ETRI-Knowledge Sharing Plaform

ENGLISH

성과물

논문 검색
구분 SCI
연도 ~ 키워드

상세정보

학술지 Dantzig-Wolfe Decomposition Approach to the Vehicle Assignment Problem with Demand Uncertainty in a Hybrid Hub-and-Spoke Network
Cited 7 time in scopus Download 9 time Share share facebook twitter linkedin kakaostory
저자
최지영, 이충목, 박성수
발행일
201805
출처
Annals of Operations Research, v.264 no.1-2, pp.57-87
ISSN
0254-5330
출판사
Springer
DOI
https://dx.doi.org/10.1007/s10479-017-2730-x
초록
In this article, we investigate the vehicle assignment problem with demand uncertainty in a hybrid hub-and-spoke network with a single hub. The problem is deciding both the transportation routes and the number and types of vehicles to be deployed to minimize the sum of costs to transport all quantities in a hybrid hub-and-spoke network which allows direct transportation between spokes. Daily changes in quantities are reflected with a finite number of scenarios. Regularly scheduled vehicles and temporarily scheduled vehicles are considered to meet the demand variation. We propose a Dantzig?밯olfe decomposition approach which yields a strong LP relaxation bound by introducing a set of feasible direct route patterns. We develop an algorithm which incorporates a column generation procedure at the root node and repeats iteratively a variable fixing and column generation procedure at the non-root nodes until an integral solution is found. Finally, we present computational results using the well-known CAB data sets and real-life data from the Korea Post. The results show that our algorithm can find near optimal solutions very efficiently.
키워드
Column generation, Demand uncertainty, Hybrid hub-and-spoke, Vehicle assignment problem
KSP 제안 키워드
Assignment problem, Dantzig-Wolfe decomposition, Data sets, Decomposition approach, Demand Variation, Direct route, Integral solution, LP relaxation, Optimal Solution, Real-life data, Root node