Emotions are complex processes involving multiple response channels, including physiological systems, facial expressions and voices. Bio-signals reflect sequences of neural activity, which result in changes in autonomic and neuroendocrine systems induced by emotional events. Therefore in human-computer interaction researches, one of the most current interesting topics in emotion recognition is to recognize human's feeling using bio-signals. The aim of this study is to classify emotions (joy, sadness, anger, fear, surprise, and neutral) that human have often experienced in real life from multichannel bio-signals using machine learning algorithms. We have measured physiological responses of three-hundred participants for acquisition of bio-signals such as electrodermal activity, electrocardiograph, skin temperature, and photoplethysmo-graph during six emotions induction. Also, for emotion classification, we have extracted eighteen features from the signals and performed emotion classification using four algorithms, linear discriminant analysis, Na챦ve Bayes, classification and regression tree and support vector machine. The used algorithms were evaluated by only training, 10-fold cross-validation and repeated random sub-sampling validation. We have obtained recognition accuracy from 56.4 to 100% for only training and 39.2 to 53.9% for testing. Also, the result for testing showed that an accuracy of emotion recognition by Na챦ve Bayes was highest (53.9%) and lowest by support vector machine (39.2%). This means that Na챦ve Bayes is the best emotion recognition algorithm for basic emotions. This result can be helpful to provide the basis for the emotion recognition technique in human-computer interaction.
KSP Keywords
Basic emotions, Classification and regression tree(CART), Cross validation(CV), Electrodermal Activity, Emotion Recognition, Facial expression, Human computer interaction, Machine Learning Algorithms, Multiple response, Neural Activity, Physiological Systems
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.