This paper presents the effective way to build the precise 3D point cloud data with the color based on the probability theory by filtering out the false data measured by the RGB-D camera. Recently, many engineering technologies including the intelligent vehicle have been used the RGB-D cameras due to their wealth information such as the position and the color of objects at surroundings. However, the raw data acquired by the RGB-D camera include a lot of false measurements due to the disturbances caused by variation of luminosity, shape of and distance to objet, synchronization and etc. To improve the accuracy of the RGB-D camera, this paper proposes the simple filtering method based on the 3D probabilistic voxel mapping. To verify the effectiveness of the proposed method, we perform the experiment with the intelligent vehicle in indoor environment to build the 3D RGB map using the filtered point cloud data. The experimental results show that it is possible for the RGB-D camera to construct the accurate 3D point cloud data including the color information.
KSP Keywords
3D point cloud data, Color information, False data, Filtering method, Indoor environment, Intelligent Vehicle, RGB map, RGB-D cameras, Raw Data, probability theory
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.