ETRI-Knowledge Sharing Plaform

ENGLISH

성과물

논문 검색
구분 SCI
연도 ~ 키워드

상세정보

학술지 Automated Speaker Recognition for Home Service Robots Using Genetic Algorithm and Dempster-Shafer Fusion Technique
Cited 37 time in scopus Download 0 time Share share facebook twitter linkedin kakaostory
저자
Yanmei Zhan, Henry Leung, 곽근창, 윤호섭
발행일
200909
출처
IEEE Transactions on Instrumentation and Measurement, v.58 no.9, pp.3058-3068
ISSN
0018-9456
출판사
IEEE
DOI
https://dx.doi.org/10.1109/TIM.2009.2016870
협약과제
09IC1800, u-로봇 HRI 솔루션 및 핵심 소자 기술 개발, 황대환
초록
An automated speaker recognition system for home service robots is proposed in this paper. In an uncontrolled environment, a speech classifier should be adaptive to different users and robust to noisy environments. It is usually observed that specific features and classifiers are more appropriate to parts of the problem domain than others; therefore, we propose a self-optimizing approach in which multiple feature extraction and classification techniques are simultaneously considered. The system uses a genetic algorithm to simultaneously select features and classifier, and the results from multiple classifiers are then combined using the Dempster-Shafer theory. The set of feature extractors used here includes linear-prediction coefficients, linear-prediction cepstral coefficients, mel-frequency cepstral coefficients, and bark-frequency cepstral coefficients, and the set of classifiers includes the Gaussian mixture model, support vector machines, C4.5 decision tree, 觀 nearest neighbors, and multilayer perceptron neural network. The WEVER-R2 home service robot is used in a typical Korean home environment to collect speech signals for evaluating the performance of the proposed system for gender and age classification. Classification results show that the performance of the proposed method consistently outperforms the individual classifiers. © 2009 IEEE.
키워드
Dempster-Shafer (DS), Gender/age classification, Genetic algorithm (GA), Information fusion, Service robot, Speaker recognition
KSP 제안 키워드
Age Classification, C4.5 Decision Tree(C4.5 DT), Classification techniques, Decision Tree(DT), Dempster-Shafer(DS), Dempster-Shafer Fusion, Dempster-Shafer Theory(DST), Feature Extraction and Classification, Gaussian mixture Model(GMM), Home environment, Mel-Frequency Cepstrum Coefficients(MFCC)