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Abstract

Large language models (LLMs) have revolutionized various applications in

natural language processing and exhibited proficiency in generating program-

ming code. We propose a framework for evaluating the code generation ability

of LLMs and introduce a new metric, pass-ratio@n, which captures the granu-

larity of accuracy according to the pass rate of test cases. The framework is

intended to be fully automatic to handle the repetitive work involved in gener-

ating prompts, conducting inferences, and executing the generated codes. A

preliminary evaluation focusing on the prompt detail, problem publication

date, and difficulty level demonstrates the successful integration of our frame-

work with the LeetCode coding platform and highlights the applicability of

the pass-ratio@n metric.
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1 | INTRODUCTION

Recently, large language models (LLMs) have emerged as
powerful tools for natural language processing [1–3], rev-
olutionizing various applications such as text generation,
translation, and question answering. Although initially
intended for natural language understanding and genera-
tion, LLMs have also displayed remarkable proficiency in
comprehending and generating programming code.
Employing LLMs to generate source code implies utiliz-
ing advanced machine-learning models to assist in imple-
menting code for specific tasks or functions. Several

LLMs, such as Codex, AlphaCode, and CodeGen [4–6],
are available for generating source code. These models
have been trained on extensive datasets comprising both
source code and textual descriptions from various
programming languages to provide coding solutions, fix
syntax errors, and even help designing algorithms.

Software developers increasingly use LLMs to facili-
tate code generation. By simply providing a natural lan-
guage description outlining the desired functionality,
LLMs generate the corresponding code. LLMs that gener-
ate code can boost developer efficiency, assist with rapid
prototyping, ensure that the code implements specific
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rules, reduce mistakes, and assist nonexperts. Although
LLMs offer these advantages, their performance should
be further improved, and a thorough quality evaluation is
required. In fact, the generated code must be rigorously
reviewed and tested to ensure that it meets the design
requirements and is error-free.

No general accepted guidelines for evaluating the
quality of source code generated by LLMs are available.
LLMs are evaluated using diverse metrics and data, thus
undermining consistency and hindering comparisons of
different models and techniques. Moreover, inconsistent
evaluations impede understanding the effectiveness and
reliability of LLM-based code generation.

BLEU [7], CodeBLEU [8], and pass@k [9] are often
used to assess code functionality. However, the BLEU
and CodeBLEU metrics evaluate codes based on their
syntactic similarity to a specific single answer. Conse-
quently, even if an LLM generates functionally correct
code, it may receive a low score if its syntax differs from
that of the reference solution. Alternatively, the pass@k
metric assesses functionality based on the actual execu-
tion results and may thus be more appropriate for evalu-
ating codes. The pass@k metric evaluates the generated
code by executing it and checking whether all the test
cases are passed. However, this binary approach, which
solely assesses whether the code is completely correct,
hinders quality evaluation at a more granular level. This
limitation underscores the necessity of introducing addi-
tional metrics to capture varying degrees of accuracy.

The selection of datasets for evaluating code genera-
tion is also important. Several studies [10–12] have been
proposed to evaluate the quality of LLMs for code genera-
tion. However, the datasets used in the experiments var-
ied in terms of program size, complexity, and format. For
example, some datasets consist of specifications and codes
that are only a few lines long and relatively straightfor-
ward, whereas others encompass complex problems
found in coding challenges. Additionally, they coding
problems may had been included during LLM training.
Hence, datasets should be carefully selected to ensure
realistic and unbiased assessment of the models. There-
fore, data selection guidelines should be established.

To address the above-mentioned problems, we pro-
pose a systematic framework for evaluating LLMs with
an emphasis on functionality. Nonfunctional evaluations,
such as readability and complexity, have been extensively
studied [10–13]. Our framework improves previous
research by addressing non-functionality. We first
describe factors for dataset selection. We then propose a
process for evaluating an LLM with a dataset that meets
specific criteria. In addition, we address the limitations of
the existing evaluation methods by introducing a new

metric, pass-ratio@n, which captures the multifaceted
nature of code quality. Because evaluating LLMs requires
considerable repetitive work, from generating queries,
making inferences, and executing the generated codes,
we introduce a fully automatic process.

