Journal Article
High-yield Graphene Exfoliation Using Sodium Dodecyl Sulfate Accompanied by Alcohols as Surface-Tension-Reducing Agents in Aqueous Solution
The exfoliation of graphite was investigated in aqueous solutions containing sodium dodecyl sulfate (SDS) as a surfactant. The exfoliation was greatly enhanced near the surface aggregation concentration (SAC) of SDS, 2.6 mM, and then decreased for higher SDS contents. However, the flakes exfoliated near the SAC were graphite, whereas graphene was obtained above the critical micelle concentration (CMC). The effect of the use of alcohols as surface-tension-reducing agents (STRAs) on the exfoliation was then investigated. With ethyl alcohol, a dispersion of 2.1 mg ml-1 graphene was achieved from 2.6 mM SDS after only 1 h of sonication, whereas a dispersion of 0.2 mg ml-1 was obtained above the CMC in the absence of STRAs. The results demonstrate that the SDS content near the SAC is highly beneficial for exfoliation as long as the surface tension is maintained near 41.0 mN ml-1. This finding supports the notion that the structure of the adsorbed SDS, depending on its concentration, strongly affects the exfoliation of graphite into graphene.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.