손실 모드 공명 광섬유 굴절률 센서의 특성 분석을 위한 이론적 연구

Theoretical study on lossy mode resonance fiber-optic refractometer

표현봉*, 김봉규 진단치료기연구실 ETRI *pyo@etri.re.kr

Requirements for an effective fiber-optic biosensor

- Sensitive to changes in refractive index (or thickness) of the ambient (sample)
- Dynamic range of the sensor can be tuned for each channel
- Signal highly dependent on incident wavelength, but not on the angle of internal reflection (LMR¹ vs SPR²)
- Routine surface chemistry (e.g. silanization) must be applicable

¹LMR: Lossy-mode resonance

²SPR: Surface plasmon resonance

Lossy mode resonance fiber-optic sensor layout

- 1. Core: light-guiding layer (SiO_2)
- 2. Clad: sensing layer (lossy material, e.g., TCOs)
- 3. Ambient: sample solution (buffer solution, blood plasma, etc.)

3-layer model (core-clad-ambient)

Optical properties of each layers are characterized completely by

- 1. Intrinsic constants: $\epsilon_j(\lambda)$, $\mu_j(\lambda)$, and d_j
- 2. External parameters: θ_j and λ

Fresnel equations for n-stratified layers

(Complex) dielectric function ϵ_{j} is defined as

$$\epsilon_j = N_j^2 = (n_j + ik_j)^2$$

where n_j : refractive index, k_j : extinction coefficient with layer thickness d_i

Electromagnetic fields in a stratified medium (W. N. Hansen, JOSA 58(3) 380-390 (1968))

Tangential components of the fields (u, v) at the first and last boundaries are related with the characteristic matrix M

$$\begin{pmatrix} u_0 \\ v_0 \end{pmatrix} = M \begin{pmatrix} u_{n-2} \\ v_{n-2} \end{pmatrix} \qquad M = \prod_{j=1}^{n-2} M_j = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$

The characteristic matrix for jth layer is given by

$$M_j = \left(egin{array}{ccc} \coseta_j & rac{-i}{p_j}\sineta_j \ -ip_j\sineta_j & \coseta_j \end{array}
ight) \quad ext{for} \quad j=1,\ldots,n-2$$

where

$$p_j = \sqrt{rac{\epsilon_j}{\mu_j}}\cos heta_j$$
 (TE-mode) and $eta_j = (rac{2\pi}{\lambda})\xi_j d_j$ $= \sqrt{rac{\mu_j}{\epsilon_j}}\cos heta_j$ (TM-mode) with $\xi_j = (N_j^2 - N_0^2\sin^2 heta_0)^{1/2} = N_j\cos heta_j$ (Snell's law)

Reflectance and transmittance

For non-magnetic materials (μ_i =1),

$$p_j = \sqrt{\epsilon_j}\cos heta_j = \sqrt{N_j^2-N_0^2\sin heta_0^2}$$
 (TE-mode) $= rac{\cos heta_j}{\sqrt{\epsilon}_j} = \sqrt{1-rac{N_0^2}{N_j^2}\sin heta_0^2}$ (TM-mode)

The reflection- and transmission coefficients are

$$r = \frac{(m_{11} + m_{12}p_{n-1})p_0 - (m_{21} + m_{22}p_{n-1})}{(m_{11} + m_{12}p_{n-1})p_0 + (m_{21} + m_{22}p_{n-1})}$$

$$t = \frac{2p_0}{(m_{11} + m_{12}p_{n-1})p_0 + (m_{21} + m_{22}p_{n-1})}$$

And the reflectance and transmittance are

$$R(\theta_0,\lambda) = rr^* \qquad T(\theta_0,\lambda) = tt^*$$

Schematic illustration of transmission measurements (not scaled)

Power distribution

The number of ray reflections in a sensing region is

$$N(\theta) = \frac{L}{D \tan \theta}$$

and the power distribution is (for the core RI n_1)

$$dP \propto \frac{n_1^2 \sin \theta \cos \theta}{(1 - n_1^2 \cos^2 \theta)^2} d\theta$$

Reflectance and transmitted power

The normalized transmitted power of all guided rays is

$$P = rac{\int_{ heta_{cr}}^{rac{\pi}{2}} R^{N(heta)} p(heta) d heta}{\int_{ heta_{cr}}^{rac{\pi}{2}} p(heta) d heta} \qquad ext{where} \qquad p(heta) = rac{n_1^2 \sin heta \cos heta}{(1 - n_1^2 \cos^2 heta)^2}$$

with R(θ , λ), N(θ), and the critical angle $\theta_{cr.}$

- Calculation conditions:
 - 1. All materials involved are homogeneous and isotropic
 - 2. Core material: SiO_2 , Ø=400 µm multi-mode fiber (MMF)
 - 3. Clad: ITO (lossy material), thickness=440 nm
 - 4. Length of the sensing region=40 mm
 - 5. Refractive index of the proteins=1.41

Dielectric function $\varepsilon(\lambda)$ of TCOs

Because dielectric functions $\varepsilon(\lambda)$ of the transparent conductive oxides (TCOs) strongly depend on the method of deposition and any impurities, the measured data were interpolated and used only for further calculations

Reflectance, transmittance and absorbance for SiO2/ITO(440nm)/water (MIX-mode)

Comparison of the reflectance for LMR and SPR resonance layer structures

 $SiO_2/ITO(440 \text{ nm})/\text{water}$

 $SiO_2/Cr(2 nm)/Au(42 nm)/water$

Reflectance and transmitted power for SiO2/ITO(440nm)/water

$$p(\theta) = \frac{n_1^2 \sin \theta \cos \theta}{(1 - n_1^2 \cos^2 \theta)^2}$$

Spectral changes in the transmitted power

Conclusion

- Fiber-optic refractometer using lossy mode resonance was introduced
- Reflectance and transmitted power in a fiber were calculated and evaluated for the best performance
- The sensitivity of the sensor was estimated assuming the adsorption of protein layers with the thickness changes

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) No. 2017-0-00053.