The contributions of this study are as follows:

• We propose an evaluation framework to assess the
code generation ability of LLMs. The framework
emphasizes integration with common coding
platforms.

• We derive a new metric, pass-ratio@n, which provides
a more granular measure of accuracy by considering
the pass rate of test cases across n inferences.

• We conducted a preliminary evaluation of the pro-
posed framework to demonstrate its fully automatic
capabilities.

The remainder of this paper is organized as follows.
Section 2 presents related work on metrics and datasets.
Section 3 outlines the dataset conditions for LLM evalua-
tion. Section 4 presents an evaluation framework that
includes the new metric. Section 5 describes the proposed
framework. Section 6 discusses the limitations, and
Section 7 presents our conclusions.

2 | RELATED WORK

2.1 | Metric pass@k

The pass@k [4, 9] metric allows to assess the code gener-
ation ability of an LLM based on the code execution
results. Given a coding problem, the pass@k metric
involves analyzing k different code solutions generated
by the LLM. If at least one of the k generated solutions
passes all the tests, the LLM is considered to have solved
the problem.

The pass@k metric introduced in Kulal et al. [9] was
further refined in Chen et al. [4] to consider additional n
solutions, with n> k. The Codex model was evaluated
using the pass@k metric in Chen et al. [4]. The pass@k
metric is expressed as

pass@k :¼ E
problems

1�
n�c
k

� �
n
k

� �
" #

, ð1Þ

where c represents the number of correct code solutions.
To obtain functional correctness according to the pass@k
metric, the code should pass all the tests, resembling
validation by human programmers of real-world code.
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However, perfectly passing all the tests for a given coding
problem is challenging not only for LLMs but also for
humans. While examining test success is important, it is
also valuable to consider the proportion of test cases that
have been successfully passed.

2.2 | Datasets

Selecting appropriate datasets is essential for properly
assessing the performance of LLMs. Methods that eval-
uate the code generation ability of LLMs based on
code execution, such as the pass@k metric, depend the
quality of test data. Common datasets for these types of
assessments include HumanEval [4] and MBPP [14].
HumanEval [4] contains 164 handwritten Python prob-
lems, each accompanied by a function signature, descrip-
tions, and multiple unit tests. MBPP [14] comprises 1000
crowdsourced Python problems, each with task descrip-
tions, code solutions, and three test cases. Their multilin-
gual versions for code generative models, HumanEval-X
[15] and MBXP [16]), have also been developed in recent
projects.

The abovementioned datasets typically involve rela-
tively simple programming problems. For example, they
involve problems with a source code of fewer than
200 characters and approximately 10 lines. Evaluating
LLMs using simple coding problems may result in
inflated and unrealistic pass@k scores. In Roziére [17],
GPT-4 solved 67% of the problems with only a single
inference (that is, pass@1), and the CodeLlama-34B
model achieved a 53.7% pass@1 score and 88.2%
pass@100 score. A high pass@100 value implies a high
possibility that the LLM can find a solution within
100 attempts. However, it is impractical to perform sev-
eral inferences for a single coding problem because it is
resource-intensive, and the most appropriate solution
among all the possible answers should be selected.

More realistic problems are being used from coding
platforms, such as Codeforces and LeetCode. For example,
the APPS dataset [18] includes 10,000 real-world problems
from various open-access coding websites, such as Code-
forces and Kattis, with 131,836 test cases. LeetCode prob-
lems have often been used for evaluations in recent studies
[19, 20]. The LeetCode platform provides useful informa-
tion for each problem including problem description, topic
category, difficulty level, input/output examples, publica-
tion date, and massive test data. However, the information
available in LeetCode has not been fully exploited when
evaluating code generation using LLMs [19, 20]. In previ-
ous studies, LLMs were mainly analyzed focusing on the
language type or difficulty level. Hence, various challenges

remain for fully using the rich information provided by
coding platforms such as LeetCode and automating evalu-
ation, which is essential for assessing the real-world pro-
gramming ability of LLMs.

