This paper reports a user study on the effects of latency in visual and haptic feedback on touchscreen interaction for a painting task. Our work was motivated by recently emerging multimodal use of touchscreens and electrostatic friction displays with high-quality 3D graphics. We designed and implemented a painting application on a touchscreen that enabled users to paint a 3D sculpture with their finger pad while perceiving haptic feedback through electrovibration. Software-induced latency was varied from 0 to 120 ms for both visual and haptic feedback. Participants' task was to paint on the 3D sculpture as quickly and accurately as possible. For performance assessment, we measured task completion time and execution error. We also obtained subjective responses to four questions (easiness, responsiveness, pleasantness, and the sense of control) related to user experiences. Experiment results indicated that visual latency is critical for both task completion time and task execution error whereas haptic latency is for task execution error, but not for task completion time. Both latencies affected the subjective responses, but visual latency had more apparent effects.
KSP Keywords
3D graphics, Case studies, Effects of latency, Experiment results, Haptic Feedback, High-quality, Performance Assessment, Touchscreen interaction, User experience, User studies, task completion time
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.