10MI2600, Development of Next Generation Fixed Mobile Convergence Gateway Technology,
Byungjun Ahn
Abstract
In wireless networks, guard channel based Call Admission Control (CAC) schemes are widely used to protect handoff calls for seamless wireless services. However, the introduction of guard channels in wireless networks results in the increase in the new call blocking probability. This general sit-uation also occurs in a 3G-WLAN integrated network. To solve this problem in a 3G-WLAN integrated network for QoS support, we propose an adaptive guard channel based CAC scheme in this paper. The main objective of our guard channel based CAC scheme is to alleviate the increase in the new call blocking probability due to guard channels while it can still protect handoff calls. For the design of our adaptive guard channel based CAC scheme, we first develop and analyze a performance model for a general guard channel based CAC scheme based on a level-dependent quasi birth and death model. The analytic results are used to design our adaptive guard channel based CAC scheme. Numerical studies show that our adaptive guard channel based CAC scheme can achieve its objective and its performance is near optimal.
KSP Keywords
Admission control(AC), Blocking probability(BP), Call Admission Control, Guard channel, Handoff call, New call blocking probability, QoS Support, Wireless network, design and analysis, integrated network, near optimal
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.