3 | FACTORS FOR DATASET
SELECTION

To evaluate the code generation ability of LLMs, various
datasets encompassing a wide range of real-world coding
problems should be used. Previous studies [4, 9, 17, 20]
have often assessed LLMs from a limited perspective,
mainly focusing on particular programming languages or
difficulty levels.

However, additional factors must be considered when
evaluating the code generation ability of LLMs. For
instance, the temporal context involves determining
whether coding problems are created before or after
training the model. This helps ensure that the model does
not directly learn the solutions or is exposed to similar
problems during training. Real-world relevance is
another factor to filter overly simple and outdated coding
problems. Furthermore, the availability of the test data is
essential to verify the functionality of generated code.
Hence, we evaluate code functionality based on the exe-
cution results of actual test cases. The amount of test data
is important because data scarcity impedes ensuring code
correctness. Diverse test data ensure that the code solu-
tion is not skewed toward specific inputs or scenarios and
allows to determine whether the LLM correctly solves a
coding problem. However, most existing datasets lack
a comprehensive set of test cases.

Platforms such as LeetCode can help handling the
factors for properly evaluating the coding ability. Leet-
Code is a popular online platform used to solve coding
problems and provides a vast collection of problems.
Moreover, each coding problem contains representative
information such as the difficulty level and topic. Consid-
ering the abovementioned factors, the advantages of
using LeetCode are as follows. First, LeetCode regularly
hosts coding challenges and adds up-to-date problems.
This allows to assess an LLM using coding problems cre-
ated after model training. In fact, using coding problems
published after the LLM release allows to evaluate the
LLM ability to handle new and potentially unseen chal-
lenges. Second, the coding problems in LeetCode are
real-world coding interview questions and challenges
faced in actual software development scenarios. Finally,
it provides a test dataset for each coding problem, often
comprising more than 100 test cases, enabling a deep
evaluation of the quality of generated code.
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4 | PROPOSED FRAMEWORK AND
METRIC

4.1 | Framework architecture

We propose a framework for assessing the code genera-
tion ability of LLMs in alignment with platforms such as
LeetCode. The proposed framework is expected to sup-
port various metrics, and the entire evaluation process is
automated.

Figure 1 shows the architecture of the proposed eval-
uation framework. The architecture is divided into three
stages: i) coding problem preparation, ii) LLM execution,
and iii) code analysis. These stages proceed sequentially,
and storing the outcomes of the previous stage allows
skipping it and proceeding to the next stage.

(1) Coding problem preparation
Evaluating the code generation ability of LLMs gener-

ally involves determining the number of given coding
problems that are solved using the generated codes.
However, this approach often overlooks the multifaceted
analysis of coding problems. For instance, it is meaning-
ful to understand the influence of accuracy with adequate
granularity of the prompt input on the LLM for solving a
coding problem and evaluate the output variability based
on the prompt details. Another factor to consider for a
coding problem is the publication date. This temporal
information is helpful in ensuring that the problems are
not part of the LLM training data.

Table 1 presents the information that must be
extracted during coding problem preparation. The prob-
lems are designed using the LeetCode platform. Items
such as problem descriptions, execution examples, and
constraints are used to generate prompts with varying
levels of detail. Aspects such as difficulty level, topic, and
publication date are used to analyze the evaluation
results from various perspectives. Finally, the signature is

required to set up an execution environment to run the
test cases.

LeetCode offers a graphical user interface that allows
users to handle coding problems individually. However,
manually extracting coding problems by individually
clicking on each problem and copying and pasting the
description is labor-intensive. To evaluate LLMs using
several coding problems, automating problem extraction
is crucial. Our implementation automatically extracts the

F I GURE 1 Overview of LLM evaluation framework using LeetCode.

