, FIM, and 20 laboratory indicators. A detailed analysis revealed significant differences
in certain metrics. Within the ISNCSCI, total motor scores, especially for the right and
left lower extremities, showed marked disparities. Sensory scores, both light touch and
pinprick, varied notably between groups. According to the K-MBI metrics, distinctions
were evident in toileting, stair climbing, dressing, and ambulation, among others. The FIM
highlighted differences in bladder and bowel controls. Finally, laboratory results revealed
contrasting hemoglobin levels, hematocrit levels, and platelet counts between the groups.

Table 1. Baseline characteristics of patients with and without pressure ulcers at DKUH and CNUH.

Parameters
DKUH (n = 238) CNUH (n = 385)

Non-PU (n = 199) PU (n = 39) p Value Non-PU (n = 362) PU (n = 23) p Value

Baseline characteristics
Sex (male) 158 (79.4%) 31 (79.5%) 0.99 247 (68.2%) 19 (82.6%) 0.148
Age 54.22 ± 14.26 48.95 ± 17.02 0.042 * 58.51 ± 15.62 57.00 ± 17.91 0.657
Height 166.85 ± 7.71 167.85 ± 7.51 0.867 165.00 ± 9.06 166.55 ± 9.54 0.495
Weight 65.18 ± 10.59 65.17 ± 11.66 0.996 64.55 ± 12.38 63.41 ± 9.89 0.680
Alcohol consumption 99 (50.0%) 26 (66.7%) 0.057 103 (28.6%) 6 (26.1%) 0.795
Smoking status 73 (36.9%) 16 (41.0%) 0.624 97 (27.0%) 5 (21.7%) 0.579
Diabetes mellitus 37 (18.7%) 8 (20.5%) 0.79 67 (18.5%) 4 (17.4%) 0.893
Hypertension 60 (30.3%) 13 (33.3%) 0.708 130 (35.9%) 8 (34.8%) 0.913
Neurologic disease 34 (17.1%) 4 (10.5%) 0.313 16 (4.4%) 0 (0.0%) 0.303
Cardiovascular disease 2 (1.0%) 3 (7.7%) 0.008 * 38 (10.5%) 0 (0.0%) 0.102
Pulmonary disease 9 (4.5%) 4 (10.3%) 0.15 25 (6.9%) 2 (8.7%) 0.745
Clinical parameters
Hospital days 53.49 ± 31.87 96.72 ± 67.15 0.000 * 68.15 ± 42.92 118.17 ± 81.66 0.008 *
Braden scale 15.48 ± 3.62 13.69 ± 2.45 0.000 * Null Null Null
Traumatic injury 158 (79.8%) 33 (84.6%) 0.487 199 (55.0%) 16 (69.6%) 0.172
Mechanism of injury
Traffic accident 67 (37.6%) 14 (40.0%)

0.581

59 (30.1%) 5 (31.3%)

0.183
Falls 58 (32.6%) 12 (34.3%) 48 (24.5%) 8 (50.0%)
Hit by falling objects 12 (6.7%) 4 (11.4%) 7 (3.6%) 0 (0.0%)
Sports 0 (0%) 0 (0%) 2 (1.0%) 0 (0.0%)
Others 41 (23.0%) 5 (14.3%) 80 (40.8%) 3 (18.8%)
Combined injury 42 (21.1%) 13 (33.3%) 0.098 56 (15.5%) 6 (26.1%) 0.179
Number of operations 1.13 ± 0.741 1.51 ± 1.048 0.035 * 0.82 ± 1.01 0.61 ± 0.84 0.333
Total time of operations (min) 229.58 ± 146.85 256.77 ± 164.36 0.301 269.18 ± 176.42 245.67 ± 85.33 0.692
GCS total 14.69 ± 0.92 14.06 ± 2.76 0.212 14.00 ± 2.68 12.00 ± 1.41 0.337
GCS Eye 3.83 ± 0.44 3.63 ± 0.942 0.236 3.75 ± 0.87 4.00 ± 0.00 0.700
GCS Motor 5.93 ± 0.30 5.66 ± 0.90 0.098 5.83 ± 0.58 6.00 ± 0.00 0.700
GCS Verbal 4.92 ± 0.64 4.78 ± 1.52 0.605 4.50 ± 1.17 2.00 ± 1.41 0.018 *
ISNCSCI
ASIA impairment scale (AIS)
A 12 (6.3%) 14 (36.8%)

0.000 *

23 (7.6%) 7 (31.8%)

