We present a fast and light-weight face recognition algorithm using local feature points for mobile device. To recognize face accurately, we adopt Gabor-LBP histogram and SIFT-based local feature point. Gabor-LBP histogram is used to represent the local texture and shape of face images. SIFT-based local feature point is used to select some regions which have high probability to contain more important information of face components (eye, nose, mouth, etc.). The training stage of the proposed method is similar to other face recognition algorithms based on LBP histogram. The proposed algorithm has the advantage in test stage. Only selected blocks are used in the test stage. The selected blocks contain one more local feature points extracted by SIFT detector. Comparison between gallery image (train image) and probe image (test image) performs Gabor-LBP histogram sequences of selected blocks. Therefore the proposed algorithm has merits in the aspect of processing time and memory. Experimental results show that the proposed method can be achieved a similar recognition performance with general face recognition algorithm using all blocks of face image. The proposed method has an outstanding performance in processing time and memory. It is suitable for real-time face recognition in mobile device.
KSP Keywords
Face Components, Face image, LBP histogram, Light-weight, Local Feature Point, Local texture, Mobile devices, Real-time, Recognition performance, SIFT detector, face Recognition
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.