TABL E 1 Information to be extracted from every coding

problem.

Item Description

Problem
description

Content of the task to be solved through
programming. This typically
encompasses the purpose of the
problem.

Execution
examples

Sample inputs and expected outputs.

Constraints Limitations, rules, or conditions that must
be followed. They cover input ranges,
sizes, or other restrictions.

Difficulty level Coding complexity of a problem. Many
platforms, including LeetCode,
categorize problems into three difficulty
levels: easy, medium, and hard.

Topics Specific category or area of algorithms, data
structures, and programming concepts.
This categorization enables analysis
based on specific domains.

Publication
date

Publication date of a coding problem. Using
problems published after training
confirms that the evaluated LLM does
not have pre-existing knowledge.

Signature Structure of a function, encompassing the
function name, parameter types, and
return types.
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information listed in Table 1 by leveraging third-party
open-source command line interface (CLI) libraries for
LeetCode.

(2) LLM execution
This stage consists of three steps: generating prompts,

performing inferences with prompts, and saving the gen-
erated codes.

• Generate prompt: Referring to Table 1, this step cre-
ates prompts of different depths: (i) only problem
description, (ii) adding constraints, and (iii) adding
execution examples. By using prompts with varying
levels of detail, we can examine the influence of the
prompts and determine those that produce the best
results. The function signature is also included to pro-
duce a code appropriate to the structure.

• Infer from prompt: In this step, the LLM generates
the intended code. We feed the prompts created in the
previous step to the LLM and obtain the source code
produced as an inference result. Inference can be per-
formed using any kind of LLM, including in-house,
downloaded, and commercially available models.

• Save generated codes: The LLM execution phase
generates code using several prompts, resulting in mul-
tiple problem–prompt pairs, and several inference iter-
ations are performed per pair. We store the results
after each inference to avoid future re-executions and
reuse prior work. The stored source code instances are
augmented with metadata including the corresponding
coding problem, prompt details, and target program-
ming language, facilitating future performance analy-
sis. When storing, outliers are filtered.

(3) Generated code analysis
This stage comprises two steps: (i) running the gener-

ated codes with test cases and (ii) analyzing the results
according to the metrics.

• Run generated codes with test cases: To verify the
functional correctness of the generated code, it should
be executed for test cases. LeetCode provides a test exe-
cution environment. After submitting the source code
on the platform and activating the test process, it shows
the test results, which include the total number of test
cases executed, count of successful cases, and detailed
insights on runtime and memory consumption. Our
implementation automates these repetitive processes by
using the corresponding LeetCode CLI library.

• Analyze results according to metrics: Codes gener-
ated by the LLM are evaluated using predetermined
metrics that reflect aspects such as accuracy, efficiency,
and readability. Leveraging the information extracted
alongside coding problems allows to analyze the LLM

capabilities from various perspectives. For example,
analyses based on criteria such as problem complexity,
publication date, topic, and level of prompt detail are
possible. This method not only offers insights into the
LLM abilities but also identifies areas for improve-
ment, possibly guiding future refinements.

4.2 | Metric pass-ratio@n

The pass@k metric is widely used to evaluate the effec-
tiveness of code generated by LLMs based on the execu-
tion results. However, this metric considers the code to
be either completely correct or incorrect using a binary
pass/fail criterion. Consequently, varying degrees of cor-
rectness cannot be considered.