0.000 *
B 9 (4.8%) 5 (13.2%) 8 (2.6%) 4 (18.2%)
C 27 (14.3%) 12 (31.6%) 50 (16.5%) 8 (36.4%)
D 138 (73.0%) 7 (18.4%) 221 (72.9%) 3 (13.6%)
E 3 (1.6%) 0 (0%) 1 (0.3%) 0 (0.0%)
NLI (neurologic level of injury) 9.60 ± 8.14 10.31 ± 7.14 0.612 10.52 ± 8.57 8.87 ± 6.23 0.241
Motor
Motor level 10.54 ± 8.66 10.46 ± 7.07 0.95 11.90 ± 8.72 8.96 ± 6.17 0.040 *
UER 20.06 ± 6.68 18.15 ± 8.51 0.193 20.07 ± 5.21 14.91 ± 9.00 0.012 *
UEL 19.13 ± 6.97 18.59 ± 8.15 0.667 20.07 ± 5.21 15.30 ± 8.77 0.017 *
UEMS 39.07 ± 12.75 36.74 ± 16.54 0.41 40.15 ± 9.93 30.22 ± 17.65 0.014 *
LER 18.22 ± 8.71 6.21 ± 8.08 0.000 * 16.18 ± 7.42 5.96 ± 7.97 0.000 *
LEL 17.84 ± 8.63 6.32 ± 8.59 0.000 * 16.13 ± 7.49 5.39 ± 7.67 0.000 *
LEMS 35.72 ± 16.71 12.50 ± 16.48 0.000 * 32.31 ± 14.40 11.35 ± 15.54 0.000 *
Motor score, total 74.76 ± 22.42 48.89 ± 20.97 0.000 * 72.45 ± 18.69 41.57 ± 28.48 0.000 *
Sensory
Sensory level 14.19 ± 10.44 12.69 ± 7.36 0.285 12.07 ± 9.30 11.83 ± 7.14 0.875
LTR 45.76 ± 10.40 39.62 ± 12.57 0.001 * 39.17 ± 11.06 34.04 ± 11.40 0.032 *
LTL 45.62 ± 10.61 39.15 ± 12.49 0.001 * 39.28 ± 11.11 33.70 ± 10.87 0.020 *
LT, total 91.38 ± 20.56 78.77 ± 25.00 0.001 * 78.44 ± 21.92 67.74 ± 22.15 0.024 *
PPR 45.72 ± 10.28 40.08 ± 12.29 0.003 * 38.38 ± 11.54 33.83 ± 12.64 0.069
PPL 45.90 ± 10.59 39.82 ± 12.17 0.002 * 38.80 ± 11.42 33.61 ± 11.94 0.036 *
PP, total 91.62 ± 20.35 79.90 ± 24.42 0.002 * 77.17 ± 22.51 67.43 ± 24.44 0.046 *
Sensory score, total 183.00 ± 40.56 158.67 ± 49.18 0.001 * 155.61 ± 43.84 135.17 ± 45.96 0.031 *
K-MBI
Self-care 2.90 ± 1.90 2.33 ± 1.95 0.088 * 3.12 ± 1.72 2.33 ± 1.97 0.308
Bathing 1.79 ± 1.61 0.64 ± 0.84 0.000 * 2.15 ± 1.64 1.67 ± 1.51 0.502
Feeding 5.87 ± 3.91 5.10 ± 4.27 0.268 6.12 ± 3.60 6.00 ± 4.73 0.941
Toileting 4.05 ± 3.63 1.31 ± 1.45 0.000 * 4.44 ± 3.41 1.83 ± 1.84 0.016 *
Stair climbing 1.62 ± 3.04 0.05 ± 0.32 0.000 * 1.56 ± 2.87 0.00 ± 0.00 0.001 *
Dressing 4.23 ± 3.29 2.36 ± 2.08 0.000 * 5.12 ± 3.05 1.83 ± 1.84 0.014 *
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Table 1. Cont.

Parameters
DKUH (n = 238) CNUH (n = 385)

Non-PU (n = 199) PU (n = 39) p Value Non-PU (n = 362) PU (n = 23) p Value

Bowel management 6.33 ± 4.13 2.51 ± 3.53 0.000 * 6.83 ± 4.07 2.33 ± 3.88 0.015 *
Bladder management 5.04 ± 4.70 1.08 ± 2.93 0.000 * 5.76 ± 4.12 1.17 ± 2.04 0.001 *
Ambulation 4.91 ± 5.40 0.69 ± 1.15 0.000 * 5.07 ± 4.60 1.50 ± 1.64 0.002 *
Transfer 6.79 ± 5.42 2.08 ± 2.26 0.000 * 7.27 ± 5.08 3.67 ± 3.62 0.102
Total 43.53 ± 30.17 18.15 ± 14.92 0.000 * 46.19 ± 27.48 22.33 ± 17.93 0.044 *
FIM
Eating 4.13 ± 2.28 3.87 ± 2.54 0.556 4.50 ± 2.12 4.00 ± 4.24 0.773
Grooming 3.94 ± 2.21 3.33 ± 2.13 0.114 3.56 ± 1.92 2.50 ± 2.12 0.472
Bathing 2.63 ± 1.63 1.64 ± 0.78 0.000 * 2.94 ± 1.59 1.50 ± 0.71 0.228
Dressing upper body 3.49 ± 1.94 2.67 ± 1.71 0.015 * 3.72 ± 1.97 4.00 ± 4.24 0.865
Dressing lower body 3.07 ± 1.91 1.59 ± 0.94 0.000 * 3.39 ± 1.88 2.00 ± 1.41 0.330
Toileting 3.03 ± 2.00 1.64 ± 0.84 0.000 * 3.50 ± 1.95 1.50 ± 0.71 0.175
Self-care, total 20.29 ± 10.84 14.74 ± 7.72 0.000 * 21.61 ± 10.86 15.50 ± 13.44 0.466
Bladder control 3.88 ± 2.76 1.59 ± 1.70 0.000 * 4.56 ± 2.41 1.00 ± 0.00 0.000 *
Bowel control 4.46 ± 2.50 2.31 ± 1.94 0.000 * 4.78 ± 2.37 1.50 ± 0.71 0.009 *
Sphincter control, total 8.34 ± 4.88 3.90 ± 3.39 0.000 * 9.33 ± 4.72 2.50 ± 0.71 0.000 *
Transfer to
bed/chair/wheelchair 3.33 ± 2.04 1.74 ± 0.85 0.000 * 3.06 ± 1.73 2.00 ± 1.41 0.420

