This paper presents improvements made on our previous haptic music player designed to enhance music listening experience with mobile devices. Our previous haptic music player featured with dualband rendering; it delivers bass beat sensations in music with rough superimposed vibrations and high-frequency salient features in music with high-frequency smooth vibrations. This work extends the previous algorithm by taking into account auditory saliency in determining the intensity of vibration to be rendered. The auditory saliency is estimated in real-time from several auditory features in music. The feasibility of multiband rendering was also tested using a wideband actuator. We carried out a user study to evaluate the subjective performance of three haptic music playing modes: saliency-improved dual-band rendering, saliency-improved multiband rendering, and our previous dualband rendering. Experimental results showed that the new dual-band mode has perceptual merits over the multiband mode and the previous dual-band mode, particularly for rock or dance music. The results can contribute to enhancing multimedia experience by means of vibrotactile rendering of music.
KSP Keywords
Dual-band, High frequency(HF), Listening experience, Mobile devices, Music player, Real-time, Saliency estimation, User studies, Vibrotactile rendering, auditory features, salient features
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.