Consider a simple example involving a coding prob-
lem with 10 test cases. Let us focus on the pass@1 metric,
which is the simplest form of pass@k. For pass@1, an
LLM-generated code solution receives a score of 1 only if
it passed all 10 tests. If it fails in the 10 test cases, the
score is 0. Even if a code passes 9 out of the 10 test cases,
the score is still 0, as if it had passed none. This binary
scoring system fails to acknowledge for partial success in
the test cases. This limitation remains even when k>1.
Consequently, pass@k lacks the granularity to distinguish
nearly correct from entirely incorrect solutions. This scor-
ing limitation emphasizes the need for more refined met-
rics to evaluate LLM code generation. Thus, we propose a
new metric, pass-ratio@n. The proposed pass-ratio is the
proportion of passed tests. Considering the probabilistic
nature of LLMs, which may not produce identical code
solutions across inferences, we perform n inferences. The
average pass ratio value across the n solutions is then
used to calculate the score, thereby mitigating the bias
from a single inference.

For a given solution i (0 < i≤n), pass-ratioi is calcu-
lated by squaring the ratio obtained by dividing the num-
ber of passed test cases for code i by the total number of
test cases. By squaring the value, solutions with higher
pass ratios are assigned more weight, thus reflecting a
higher degree of accuracy.

pass-ratioi ¼
the number of passed test cases at code i

the number of test cases

� �2

:

The value of pass-ratio@n represents the average pass-
ratio across n generated codes:

pass-ratio@n¼
Pn

i¼1pass-ratioi
n

:
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5 | FRAMEWORK EVALUATION

We analyzed the proposed framework to ensure that the
LLM evaluation was fully automatic and effective. This
analysis focused on the feasibility of the proposed frame-
work and metrics rather than on an exhaustive analysis
of the LLM performance. We chose GPT-3.5 and GPT-4
as the LLMs to be evaluated and integrated them with
the commercial application programming interface (API)
provided by OpenAI to access their LLMs.

We conducted analyses to evaluate the LLM prompt
details, problem publication date, and proposed metric.

5.1 | Analysis of prompt details

We first explored the impact of the prompt details on
code generation. We assumed that more details increased
the accuracy of code generation. To confirm this hypothe-
sis, we devised three types of prompts with varying levels
of detail:

• (Type 1) Basic problem description: This is a
simple straightforward description of the coding
problem.

• (Type 2) Problem description with constraints: An
extended version of the type 1 description including
constraints imposed to the solution.

• (Type 3) Problem description with constraints and
examples: This is the most detailed type of query
and encompasses both constraints and illustrative
examples.

The problem type thus ranged from the least (i) to the
most (iii) detailed. For the analysis, we randomly selected
10 coding problems from LeetCode. The three types of
prompts were created per coding problem, thus evaluat-
ing 30 queries (10 problems � 3 queries). We generated
source codes for the 30 queries using GPT-3.5 and mea-
sured the code accuracy using LeetCode. Table 2 lists the
results of whether the generated codes passed the tests.
In this analysis, the source code was generated once by a
single inference per prompt.

Table 2 shows that the codes generated using
prompts of types 1 and 2 solved 6 and 7 out of the
10 problems, respectively, while those of type 3 solved
8, indicating the best performance among the three types
of prompts.

For a deeper analysis, we present a description of cod-
ing problem 4 in Table 2. This problem was retrieved
from LeetCode.

(Source https://leetcode.com/problems/
maximum-matching-of-players-with-trainers/).
Description of coding problem 4 Title:
Maximum matching of players with trainer-
s You are given a 0-indexed integer array
players, where players[i] represents the ability of
the ith player. You are also given a 0-indexed
integer array trainers, where trainers
[j] represents the training capacity of the jth
trainer. The ith player can match with the jth
trainer if the player’s ability is less than or equal
to the trainer’s training capacity. Additionally,
the ith player can be matched with at most one
trainer, and the jth trainer can be matched with
at most one player. Return the maximum
number of matchings between players and
trainers that satisfy these conditions.