Transfer to toilet 3.09 ± 2.04 1.51 ± 0.68 0.000 * 3.00 ± 1.78 1.50 ± 0.71 0.263
Transfer to tub/shower 2.93 ± 1.96 1.49 ± 0.64 0.000 * 2.83 ± 1.76 1.50 ± 0.71 0.311
Locomotion with
walk/wheelchair 3.02 ± 1.93 1.44 ± 0.64 0.000 * 2.89 ± 1.64 2.00 ± 1.41 0.474

Locomotion to stairs 1.88 ± 1.67 1.05 ± 0.22 0.000 * 2.00 ± 1.75 1.00 ± 0.00 0.440
Transfer/Locomotion, total 14.25 ± 9.15 7.23 ± 2.72 0.000 * 13.78 ± 8.16 8.00 ± 4.24 0.345
Comprehension 6.86 ± 0.61 6.72 ± 0.916 0.344 6.17 ± 1.76 4.50 ± 3.54 0.255
Expression 6.84 ± 0.66 6.69 ± 0.83 0.304 6.22 ± 1.73 4.50 ± 3.54 0.235
Social interaction 6.81 ± 0.78 6.67 ± 1.01 0.324 6.28 ± 1.64 4.50 ± 3.54 0.201
Problem solving 6.78 ± 0.81 6.67 ± 1.11 0.46 6.17 ± 1.76 4.50 ± 3.54 0.255
Memory 6.79 ± 0.74 6.72 ± 0.97 0.58 6.22 ± 1.73 4.50 ± 3.54 0.235
Cognition, total 33.98 ± 3.97 32.74 ± 6.36 0.248 31.06 ± 8.59 22.50 ± 17.68 0.235
FIM, total 76.86 ± 23.31 58.62 ± 13.85 0.000 * 75.78 ± 26.96 48.50 ± 36.06 0.201
Laboratory parameters
White blood cells (×103/µL) 8.87 ± 2.07 9.25 ± 2.13 0.301 6.95 ± 1.71 7.40 ± 2.53 0.234
Red blood cells (×106/µL) 4.08 ± 0.39 3.83 ± 0.46 0.000 * 4.10 ± 0.47 3.96 ± 0.51 0.150
Hemoglobin (g/dL) 12.62 ± 1.26 12.06 ± 1.49 0.014 * 12.57 ± 1.38 11.82 ± 1.33 0.012 *
Hematocrit (%) 37.42 ± 3.49 35.35 ± 4.20 0.001 * 37.40 ± 3.85 35.44 ± 3.90 0.018 *
Mean corpuscular volume (fl) 91.77 ± 4.42 92.32 ± 4.22 0.471 91.41 ± 3.88 89.89 ± 4.81 0.074
Mean corpuscular hemoglobin
(pg) 30.95 ± 1.66 31.50 ± 1.70 0.060 30.68 ± 1.52 29.91 ± 1.61 0.019 *

Mean corpuscular hemoglobin
concentration (g/dL) 33.72 ± 0.75 34.13 ± 0.88 0.003 * 33.57 ± 0.69 33.29 ± 0.76 0.060

Platelets (×103/µL) 240.29 ± 56.55 211.94 ± 67.70 0.006 * 256.03 ± 63.97 284.55 ± 82.67 0.043 *
Neutrophils, diff. count (%) 60.50 ± 8.85 64.46 ± 8.60 0.016 * 61.70 ± 7.13 64.88 ± 9.49 0.060
Lymphocytes, diff. count (%) 28.24 ± 7.71 24.38 ± 7.31 0.004 * 27.26 ± 6.53 23.59 ± 8.75 0.011
Monocytes, diff. count (%) 7.48 ± 1.88 7.51 ± 1.80 0.938 7.37 ± 1.52 7.65 ± 1.69 0.394
Eosinophils, diff. count (%) 3.33 ± 1.84 3.40 ± 2.29 0.842 3.07 ± 1.61 2.87 ± 1.51 0.578
Basophils, diff. count (%) 0.45 ± 0.26 0.45 ± 0.31 0.985 0.51 ± 0.19 0.53 ± 0.44 0.792
Neutrophils, diff. count
(×103/µL) 4.46 ± 1.58 5.23 ± 2.14 0.010 * 4.47 ± 1.42 5.09 ± 2.41 0.238

