ETRI-Knowledge Sharing Plaform



논문 검색
구분 SCI
연도 ~ 키워드


학술지 Harvest-Then-Transceive: Throughput Maximization in Full-Duplex Wireless-Powered Communication Networks
Cited 2 time in scopus Download 16 time Share share facebook twitter linkedin kakaostory
이경락, 조성령, 이재원, 조인휘
IEICE Transactions on Communications, v.E101.B no.4, pp.1128-1141
일본, 전자정보통신학회 (IEICE)
17JR1100, 달 탐사용 우주인터넷 기술개발, 이병선
This paper proposes the mesh-Topology based wirelesspowered communication network (MT-WPCN), which consists of a hybridaccess point (H-AP) and nodes. The H-AP broadcasts energy to all nodes by wireless, and the nodes harvest the energy and then communicate with other nodes including the H-AP. For the communication in the MT-WPCN, we propose the harvest-Then-Transceive protocol to ensure that the nodes can harvest energy from the H-AP and transmit information selectively to the H-AP or other nodes, which is not supported in most protocols proposed for the conventional WPCN. In the proposed protocol, we consider that the energy harvesting can be interrupted at nodes, since the nodes cannot harvest energy during transmission or reception. We also consider that the harvested energy is consumed by the reception of information from other nodes. In addition, the energy reservation model is required to guarantee the QoS, which reserves the infimum energy to receive information reliably by the transmission power control. Under these considerations, first, we design the half harvest-Then-Transceive protocol, which indicates that a node transmits information only to other nodes which do not transmit information yet, for investing the effect of the energy harvesting interruption. Secondly, we also design the full harvest-Then-Transceive protocol for the information exchange among nodes and compatibility with the conventional star-Topology based WPCN, which indicates that a node can transmit information to any network unit, i.e., the H-AP and all nodes. We study the sum-Throughput maximization in the MT-WPCN based on the half and full harvest-Then-Transceive protocols, respectively. Furthermore, the amount of harvested energy is analytically compared according to the energy harvesting interruption in the protocols. Simulation results show that the proposedMT- WPCNoutperforms the conventional star-Topology basedWPCN in terms of the sum-Throughput maximization, when wireless information transmission among nodes occurs frequently.
Convex optimization, Energy harvesting, Harvest-Then-Transceive, Mesh-Topology based network, Wireless energy transfer, Wireless-powered communication netwroks (WPCN)
KSP 제안 키워드
Convex Optimization, Energy Harvesting(EH), Energy reservation, Full-Duplex(FuDu), Information Exchange, Information transmission, Power control(PC), Wireless powered communication, communication network, communication netwroks, full-duplex wireless