For problem 4, the source code generated by GPT-
3.5 using the three types of prompts is shown in
Figure 2. Among the three prompts, only the code gen-
erated with the type 3 prompt passed all the test cases.
The code generated with the type 2 prompt was imple-
mented similarly to that generated with type 3. How-
ever, the code from the type 2 prompt failed to pass the
test case with input (players=[1,1000000000],
trainers=[1000000000,1]). Although the expected
output for the test case was 2, its output was 1. This origi-
nated from the fourth line of the code, in which an incor-
rect parameter value was used. Changing the code from

TAB L E 2 Pass/fail results of source codes generated by GPT-3.5 for 10 LeetCode coding problems.

Prompt type

Coding problem

1 2 3 4 5 6 7 8 9 10

Type 1 (description only) Pass Pass Pass Fail Fail Fail Pass Pass Pass Fail

Type 2 (description + constraints) Pass Pass Pass Fail Fail Pass Pass Pass Pass Fail

Type 3 (description + constraints + example) Pass Pass Pass Pass Fail Pass Pass Pass Pass Fail
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F I GURE 2 Comparison of generated codes according to prompt details.

112 YEO ET AL.

 22337326, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.4218/etrij.2023-0357 by E

lectronics and T
elecom

m
unications, W

iley O
nline L

ibrary on [28/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



‘trainers.sort(reverse=True)’ to ‘trainers.
sort()’ corrected the error.

While this analysis was based on a small sample of
10 coding problems, our initial observations suggest that
there is a correlation between the level of detail in the
prompt and accuracy of the source code generated by
the LLM.

5.2 | Analysis of publication date

We also designed an experiment to evaluate the source
code generation ability of the LLM according to the pub-
lication year of the coding problem. Coding problems
published before the LLM training date are probably easy
for the model to solve, but those created after model
training may be more difficult.

To investigate this assumption, we organized the cod-
ing problems according to the publication date. Consider-
ing that GPT-3.5 was initially released on March
15, 2022, we chose coding problems from 2023, 2022, and
up to 2021 for evaluation. We also employed an addi-
tional classification based on the difficulty levels of easy,
medium, and hard. For each year and difficulty level, we
randomly selected 10 coding problems and conducted
five inferences per problem using GPT-3.5, resulting in
an examination of five generated code solutions per
problem.

Table 3 lists the number of coding problems success-
fully solved (i.e., every test case in a problem passed) out
of a total of 10 problems per group.

Table 3 shows that GPT-3.5 performs well on coding
problems published until 2021, solving eight easy, four
medium-difficulty, and three hard problems. However,
its performance declines when confronted with problems
from 2022 and 2023. For 2022 and 2023, some easy and
medium-difficulty problems were solved, but no difficult
problem was solved.

While GPT demonstrated proficiency in solving prob-
lems up to 2021, it encountered difficulties with problems
that emerged after its training date. The decline in perfor-
mance for problems from 2022 and 2023 may be

attributed to the introduction of new contexts or topics
not included in the training data. However, a true under-
standing of natural language specifications requires the
ability to handle evolving problems. This shows the fun-
damental difference between human cognition and cur-
rent LLMs. Humans can infer, extrapolate, and make
educated guesses about unfamiliar topics based on prior
knowledge and experience. Although models like GPT-
3.5 can attempt similar tasks using patterns extracted
from their vast datasets, they are inherently limited by
existing knowledge. Consequently, they cannot genuinely
understand or reason for completely new topics or con-
texts without sufficient reference in their training data.
This underscores the importance of iterative training and
model updates in artificial intelligence systems.

5.3 | Analysis of pass-ratio@n metric

We first evaluated the pass-ratio@n calculation using
three example coding problems in comparison with
pass@k. We generated five coding solutions per problem
using LLM inference. Table 4 lists the number of passed
test cases and total number of test cases per LLM-
generated code solution. Given that five solutions were
generated, we set n to 5 for the pass-ratio@n metric. Sim-
ilarly, we configured n to 5 in pass@k while varying k
from 1 to 5 to facilitate a comprehensive comparison with
pass-ratio@5.