Lymphocytes, diff. count
(×103/µL) 1.84 ± 0.53 1.76 ± 0.61 0.420 1.74 ± 0.49 5.09 ± 2.41 0.028 *

Monocytes, diff. count
(×103/µL) 0.52 ± 0.17 0.56 ± 0.16 0.149 0.50 ± 0.14 0.55 ± 0.19 0.222

Eosinophils, diff. count
(×103/µL) 0.21 ± 0.11 0.24 ± 0.18 0.169 0.19 ± 0.11 0.19 ± 0.10 0.694

Basophils, diff. count
(×103/µL) 0.03 ± 0.02 0.03 ± 0.02 0.470 0.03 ± 0.01 0.04 ± 0.03 0.602

Creatinine (mg/dL) 0.71 ± 0.20 0.71 ± 0.27 0.902 2.25 ± 5.50 0.85 ± 1.03 0.000 *
Blood urea nitrogen (mg/dL) 16.11 ± 3.87 17.44 ± 5.61 0.072 15.23 ± 10.68 13.57 ± 4.23 0.461

Note: Values are presented as the number of subjects (%) or means ± standard deviations. The p values of the
non-PU and PU groups were determined by the chi-squared test and independent t test; * p < 0.05. Abbreviations:
PU = pressure ulcer, ISNCSCI = International Standards for Neurological Classification of Spinal Cord Injury;
K-MBI = Korean version of the Modified Barthel Index; FIM = Functional Independence Measure.

The distributions of patient data across the different datasets from the two hospitals are
shown in Table 2. Notably, the “Lab” dataset was the most voluminous of all the datasets.
Nevertheless, all the datasets were rigorously evaluated to optimize the machine learning
models. The data revealed a marked difference in the composition of the datasets between the
two hospitals. Primary analysis was performed using the comprehensive “Lab + ISNCSCI + K-
MBI + FIM” dataset from DKUH. To increase the precision of external validation, distinct training
and validation datasets were derived from the “Lab + ISNCSCI” collection of both DKUH and
CNUH, thus facilitating cross-institutional validation. DKUH evaluated the performance of
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machine learning models using different dataset combinations, such as “Lab”, “Lab + ISNCSCI”,
“Lab + ISNCSCI + K-MBI”, and “Lab + ISNCSCI + K-MBI + FIM”. In contrast, the CNUH
evaluations focused primarily on the “Lab”, “ISNCSCI”, and “Lab + ISNCSCI” datasets due to
significant data gaps in the K-MBI and FIM metrics.

Table 2. Number of patients in the dataset category.

Dataset
DKUH CNUH

Non-
PU PU Total Non-

PU PU Total

Lab 328 159
(253) 487 434 73 (92) 507

ISNCSCI 221 46 (55) 267 362 23 (24) 385
K-MBI 259 46 (59) 307 62 6 (6) 68

FIM 250 46 (59) 298 31 2 (2) 33
ISNCSCI + K-MBI 208 46 (48) 248 41 3 (3) 44

ISNCSCI + K-MBI + FIM 200 46 (46) 239 16 1 (1) 17
Lab + ISNCSCI 216 46 (55) 262 362 23 (24) 385

Lab + ISNCSCI + K-MBI 207 46 (48) 247 41 3 (3) 44
Lab + ISNCSCI + K-MBI + FIM 199 39 (46) 238 16 1 (1) 17

The numbers of patients satisfying each dataset in the two hospitals are presented. The numbers in parentheses
represent the counts of PU events. Abbreviations: DKUH = Dankook University Hospital; CNUH = Chungnam
National University Hospital; PU = pressure ulcer; Lab = laboratory data; ISNCSCI = International Standards
for Neurological Classification of Spinal Cord Injury; K-MBI = Korean version of the Modified Barthel Index;
FIM = Functional Independence Measure.

3.3. Predictive Performance of the Machine Learning Models

Table 3 delineates the predictive properties of various machine learning (ML) models
across distinct dataset combinations at Dankook University Hospital (DKUH). A com-
parison across identical algorithms revealed that the “Lab + ISNCS + CI + K-MBI + FIM”
amalgam dataset consistently surpassed the other datasets in terms of AUC values. Within
the same dataset, algorithmic variations demonstrated different levels of performance; the
GNN-GCN algorithm outperformed the “Lab” dataset, and the KNN algorithm outper-
formed the others in the “Lab + ISNCSCI” dataset, whereas the SVM algorithm consistently
stood out in the “Lab + ISNCSCI + K-MBI” and “Lab + ISNCSCI + K-MBI + FIM” datasets.
Remarkably, the SVM_linear algorithm in the “Lab + ISNCSCI + K-MBI + FIM” dataset
achieved a pinnacle AUC of 0.904, an accuracy of 0.944, and an F1-score of 0.907.

