International Conference on Advances in Computer-Human Interactions (ACHI) 2013, pp.389-394
Language
English
Type
Conference Paper
Abstract
Recently in HCI research, emotion recognition is one of the core processes to implement emotional intelligence. There are many studies using physiological signals in order to recognize human emotions. The purpose of this study is to recognize emotions using autonomic nervous system responses induced by three different emotions (boredom, pain and surprise). Three different emotional states are evoked by emotional stimuli, physiological signals (EDA, ECG, PPG and SKT) for the induced emotions are measured as the reactions of stimuli, and 27 features are extracted from their physiological signals for emotion recognition. The stimuli are used to provoke emotions and tested their appropriateness and effectiveness. Audio-visual film clips used as stimuli are captured originally from movies, documentary, and TV shows with the appropriateness of 86%, 97.3% and 94.1% for boredom, pain and surprise, respectively, and the effectiveness of 5.23 for happiness, 4.96 for pain and 6.12 for surprise (7 point Likert scale). Also, for the three emotion recognition, we propose a Fuzzy c-means clustering based neural networks using the physiological signals. The proposed model consists of three layers, namely, input, hidden and output layers. Here, fuzzy c-means clustering method, two types of polynomial and linear combination function are used as a kernel function in the input layer, the hidden layer and the output layer of neural networks, respectively. To evaluate the performance of emotion recognition of the proposed model, we use the 10-fold cross validation and a comparative analysis shows that the proposed model exhibit higher accuracy when compared with some other models that exist in the literature.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.