Table 4 lists the pass@k (k = 1–5, n = 5) and pass-
ratio@n (n = 5) scores. For the first coding problem, the
five generated solutions passed every test case, resulting
in pass@k (k = 1–5, n = 5) and pass-ratio@5 with values
of 100%. For the second coding problem, the solutions for
problems 2, 3, and 5 passed all the tests, while those
for problems 1 and 4 failed to pass some of the 135 test
cases, ultimately receiving a fail classification. As three of
the five solutions passed, the pass@1 score was 60%. For
pass@5, because at least one of the five solutions passed,
the result was 100%. The pass-ratio@5, calculated as the
average of the squared pass rates of each solution, was
78%. In the third coding problem, the five solutions
failed, resulting in pass@k (k = 1–5, n = 5) of 0%. How-
ever, the generated solutions passed a high portion of the
61 test cases, suggesting that they were effective. Only
pass-ratio@5 reflected this phenomenon. In fact, pass-
ratio@5 was 61% for the third problem, reflecting the test
pass rate.

We then integrated our framework with the LeetCode
platform to examine the applicability of the pass-ratio@n
metric. This analysis involved calculating and comparing
pass@1, pass@5, and pass-ratio@5 for GPT-3.5 consider-
ing the publication date and difficulty of the coding

TAB L E 3 Solved problems out of 10 randomly selected coding

problems categorized by publication year and difficulty level using

GPT-3.5 with five inferences per problem.

Difficulty Publication year

level �2021 2022 2023

Easy 8 6 6

Medium 4 2 1

Hard 3 0 0

YEO ET AL. 113

 22337326, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.4218/etrij.2023-0357 by E

lectronics and T
elecom

m
unications, W

iley O
nline L

ibrary on [28/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



problems. The n value for pass-ratio@n was set to
5, which implied five inference attempts per problem.
For each category, 10 coding problems were randomly
chosen based on the publication year and difficulty level,
resulting in 50 inferences per category. For the three diffi-
culty levels (easy, medium, and hard), this number was
multiplied by 3, resulting in 150 inferences. Finally, the
publication years up to 2021, 2022, and 2023, multiplied
the required inferences by 3, resulting in a total of
450 inferences. This task was labor-intensive, but the pro-
posed framework automated the repetitive processes.

Table 5 lists the pass@1, pass@5, and pass-ratio@5
scores for GPT-3.5 across 10 randomly selected problems
in each category. For the easy problems, all the metrics
showed high scores exceeding 60%. For the medium diffi-
culty, the scores drastically dropped for problems pub-
lished after 2022. This trend was more pronounced for
the hard problems. Notably, the pass@1 and pass@5

metrics recorded scores of 0 in 2022 and 2023, indicating
that no problems were solved. Nevertheless, as inferred
from the values of the proposed pass-ratio@5, GPT-3.5
managed to pass some of the test cases, indicating certain
problem-solving ability. In contrast, the pass@k metrics
failed to capture the potential problem-solving ability of
the model.

Finally, we extended our evaluation to include GPT-4
by applying the same method to calculate pass-ratio@5
as for GPT-3.5. Figure 3 shows the pass-ratio@5 scores
for the GPT-3.5 and GPT-4 LLMs. Both models per-
formed relatively well for problems dating up to 2021.
For such problems, a pass-ratio@5 value of over 70%
indicated a commendable problem-solving ability. How-
ever, pass-ratio@5 dropped to less than half for problems
after 2021, and this decline was more pronounced for
hard problems. GPT-4 generally exhibited a higher pass-
ratio@5 than GPT-3.5. When analyzing the trends of
these values across the different categories for each
model, similar trends were observed for GPT-3.5 and
GPT-4.

TAB L E 4 Comparison of pass@k (k = 1–5, n = 5) and pass-ratio@5 for three coding problems.