Table 3. Performance comparison of machine learning algorithms in each dataset from DKUH.

Model Measure
Dataset

Lab Lab + ISNCSCI Lab + ISNCSCI +
K-MBI

Lab + ISNCSCI +
K-MBI + FIM

GNN-GCN

Sensitivity 0.442 ± 0.143 0.367 ± 0.190 0.508 ± 0.107 0.494 ± 0.163
Specificity 0.883 ± 0.034 0.886 ± 0.068 0.913 ± 0.043 0.960 ± 0.036
Accuracy 0.808 ± 0.052 0.788 ± 0.041 0.837 ± 0.040 0.873 ± 0.040

AUC 0.656 ± 0.077 0.626 ± 0.078 0.710 ± 0.058 0.727 ± 0.082
F1-score 0.662 ± 0.084 0.622 ± 0.076 0.720 ± 0.064 0.754 ± 0.085

DNN

Sensitivity 0.420 ± 0.192 0.132 ± 0.101 0.472 ± 0.135 0.600 ± 0.129
Specificity 0.903 ± 0.023 0.966 ± 0.031 0.920 ± 0.031 0.963 ± 0.035
Accuracy 0.834 ± 0.040 0.810 ± 0.030 0.836 ± 0.034 0.895 ± 0.040

AUC 0.647 ± 0.090 0.549 ± 0.053 0.696 ± 0.069 0.781 ± 0.069
F1-score 0.662 ± 0.105 0.545 ± 0.076 0.707 ± 0.067 0.808 ± 0.071
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Table 3. Cont.

Model Measure
Dataset

Lab Lab + ISNCSCI Lab + ISNCSCI +
K-MBI

Lab + ISNCSCI +
K-MBI + FIM

SVM_linear

Sensitivity 0.106 ± 0.169 0.245 ± 0.160 0.560 ± 0.132 0.840 ± 0.110
Specificity 0.898 ± 0.008 0.945 ± 0.035 0.893 ± 0.034 0.968 ± 0.026
Accuracy 0.818 ± 0.015 0.813 ± 0.035 0.830 ± 0.039 0.944 ± 0.031

AUC 0.532 ± 0.056 0.595 ± 0.077 0.727 ± 0.071 0.904 ± 0.058
F1-score 0.502 ± 0.087 0.599 ± 0.104 0.723 ± 0.067 0.907 ± 0.052

SVM_RBF

Sensitivity 0.298 ± 0.144 0.278 ± 0.130 0.525 ± 0.139 0.492 ± 0.165
Specificity 0.882 ± 0.024 0.935 ± 0.040 0.893 ± 0.040 0.930 ± 0.039
Accuracy 0.798 ± 0.037 0.811 ± 0.037 0.824 ± 0.044 0.847 ± 0.043

AUC 0.585 ± 0.062 0.606 ± 0.066 0.709 ± 0.075 0.711 ± 0.084
F1-score 0.590 ± 0.077 0.619 ± 0.079 0.709 ± 0.072 0.723 ± 0.085

KNN

Sensitivity 0.208 ± 0.195 0.432 ± 0.148 0.282 ± 0.128 0.246 ± 0.127
Specificity 0.894 ± 0.018 0.898 ± 0.059 0.893 ± 0.047 0.811 ± 0.043
Accuracy 0.813 ± 0.031 0.810 ± 0.049 0.779 ± 0.044 0.811 ± 0.043

AUC 0.559 ± 0.074 0.665 ± 0.074 0.588 ± 0.067 0.594 ± 0.067
F1-score 0.551 ± 0.103 0.670 ± 0.074 0.593 ± 0.074 0.605 ± 0.086

Random Forest

Sensitivity 0.122 ± 0.131 0.262 ± 0.144 0.208 ± 0.133 0.073 ± 0.074
Specificity 0.899 ± 0.008 0.933 ± 0.043 0.953 ± 0.042 0.990 ± 0.019
Accuracy 0.820 ± 0.015 0.807 ± 0.030 0.813 ± 0.030 0.818 ± 0.021

AUC 0.532 ± 0.040 0.597 ± 0.062 0.581 ± 0.058 0.532 ± 0.038
F1-score 0.510 ± 0.068 0.602 ± 0.073 0.584 ± 0.074 0.511 ± 0.065

Logistic
Regression

Sensitivity 0.380 ± 0.196 0.352 ± 0.153 0.438 ± 0.144 0.683 ± 0.163
Specificity 0.907 ± 0.017 0.942 ± 0.040 0.918 ± 0.036 0.964 ± 0.029
Accuracy 0.838 ± 0.031 0.831 ± 0.041 0.828 ± 0.036 0.911 ± 0.033

AUC 0.630 ± 0.084 0.647 ± 0.077 0.678 ± 0.072 0.823 ± 0.078
F1-score 0.643 ± 0.104 0.665 ± 0.083 0.689 ± 0.069 0.841 ± 0.065

Abbreviations: Lab = laboratory data; ISNCSCI = International Standards for Neurological Classification of Spinal
Cord Injury; K-MBI = Korean version of the Modified Barthel Index; FIM = Functional Independence Measure.

