ETRI-Knowledge Sharing Plaform

ENGLISH

성과물

논문 검색
구분 SCI
연도 ~ 키워드

상세정보

학술지 Progression-Preserving Dimension Reduction for High-Dimensional Sensor Data Visualization
Cited 1 time in scopus Download 1 time Share share facebook twitter linkedin kakaostory
저자
윤현진, Cyrus Shahabi, Carolee J. Winstein, 장종현
발행일
201310
출처
ETRI Journal, v.35 no.5, pp.911-914
ISSN
1225-6463
출판사
한국전자통신연구원 (ETRI)
DOI
https://dx.doi.org/10.4218/etrij.13.0212.0468
협약과제
12MC4800, 기능성 엔터테인먼트 서비스를 위한 다감각 실감미디어 체험시스템 개발, 장종현
초록
This letter presents Progression-Preserving Projection, a dimension reduction technique that finds a linear projection that maps a high-dimensional sensor dataset into a two- or three-dimensional subspace with a particularly useful property for visual exploration. As a demonstration of its effectiveness as a visual exploration and diagnostic means, we empirically evaluate the proposed technique over a dataset acquired from our own virtual-reality-enhanced ball-intercepting training system designed to promote the upper extremity movement skills of individuals recovering from stroke-related hemiparesis. © 2013 ETRI.
키워드
Dimension reduction, Highdimensional data, Linear projection, Rehabilitation after stroke, Virtual reality
KSP 제안 키워드
Dimension reduction technique, High-Dimensional Data, Linear projection, Sensor Data Visualization, Three dimensional(3D), Training system, Virtual Reality(VR), Visual exploration, upper extremity