Coding problem 1 2 3

Solution 1 72/72 (pass) 128/135 (fail) 56/61 (fail)

2 72/72 (pass) 135/135 (pass) 48/61 (fail)

3 72/72 (pass) 135/135 (pass) 21/61 (fail)

4 72/72 (pass) 0/135 (fail) 48/61 (fail)

5 72/72 (pass) 135/135 (pass) 56/61 (fail)

pass@1 (n = 5) 100% 60% 0%

pass@2 (n = 5) 100% 90% 0%

pass@3 (n = 5) 100% 100% 0%

pass@4 (n = 5) 100% 100% 0%

pass@5 (n = 5) 100% 100% 0%

pass-ratio@5 100% 78% 61%

TAB L E 5 Results of pass@1, pass@5, and pass-ratio@5 using

GPT-3.5 for 10 coding problems in various categories.

Difficulty
Year

pass@1 pass@5
pass-ratio@5level (n = 5) (n = 5)

Easy �2021 80% 90% 80%

2022 62% 80% 72%

2023 64% 80% 70%

Medium �2021 40% 60% 63%

2022 16% 20% 33%

2023 14% 30% 25%

Hard �2021 26% 40% 33%

2022 0% 0% 13%

2023 0% 0% 17%

F I GURE 3 Results of pass-ratio@5 for GPT-3.5 and GPT-4

according to publication year and difficulty level.
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6 | LIMITATIONS AND
DISCUSSION

For the framework evaluation in Section 5, we selected
10 coding problems from different publication years and
difficulty levels. Although we performed 450 inferences
across three years, three difficulty levels, and five repeti-
tions, the number of inferences was insufficient to general-
ize the performance of the LLM. To address this
limitation, future studies should incorporate a more exten-
sive group of coding problems. Nevertheless, the proposed
framework seems to provide efficiency with time and cost
savings by automating the evaluation of LLMs.

The performance of the proposed pass-ratio@n
method may be affected by the value of n. When n¼ 1,
the performance evaluation is based on a single infer-
ence. The pass-ratio@1 value is adequate under low ran-
domness (for example, low temperature in an LLM)
because it often yields identical code solutions for the
same input. However, under higher randomness, this
approach may not be reliable because of the increased
variability in the generated codes. In such cases, increas-
ing n can improve the generalization of the evaluation,
although this requires multiple inferences and executes
the generated code solutions for all the test data, which
can be resource-intensive.

Using the pass-ratio@n metric, the LLM ability for
code generation is evaluated based on the pass rate of test
cases. Therefore, the effectiveness of this metric is influ-
enced by the quality of the test cases. This aspect
becomes important because the number and complexity
of test cases vary across coding problems. Thus, the
adopted real-world coding platforms should be reputable
to ensure credibility of the findings.

Our framework evaluates LLMs and can use coding
platforms, such as LeetCode. However, this approach
requires integration of an API that facilitates communi-
cation with these platforms through a CLI. In addition,
we must adhere to the licensing agreements of the data
providers and use the problem data appropriately.

7 | CONCLUSION

We introduce a framework for systematically evaluating
the code generation ability of LLMs. We first analyze
essential factors to consider in dataset selection and
determine that coding platforms such as LeetCode can
adequately cover such factors. The proposed framework
is intended to be fully automated to manage the repeti-
tive processes involved in generating queries, conducting

inferences, and executing the generated codes. In addi-
tion, a new metric, pass-ratio@n, is introduced to mea-
sure accuracy with granularity by considering the test
pass rate.

Our preliminary experimental results indicated that
the prompt details affected the quality of the generated
source code, and the targeted model was less effective at
solving coding problems published after the date of LLM
training. In addition, the pass-ratio@n metric could suc-
cessfully measure the closeness of the generated code to
being complete and functional, representing a nuanced
and useful way to assess the performance of LLMs in
code generation. This study was aimed solely to confirm
the applicability of the proposed framework using a small
number of problems and generated code. To generalize
our findings, a systematic analysis with a larger dataset is
necessary. Future studies will involve refining the frame-
work and conducting a comprehensive evaluation of vari-
ous LLMs using the proposed framework and metric.
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