Feature selection was used strategically to improve the predictive accuracy of our
models. Figure 2 shows the t-SNE plots before and after this important feature selection
process. As shown, the demarcation between the non-PU and PU groups became much
more pronounced after feature selection, illustrating the critical role of feature selection in
achieving clearer data differentiation.

Figure 3 shows the importance scores of the top 39 parameters identified by the
SVM_linear model. These parameters are spread across several categories, including Lab,
ISNCSCI, K-MBI, and FIM. The representation of each category in this ranking indicates its
integral role in influencing the model’s predictions. The most prominent parameter in this
evaluation was “Ambulation” in the K-MBI, which received the highest importance score of
1.212, followed by lower body dressing, transfer to bed, chair, and wheelchair, eating, and
bathing in the FIM. This score demonstrated the importance of the functional status of the
upper and lower extremities in the modeling process. In addition, the balanced presence
of clinical scales such as the K-MBI and FIM, combined with laboratory and neurological
data from Lab and ISNCSCI, highlights the variety of factors considered important in this
model. This combination of factors demonstrates the intricate blend of physical, cognitive,
and biological considerations that the model accounts for when analyzing outcomes.
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In the CNUH dataset, Table 4 describes the predictive effectiveness of various machine
learning models across different combinations of datasets and algorithms. Within each
algorithm, the “ISNCSCI” dataset predominantly registered the highest AUC for the GNN-
GCN, DNN, KNN, and random forest algorithms. Conversely, the “Lab + ISNCSCI”
dataset included the SVM_linear, SVM_RBF, and logistic regression algorithms. When
comparing different algorithms on the same dataset, the KNN algorithm consistently
had the highest AUC in all three datasets. Overall, the KNN algorithm showed the best
predictive performance on the “ISNCSCI” dataset, achieving an AUC of 0.737, an accuracy
of 0.891 and an F1-score of 0.661.

Table 4. Performance comparison of machine learning algorithms in each dataset of CNUH data.

Model Measure
Dataset

Lab ISNCSCI Lab + ISNCSCI

GNN-GCN

Sensitivity 0.180 ± 0.195 0.426 ± 0.218 0.362 ± 0.200
Specificity 0.923 ± 0.036 0.947 ± 0.035 0.945 ± 0.037
Accuracy 0.877 ± 0.034 0.914 ± 0.034 0.908 ± 0.033

AUC 0.551 ± 0.096 0.686 ± 0.107 0.653 ± 0.097
F1-score 0.538 ± 0.078 0.666 ± 0.092 0.635 ± 0.087

DNN

Sensitivity 0.108 ± 0.134 0.398 ± 0.214 0.388 ± 0.194
Specificity 0.944 ± 0.031 0.947 ± 0.036 0.949 ± 0.033
Accuracy 0.892 ± 0.031 0.913 ± 0.035 0.914 ± 0.028

AUC 0.526 ± 0.068 0.672 ± 0.105 0.669 ± 0.092
F1-score 0.523 ± 0.066 0.654 ± 0.099 0.654 ± 0.077

SVM_linear

Sensitivity 0.124 ± 0.132 0.416 ± 0.204 0.418 ± 0.181
Specificity 0.961 ± 0.035 0.950 ± 0.027 0.925 ± 0.038
Accuracy 0.909 ± 0.035 0.889 ± 0.032 0.894 ± 0.036

AUC 0.543 ± 0.069 0.643 ± 0.072 0.672 ± 0.089
F1-score 0.547 ± 0.084 0.614 ± 0.065 0.636 ± 0.081

SVM_RBF

Sensitivity 0.140 ± 0.173 0.362 ± 0.153 0.420 ± 0.214
Specificity 0.944 ± 0.028 0.924 ± 0.035 0.957 ± 0.028
Accuracy 0.894 ± 0.028 0.917 ± 0.025 0.924 ± 0.025

AUC 0.542 ± 0.086 0.683 ± 0.098 0.689 ± 0.103
F1-score 0.537 ± 0.083 0.661 ± 0.086 0.676 ± 0.085
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Table 4. Cont.

