International Conference on Intelligent Systems and Applications (INTELLI) 2013, pp.75-78
Language
English
Type
Conference Paper
Abstract
Physiological signal is one of the most commonly used emotional cues. In recent emotion classification research, the one of main topics is to recognize human’s feeling or emotion using multi-channel physiological signals. In this study, we discuss the comparative results of emotion detection using several classification algorithms, which classify negative emotions (fear, surprise and stress) based on physiological features. Physiological signals, such as skin temperature (SKT), electrodermal activity (EDA), electrocardiogram (ECG), and photoplethysmography (PPG) were recorded while participants were exposed to emotional stimuli. Twenty-eight features were extracted from these signals. For classification of negative emotions, four machine learning algorithms, namely, Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Self Organizing Map (SOMs), and Naïve Bayes were used. The 70% of the whole datasets were selected randomly for training and the remaining patterns are used for testing purposes. Testing accuracy by using the 30% datasets ranged from 32.4% to 46.9% and, consequently the selected physiological features didn't contribute to classify the three negative emotions. In the further work, we intend to improve emotion recognition accuracy by applying the selected significant features, such as NSCR, SCR, SKT, and FFTap_HF.
KSP Keywords
Classification Research, Classification algorithm, Classification and regression tree(CART), Electrodermal activity, Emotion Detection, Emotion classification, Emotion recognition, Linear Discriminant Analysis(LDA), Machine Learning Algorithms, Negative emotions, Physiological features
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.