AlGaN/GaN HEMTs on SiC have attracted a lot of attention owing to their promising advantages in high power and high frequency applications. The widely used Ni-based Schottky contacts are subjective to degradation under extremely operating conditions[1-2]. In this work, we fabricated the AlGaN/GaN HEMTs on SiC with 0.17 µm T-shaped gate using Schottky contacts of multi-layered Pt/Ti/Pt/Au. The HEMT epitaxial layers consisted of a thick buffer, 2 µm GaN, a 25 nm undoped Al 0.25 Ga 0.75 N Schottky layer on SiC grown using MOCVD. Ohmic contacts were achieved by Ti/Al/Ni/Au evaporation and RTA. The device isolation was formed by ion implantation. Pt/Ti/Pt/Au multi-layered Schottky metal contacts with T-shaped gate of 0.15 µm gate length were fabricated by electron-beam lithography. The devices had a gate width of 200 µm and a source-drain spacing of 5 μm. The devices showed the good pinch-off characteristics. The threshold voltage was – 2.52 V. The extrinsic transconductance was 250 mS/mm at a gate bias of -1.0 V and a drain bias of 10 V. The three-terminal breakdown voltage was 140 V at drain current of 1 mA/mm and gate bias of – 5 V. RF measurement shows that these devices have a fT of 56 GHz and fMAX of 200 GHz. These results will be usefully applied for high frequency and high power applications.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.