Model Measure
Dataset

Lab ISNCSCI Lab + ISNCSCI

KNN

Sensitivity 0.340 ± 0.175 0.562 ± 0.236 0.538 ± 0.223
Specificity 0.875 ± 0.040 0.913 ± 0.030 0.910 ± 0.029
Accuracy 0.842 ± 0.037 0.891 ± 0.027 0.887 ± 0.028

AUC 0.607 ± 0.085 0.737 ± 0.114 0.724 ± 0.109
F1-score 0.559 ± 0.053 0.661 ± 0.068 0.651 ± 0.069

Random Forest

Sensitivity 0.066 ± 0.114 0.386 ± 0.191 0.378 ± 0.194
Specificity 0.996 ± 0.008 0.943 ± 0.031 0.945 ± 0.033
Accuracy 0.938 ± 0.010 0.909 ± 0.028 0.910 ± 0.033

AUC 0.531 ± 0.056 0.665 ± 0.093 0.662 ± 0.101
F1-score 0.533 ± 0.083 0.646 ± 0.080 0.649 ± 0.093

Logistic
Regression

Sensitivity 0.148 ± 0.160 0.408 ± 0.184 0.442 ± 0.191
Specificity 0.941 ± 0.035 0.926 ± 0.033 0.928 ± 0.033
Accuracy 0.892 ± 0.032 0.895 ± 0.032 0.898 ± 0.032

AUC 0.545 ± 0.078 0.667 ± 0.093 0.685 ± 0.094
F1-score 0.538 ± 0.070 0.636 ± 0.083 0.648 ± 0.082

The KNN model trained with the “ISNCSCI” dataset from CNUH demonstrated the highest performance, with
an AUC of 0.737. Abbreviations: Lab = laboratory data; ISNCSCI = International Standards for Neurological
Classification of Spinal Cord Injury.

The t-SNE plot before and after feature selection in the CNUH model is shown in Sup-
plementary Figure S1. The non-PU and PU groups were more clearly classified after feature
selection. The changes in the distribution patterns of the non-PU and PU groups after feature
selection indicate notable changes. The eleven feature parameters were ranked by importance
scores based on the outcome of the KNN model (Supplementary Figure S2), and the ASIA
impairment scale (AIS) item of the ISNCSCI had the highest importance score of 0.19.

Figure 4 shows the receiver operating characteristic (ROC) curves for the optimal
datasets from both DKUH and CNUH. With respect to the DKUH dataset, which com-
prises the Lab + ISNCSCI + K-MBI + FIM variables, the SVM_linear algorithm distinctly
surpassed the other methods, with an AUC of 0.904, an accuracy of 94.4%, a sensitivity
of 0.840, a specificity of 0.968, and an F1-score of 0.907. The CNUH dataset, which was
based exclusively on ISNCSCI variables, exhibited more uniform results across different
algorithms. Notably, the KNN algorithm had an AUC of 0.737, an accuracy of 89.1%, a
sensitivity of 0.562, a specificity of 0.913, and an F1-score of 0.661. Overall, the performance
at CNUH was more restrained than that at DKUH. The SVM_linear algorithm maintained
its superior performance with only the ISNCSCI variables in the DKUH dataset, but its
AUC and accuracy were considerably lower than those of the combination of the Lab +
ISNCSCI + K-MBI + FIM variables and even the CNUH results (Supplementary Figure S3).
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Figure 4. Receiver operating characteristic (ROC) curve of each machine learning algorithm in
(A) DKUH using the Lab + ISNCSCI + K-MBI + FIM dataset and (B) CNUH using the ISNCSCI dataset.

Figure 5 shows the decision tree model employed to distinguish between the Non-PU
and PU groups. The primary discriminator is “K-MBI: ambulation”, with a threshold
value of 2.338. Subjects who scored below this threshold were predominantly categorized
using subsequent discriminators, notably “ISNCSCI: motor score of Rt. lower extremity”
(≤18.314) and “FIM: eating” (≤5.033). In contrast, for those surpassing the “K-MBI: am-
bulation” threshold, “FIM: walk/wheelchair” (≤3.445) and “ISNCSCI: motor score of Rt.
lower extremity” (≤7.388) emerged as salient discriminators. The tree further expands to
encompass laboratory parameters such as platelet count, mean corpuscular hemoglobin,
and eosinophil count, as well as multiple neurological and functional metrics. Each branch
point denotes a unique criterion that aids in efficiently classifying subjects into the non-PU
and PU groups.
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Figure 5. Decision tree of the SVM_linear model trained with the “Lab + ISNCSCI + K-MBI + FIM” dataset of DKUH to classify the non-PU and PU groups. The
“ambulation” subscale of the K-MBI was identified as the first single discriminator for determination of the two groups. The red line indicates “yes”, and the blue
line indicates “no”. Abbreviations: K-MBI = Korean version of the Modified Barthel Index; ISNCSCI = International Standards for Neurological Classification of
Spinal Cord Injury; FIM = Functional Independence Measure; LER = lower extremity, right; UER = upper extremity, right; AIS = ASIA Impairment Scale; LTL = light
touch, left; LEL = lower extremity, left; PPL = pinprick, left; UEMS = Upper Extremity Motor Subscore; LT, total = light touch, total, MCH = mean corpuscular
hemoglobin; MCHC = mean corpuscular hemoglobin concentration.
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4. Discussion

In our quest to improve outcomes for patients with SCI, our study’s application of
ML techniques marks a shift from traditional areas of focus, including neurological and
functional outcomes [30–35], to the proactive prevention of PUs. These prevalent yet
preventable complications have a profound impact on the recovery and quality of life of
patients with SCI [36]. Our innovative use of ML, ranging from SVM to DNN to GNN,
has enabled us to delve into complex datasets and extract critical insights from nonlinear
relationships for more accurate PU predictive modeling. This methodology underscores
the potential of ML to go beyond the boundaries of conventional statistical analysis.

A key finding of our study was the differential performance of the linear SVM model
across different datasets. The DKUH dataset, with its larger sample size and diverse
baseline characteristics such as age range, injury severity, and neurological status, provided
a different context for ML application than the CNUH dataset. This contrast in performance
underscores the influence of specific dataset attributes on the success of ML models and
highlights the need for data that encapsulate a broad range of patient scenarios to improve
predictive accuracy in diverse clinical settings.

Furthermore, our analysis revealed the paramount importance of functional parame-
ters, including walking (K-MBI), lower body dressing, transfers, eating and bathing (FIM),
in predicting PUs (Figure 3). This finding highlights the dominance of functional data over
neurological factors in risk assessment. The need for functional assessment is particularly
pronounced in conditions such as spinal shock, where the neurological status may be
uncertain. In addition to these functional indicators, our study also draws attention to the
importance of pre-onset laboratory markers related to inflammation and anemia, such as
lymphocyte, neutrophil and eosinophil counts, as well as MCHC and RBC counts, which is
consistent with the findings of a previous study [37]. Although not primary predictors, their
association with increased PU risk is consistent with previous research and underscores
their importance in PU risk assessment.

As we move toward clinical application, we have developed a decision tree algorithm
based on the results of our study. This algorithm incorporates key parameters identified
as significant in predicting PUs, such as functional status indicators (e.g., mobility and
self-care ability) and relevant laboratory markers (e.g., inflammatory, and hematological
parameters). Designed as a user-friendly decision support tool, it systematically evaluates
these factors to estimate PU risk, providing clinicians with a structured framework for early
intervention. While the algorithm is promising, extensive validation in diverse clinical
settings is essential to determine its utility and efficacy. Our preliminary external validation
efforts have revealed variability in performance across datasets from different institutions,
underscoring the challenges of creating a universally applicable ML-based prediction tool.
These observations not only highlight the intricacies of ML model generalization, but also
pave the way for further research to refine and adapt the algorithm for broader clinical
use [38,39].

The limitations of our study are openly acknowledged, particularly with respect
to the limited sample size and the brevity of the observation period. We recognize the
potential of expansive data sources such as the National Spinal Cord Injury Statistical
Center (NSCISC; https://www.nscisc.uab.edu/, accessed on 19 October 2021) and the
National Institutes of Health (NIH) National Institute of Neurological Disorders and Stroke
(NINDS; https://www.commondataelements.ninds.nih.gov/Spinal%20Cord%20Injury,
accessed on 19 October 2021), although their use was limited by their mismatch with the
acute and subacute phase specificity of our research, particularly the lack of time-sensitive
laboratory data relevant to the onset of PUs. In addition, the design of our study needed
a rigorous selection process to include only participants with unique records, limiting
our dataset.

We envision that future studies include a wider network, integrate data from multiple
centers, and account for the temporal progression of PUs. The exploration of hybrid
machine learning frameworks that combine the strengths of different algorithms may

https://www.nscisc.uab.edu/
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hold the key to improving predictive accuracy. Our ultimate goal is to develop a reliable
predictive framework that will not only facilitate the prevention and early treatment of
PUs in clinical settings, but also have a tangible impact on the care and quality of life
of patients with SCI. This framework will enable clinicians to intervene more effectively,
potentially reducing the incidence of PUs and their associated complications. By improving
early detection and intervention strategies, we aim to contribute to better health outcomes,
increased independence, and overall well-being for patients with SCI.

5. Conclusions

In this study, we successfully developed a prediction model for PUs after SCI during
the acute and subacute stages of the hospital stay using an ML algorithm, especially the
SVM linear model. Our findings underscore the critical role of functional data, in addition
to neurological and laboratory data, in the development of effective PU prediction models.
Specifically, the five most important functional parameters identified were ambulation,
lower body dressing, bed/chair/wheelchair transfers, eating, and bathing. These param-
eters, which are indicative of a patient’s mobility and self-care capabilities, are critical in
predicting PU risk. The integration of these functional aspects into our machine learning-
driven models holds great promise for the early detection and prevention of PUs in clinical
settings, potentially leading to improved patient care and outcomes for patients with SCI.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm13040990/s1, Figure S1: tSNE plot before and after feature
selection in CNUH data; Figure S2: Importance scores of the top 11 featured parameters based on the
outcome of the KNN model in CNUH; Figure S3: Receiver operating characteristic (ROC) curve of
each machine learning algorithm in DKUH using the ISNCSCI dataset.
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